gecko-dev/xpcom/ds/nsBaseHashtable.h

576 строки
17 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef nsBaseHashtable_h__
#define nsBaseHashtable_h__
#include <utility>
#include "mozilla/MemoryReporting.h"
#include "nsDebug.h"
#include "nsTHashtable.h"
template <class KeyClass, class DataType, class UserDataType, class Converter>
class nsBaseHashtable; // forward declaration
/**
* Data type conversion helper that is used to wrap and unwrap the specified
* DataType.
*/
template <class DataType, class UserDataType>
class nsDefaultConverter {
public:
/**
* Maps the storage DataType to the exposed UserDataType.
*/
static UserDataType Unwrap(DataType& src) { return UserDataType(src); }
/**
* Const ref variant used for example with nsCOMPtr wrappers.
*/
static DataType Wrap(const UserDataType& src) { return DataType(src); }
/**
* Generic conversion, this is useful for things like already_AddRefed.
*/
template <typename U>
static DataType Wrap(U&& src) {
return std::move(src);
}
};
/**
* the private nsTHashtable::EntryType class used by nsBaseHashtable
* @see nsTHashtable for the specification of this class
* @see nsBaseHashtable for template parameters
*/
template <class KeyClass, class DataType>
class nsBaseHashtableET : public KeyClass {
public:
const DataType& GetData() const { return mData; }
DataType* GetModifiableData() { return &mData; }
template <typename U>
void SetData(U&& aData) {
mData = std::forward<U>(aData);
}
private:
DataType mData;
friend class nsTHashtable<nsBaseHashtableET<KeyClass, DataType>>;
template <typename KeyClassX, typename DataTypeX, typename UserDataTypeX,
typename ConverterX>
friend class nsBaseHashtable;
typedef typename KeyClass::KeyType KeyType;
typedef typename KeyClass::KeyTypePointer KeyTypePointer;
explicit nsBaseHashtableET(KeyTypePointer aKey);
nsBaseHashtableET(nsBaseHashtableET<KeyClass, DataType>&& aToMove);
~nsBaseHashtableET() = default;
};
/**
* templated hashtable for simple data types
* This class manages simple data types that do not need construction or
* destruction.
*
* @param KeyClass a wrapper-class for the hashtable key, see nsHashKeys.h
* for a complete specification.
* @param DataType the datatype stored in the hashtable,
* for example, uint32_t or nsCOMPtr.
* @param UserDataType the user sees, for example uint32_t or nsISupports*
* @param Converter that can be used to map from DataType to UserDataType. A
* default converter is provided that assumes implicit conversion is an
* option.
*/
template <class KeyClass, class DataType, class UserDataType,
class Converter = nsDefaultConverter<DataType, UserDataType>>
class nsBaseHashtable
: protected nsTHashtable<nsBaseHashtableET<KeyClass, DataType>> {
typedef mozilla::fallible_t fallible_t;
public:
typedef typename KeyClass::KeyType KeyType;
typedef nsBaseHashtableET<KeyClass, DataType> EntryType;
using nsTHashtable<EntryType>::Contains;
using nsTHashtable<EntryType>::GetGeneration;
using nsTHashtable<EntryType>::SizeOfExcludingThis;
using nsTHashtable<EntryType>::SizeOfIncludingThis;
nsBaseHashtable() = default;
explicit nsBaseHashtable(uint32_t aInitLength)
: nsTHashtable<EntryType>(aInitLength) {}
/**
* Return the number of entries in the table.
* @return number of entries
*/
uint32_t Count() const { return nsTHashtable<EntryType>::Count(); }
/**
* Return whether the table is empty.
* @return whether empty
*/
bool IsEmpty() const { return nsTHashtable<EntryType>::IsEmpty(); }
/**
* retrieve the value for a key.
* @param aKey the key to retreive
* @param aData data associated with this key will be placed at this
* pointer. If you only need to check if the key exists, aData
* may be null.
* @return true if the key exists. If key does not exist, aData is not
* modified.
*/
bool Get(KeyType aKey, UserDataType* aData) const {
EntryType* ent = this->GetEntry(aKey);
if (!ent) {
return false;
}
if (aData) {
*aData = Converter::Unwrap(ent->mData);
}
return true;
}
/**
* Get the value, returning a zero-initialized POD or a default-initialized
* object if the entry is not present in the table.
*
* @param aKey the key to retrieve
* @return The found value, or UserDataType{} if no entry was found with the
* given key.
* @note If zero/default-initialized values are stored in the table, it is
* not possible to distinguish between such a value and a missing entry.
*/
UserDataType Get(KeyType aKey) const {
EntryType* ent = this->GetEntry(aKey);
if (!ent) {
return UserDataType{};
}
return Converter::Unwrap(ent->mData);
}
/**
* Add key to the table if not already present, and return a reference to its
* value. If key is not already in the table then the value is default
* constructed.
*/
DataType& GetOrInsert(const KeyType& aKey) {
EntryType* ent = this->PutEntry(aKey);
return ent->mData;
}
/**
* Put a new value for the associated key
* @param aKey the key to put
* @param aData the new data
*/
void Put(KeyType aKey, const UserDataType& aData) {
if (!Put(aKey, aData, mozilla::fallible)) {
NS_ABORT_OOM(this->mTable.EntrySize() * this->mTable.EntryCount());
}
}
MOZ_MUST_USE bool Put(KeyType aKey, const UserDataType& aData,
const fallible_t&) {
EntryType* ent = this->PutEntry(aKey, mozilla::fallible);
if (!ent) {
return false;
}
ent->mData = Converter::Wrap(aData);
return true;
}
/**
* Put a new value for the associated key
* @param aKey the key to put
* @param aData the new data
*/
void Put(KeyType aKey, UserDataType&& aData) {
if (!Put(aKey, std::move(aData), mozilla::fallible)) {
NS_ABORT_OOM(this->mTable.EntrySize() * this->mTable.EntryCount());
}
}
MOZ_MUST_USE bool Put(KeyType aKey, UserDataType&& aData, const fallible_t&) {
EntryType* ent = this->PutEntry(aKey, mozilla::fallible);
if (!ent) {
return false;
}
ent->mData = Converter::Wrap(std::move(aData));
return true;
}
/**
* Remove the entry associated with aKey (if any), optionally _moving_ its
* current value into *aData. Return true if found.
* @param aKey the key to remove from the hashtable
* @param aData where to move the value (if non-null). If an entry is not
* found, *aData will be assigned a default-constructed value
* (i.e. reset to zero or nullptr for primitive types).
* @return true if an entry for aKey was found (and removed)
*/
bool Remove(KeyType aKey, DataType* aData = nullptr) {
if (auto* ent = this->GetEntry(aKey)) {
if (aData) {
*aData = std::move(ent->mData);
}
this->RemoveEntry(ent);
return true;
}
if (aData) {
*aData = std::move(DataType());
}
return false;
}
struct LookupResult {
private:
EntryType* mEntry;
nsBaseHashtable& mTable;
#ifdef DEBUG
uint32_t mTableGeneration;
#endif
public:
LookupResult(EntryType* aEntry, nsBaseHashtable& aTable)
: mEntry(aEntry),
mTable(aTable)
#ifdef DEBUG
,
mTableGeneration(aTable.GetGeneration())
#endif
{
}
// Is there something stored in the table?
explicit operator bool() const {
MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
return mEntry;
}
void Remove() {
if (!*this) {
return;
}
mTable.RemoveEntry(mEntry);
mEntry = nullptr;
}
MOZ_MUST_USE DataType& Data() {
MOZ_ASSERT(!!*this, "must have an entry to access its value");
return mEntry->mData;
}
};
/**
* Removes all entries matching a predicate.
*
* The predicate must be compatible with signature bool (const Iterator &).
*/
template <typename Pred>
void RemoveIf(Pred&& aPred) {
for (auto iter = Iter(); !iter.Done(); iter.Next()) {
if (aPred(const_cast<std::add_const_t<decltype(iter)>&>(iter))) {
iter.Remove();
}
}
}
/**
* Looks up aKey in the hashtable and returns an object that allows you to
* read/modify the value of the entry, or remove the entry (if found).
*
* A typical usage of this API looks like this:
*
* if (auto entry = hashtable.Lookup(key)) {
* DoSomething(entry.Data());
* if (entry.Data() > 42) {
* entry.Remove();
* }
* } // else - an entry with the given key doesn't exist
*
* This is useful for cases where you want to read/write the value of an entry
* and (optionally) remove the entry without having to do multiple hashtable
* lookups. If you want to insert a new entry if one does not exist, then use
* LookupForAdd instead, see below.
*/
MOZ_MUST_USE LookupResult Lookup(KeyType aKey) {
return LookupResult(this->GetEntry(aKey), *this);
}
struct EntryPtr {
private:
EntryType* mEntry;
bool mExistingEntry;
nsBaseHashtable& mTable;
// For debugging purposes
#ifdef DEBUG
uint32_t mTableGeneration;
bool mDidInitNewEntry;
#endif
public:
EntryPtr(nsBaseHashtable& aTable, EntryType* aEntry, bool aExistingEntry)
: mEntry(aEntry),
mExistingEntry(aExistingEntry),
mTable(aTable)
#ifdef DEBUG
,
mTableGeneration(aTable.GetGeneration()),
mDidInitNewEntry(false)
#endif
{
}
~EntryPtr() {
MOZ_ASSERT(mExistingEntry || mDidInitNewEntry || !mEntry,
"Forgot to call OrInsert() or OrRemove() on a new entry");
}
// Is there something stored in the table already?
explicit operator bool() const {
MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
return mExistingEntry;
}
template <class F>
DataType& OrInsert(F func) {
MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
MOZ_ASSERT(mEntry);
if (!mExistingEntry) {
mEntry->mData = Converter::Wrap(func());
#ifdef DEBUG
mDidInitNewEntry = true;
#endif
}
return mEntry->mData;
}
void OrRemove() {
MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
MOZ_ASSERT(mEntry);
mTable.RemoveEntry(mEntry);
mEntry = nullptr;
}
MOZ_MUST_USE DataType& Data() {
MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
MOZ_ASSERT(mEntry);
return mEntry->mData;
}
};
/**
* Looks up aKey in the hashtable and returns an object that allows you to
* insert a new entry into the hashtable for that key if an existing entry
* isn't found for it.
*
* A typical usage of this API looks like this:
*
* auto insertedValue = table.LookupForAdd(key).OrInsert([]() {
* return newValue;
* });
*
* auto p = table.LookupForAdd(key);
* if (p) {
* // The entry already existed in the table.
* DoSomething(p.Data());
* } else {
* // An existing entry wasn't found, store a new entry in the hashtable.
* p.OrInsert([]() { return newValue; });
* }
*
* We ensure that the hashtable isn't modified before EntryPtr method calls.
* This is useful for cases where you want to insert a new entry into the
* hashtable if one doesn't exist before but would like to avoid two hashtable
* lookups.
*/
MOZ_MUST_USE EntryPtr LookupForAdd(KeyType aKey) {
auto count = Count();
EntryType* ent = this->PutEntry(aKey);
return EntryPtr(*this, ent, count == Count());
}
// This is an iterator that also allows entry removal. Example usage:
//
// for (auto iter = table.Iter(); !iter.Done(); iter.Next()) {
// const KeyType key = iter.Key();
// const UserDataType data = iter.UserData();
// // or
// const DataType& data = iter.Data();
// // ... do stuff with |key| and/or |data| ...
// // ... possibly call iter.Remove() once ...
// }
//
class Iterator : public PLDHashTable::Iterator {
public:
typedef PLDHashTable::Iterator Base;
explicit Iterator(nsBaseHashtable* aTable) : Base(&aTable->mTable) {}
Iterator(Iterator&& aOther) : Base(aOther.mTable) {}
~Iterator() = default;
KeyType Key() const { return static_cast<EntryType*>(Get())->GetKey(); }
UserDataType UserData() const {
return Converter::Unwrap(static_cast<EntryType*>(Get())->mData);
}
DataType& Data() const { return static_cast<EntryType*>(Get())->mData; }
private:
Iterator() = delete;
Iterator(const Iterator&) = delete;
Iterator& operator=(const Iterator&) = delete;
Iterator& operator=(const Iterator&&) = delete;
};
Iterator Iter() { return Iterator(this); }
Iterator ConstIter() const {
return Iterator(const_cast<nsBaseHashtable*>(this));
}
// STL-style iterators to allow the use in range-based for loops, e.g.
template <typename T>
class base_iterator
: public std::iterator<std::forward_iterator_tag, T, int32_t> {
public:
using typename std::iterator<std::forward_iterator_tag, T,
int32_t>::value_type;
using typename std::iterator<std::forward_iterator_tag, T,
int32_t>::difference_type;
using iterator_type = base_iterator;
using const_iterator_type = base_iterator<const T>;
using EndIteratorTag = PLDHashTable::Iterator::EndIteratorTag;
base_iterator(base_iterator&& aOther) = default;
base_iterator& operator=(base_iterator&& aOther) {
// User-defined because the move assignment operator is deleted in
// PLDHashtable::Iterator.
return operator=(static_cast<const base_iterator&>(aOther));
}
base_iterator(const base_iterator& aOther)
: mIterator{aOther.mIterator.Clone()} {}
base_iterator& operator=(const base_iterator& aOther) {
// Since PLDHashTable::Iterator has no assignment operator, we destroy and
// recreate mIterator.
mIterator.~Iterator();
new (&mIterator) PLDHashTable::Iterator(aOther.mIterator.Clone());
return *this;
}
explicit base_iterator(PLDHashTable::Iterator aFrom)
: mIterator{std::move(aFrom)} {}
explicit base_iterator(const nsBaseHashtable* aTable)
: mIterator{&const_cast<nsBaseHashtable*>(aTable)->mTable} {}
base_iterator(const nsBaseHashtable* aTable, EndIteratorTag aTag)
: mIterator{&const_cast<nsBaseHashtable*>(aTable)->mTable, aTag} {}
bool operator==(const iterator_type& aRhs) const {
return mIterator == aRhs.mIterator;
}
bool operator!=(const iterator_type& aRhs) const {
return !(*this == aRhs);
}
value_type* operator->() const {
return static_cast<value_type*>(mIterator.Get());
}
value_type& operator*() const {
return *static_cast<value_type*>(mIterator.Get());
}
iterator_type& operator++() {
mIterator.Next();
return *this;
}
iterator_type operator++(int) {
iterator_type it = *this;
++*this;
return it;
}
operator const_iterator_type() const {
return const_iterator_type{mIterator.Clone()};
}
private:
PLDHashTable::Iterator mIterator;
};
using const_iterator = base_iterator<const EntryType>;
using iterator = base_iterator<EntryType>;
iterator begin() { return iterator{this}; }
const_iterator begin() const { return const_iterator{this}; }
const_iterator cbegin() const { return begin(); }
iterator end() { return iterator{this, typename iterator::EndIteratorTag{}}; }
const_iterator end() const {
return const_iterator{this, typename const_iterator::EndIteratorTag{}};
}
const_iterator cend() const { return end(); }
/**
* reset the hashtable, removing all entries
*/
void Clear() { nsTHashtable<EntryType>::Clear(); }
/**
* Measure the size of the table's entry storage. The size of things pointed
* to by entries must be measured separately; hence the "Shallow" prefix.
*
* @param aMallocSizeOf the function used to measure heap-allocated blocks
* @return the summed size of the table's storage
*/
size_t ShallowSizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
return this->mTable.ShallowSizeOfExcludingThis(aMallocSizeOf);
}
/**
* Like ShallowSizeOfExcludingThis, but includes sizeof(*this).
*/
size_t ShallowSizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
}
/**
* Swap the elements in this hashtable with the elements in aOther.
*/
void SwapElements(nsBaseHashtable& aOther) {
nsTHashtable<EntryType>::SwapElements(aOther);
}
using nsTHashtable<EntryType>::MarkImmutable;
};
//
// nsBaseHashtableET definitions
//
template <class KeyClass, class DataType>
nsBaseHashtableET<KeyClass, DataType>::nsBaseHashtableET(KeyTypePointer aKey)
: KeyClass(aKey), mData() {}
template <class KeyClass, class DataType>
nsBaseHashtableET<KeyClass, DataType>::nsBaseHashtableET(
nsBaseHashtableET<KeyClass, DataType>&& aToMove)
: KeyClass(std::move(aToMove)), mData(std::move(aToMove.mData)) {}
#endif // nsBaseHashtable_h__