gecko-dev/servo/components/layout/fragment.rs

2973 строки
131 KiB
Rust
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! The `Fragment` type, which represents the leaves of the layout tree.
#![deny(unsafe_code)]
use app_units::Au;
use canvas_traits::CanvasMsg;
use context::{LayoutContext, SharedLayoutContext};
use euclid::{Point2D, Rect, Size2D};
use floats::ClearType;
use flow::{self, ImmutableFlowUtils};
use flow_ref::FlowRef;
use gfx;
use gfx::display_list::{BLUR_INFLATION_FACTOR, OpaqueNode};
use gfx::text::glyph::ByteIndex;
use gfx::text::text_run::{TextRun, TextRunSlice};
use gfx_traits::{FragmentType, StackingContextId};
use inline::{FIRST_FRAGMENT_OF_ELEMENT, InlineFragmentContext, InlineFragmentNodeInfo};
use inline::{InlineMetrics, LAST_FRAGMENT_OF_ELEMENT, LineMetrics};
use ipc_channel::ipc::IpcSender;
#[cfg(debug_assertions)]
use layout_debug;
use model::{self, IntrinsicISizes, IntrinsicISizesContribution, MaybeAuto, SizeConstraint};
use model::style_length;
use msg::constellation_msg::PipelineId;
use net_traits::image::base::{Image, ImageMetadata};
use net_traits::image_cache_thread::{ImageOrMetadataAvailable, UsePlaceholder};
use range::*;
use script_layout_interface::HTMLCanvasData;
use script_layout_interface::SVGSVGData;
use script_layout_interface::wrapper_traits::{PseudoElementType, ThreadSafeLayoutElement, ThreadSafeLayoutNode};
use serde::{Serialize, Serializer};
use servo_url::ServoUrl;
use std::borrow::ToOwned;
use std::cmp::{Ordering, max, min};
use std::collections::LinkedList;
use std::fmt;
use std::sync::{Arc, Mutex};
use style::arc_ptr_eq;
use style::computed_values::{border_collapse, box_sizing, clear, color, display, mix_blend_mode};
use style::computed_values::{overflow_wrap, overflow_x, position, text_decoration};
use style::computed_values::{transform_style, vertical_align, white_space, word_break, z_index};
use style::computed_values::content::ContentItem;
use style::logical_geometry::{Direction, LogicalMargin, LogicalRect, LogicalSize, WritingMode};
use style::properties::ServoComputedValues;
use style::selector_parser::RestyleDamage;
use style::servo::restyle_damage::RECONSTRUCT_FLOW;
use style::str::char_is_whitespace;
use style::values::Either;
use style::values::computed::{LengthOrPercentage, LengthOrPercentageOrAuto};
use text;
use text::TextRunScanner;
// From gfxFontConstants.h in Firefox.
static FONT_SUBSCRIPT_OFFSET_RATIO: f32 = 0.20;
static FONT_SUPERSCRIPT_OFFSET_RATIO: f32 = 0.34;
// https://drafts.csswg.org/css-images/#default-object-size
static DEFAULT_REPLACED_WIDTH: i32 = 300;
static DEFAULT_REPLACED_HEIGHT: i32 = 150;
/// Fragments (`struct Fragment`) are the leaves of the layout tree. They cannot position
/// themselves. In general, fragments do not have a simple correspondence with CSS fragments in the
/// specification:
///
/// * Several fragments may correspond to the same CSS box or DOM node. For example, a CSS text box
/// broken across two lines is represented by two fragments.
///
/// * Some CSS fragments are not created at all, such as some anonymous block fragments induced by
/// inline fragments with block-level sibling fragments. In that case, Servo uses an `InlineFlow`
/// with `BlockFlow` siblings; the `InlineFlow` is block-level, but not a block container. It is
/// positioned as if it were a block fragment, but its children are positioned according to
/// inline flow.
///
/// A `SpecificFragmentInfo::Generic` is an empty fragment that contributes only borders, margins,
/// padding, and backgrounds. It is analogous to a CSS nonreplaced content box.
///
/// A fragment's type influences how its styles are interpreted during layout. For example,
/// replaced content such as images are resized differently from tables, text, or other content.
/// Different types of fragments may also contain custom data; for example, text fragments contain
/// text.
///
/// Do not add fields to this structure unless they're really really mega necessary! Fragments get
/// moved around a lot and thus their size impacts performance of layout quite a bit.
///
/// FIXME(#2260, pcwalton): This can be slimmed down some by (at least) moving `inline_context`
/// to be on `InlineFlow` only.
#[derive(Clone)]
pub struct Fragment {
/// An opaque reference to the DOM node that this `Fragment` originates from.
pub node: OpaqueNode,
/// The CSS style of this fragment.
pub style: Arc<ServoComputedValues>,
/// The CSS style of this fragment when it's selected
pub selected_style: Arc<ServoComputedValues>,
/// The position of this fragment relative to its owning flow. The size includes padding and
/// border, but not margin.
///
/// NB: This does not account for relative positioning.
/// NB: Collapsed borders are not included in this.
pub border_box: LogicalRect<Au>,
/// The sum of border and padding; i.e. the distance from the edge of the border box to the
/// content edge of the fragment.
pub border_padding: LogicalMargin<Au>,
/// The margin of the content box.
pub margin: LogicalMargin<Au>,
/// Info specific to the kind of fragment. Keep this enum small.
pub specific: SpecificFragmentInfo,
/// Holds the style context information for fragments that are part of an inline formatting
/// context.
pub inline_context: Option<InlineFragmentContext>,
/// How damaged this fragment is since last reflow.
pub restyle_damage: RestyleDamage,
/// The pseudo-element that this fragment represents.
pub pseudo: PseudoElementType<()>,
/// Various flags for this fragment.
pub flags: FragmentFlags,
/// A debug ID that is consistent for the life of this fragment (via transform etc).
/// This ID should not be considered stable across multiple layouts or fragment
/// manipulations.
debug_id: DebugId,
/// The ID of the StackingContext that contains this fragment. This is initialized
/// to 0, but it assigned during the collect_stacking_contexts phase of display
/// list construction.
pub stacking_context_id: StackingContextId,
}
impl Serialize for Fragment {
fn serialize<S: Serializer>(&self, serializer: &mut S) -> Result<(), S::Error> {
let mut state = try!(serializer.serialize_struct("fragment", 3));
try!(serializer.serialize_struct_elt(&mut state, "id", &self.debug_id));
try!(serializer.serialize_struct_elt(&mut state, "border_box", &self.border_box));
try!(serializer.serialize_struct_elt(&mut state, "margin", &self.margin));
serializer.serialize_struct_end(state)
}
}
/// Info specific to the kind of fragment.
///
/// Keep this enum small. As in, no more than one word. Or pcwalton will yell at you.
#[derive(Clone)]
pub enum SpecificFragmentInfo {
Generic,
/// A piece of generated content that cannot be resolved into `ScannedText` until the generated
/// content resolution phase (e.g. an ordered list item marker).
GeneratedContent(Box<GeneratedContentInfo>),
Iframe(IframeFragmentInfo),
Image(Box<ImageFragmentInfo>),
Canvas(Box<CanvasFragmentInfo>),
Svg(Box<SvgFragmentInfo>),
/// A hypothetical box (see CSS 2.1 § 10.3.7) for an absolutely-positioned block that was
/// declared with `display: inline;`.
InlineAbsoluteHypothetical(InlineAbsoluteHypotheticalFragmentInfo),
InlineBlock(InlineBlockFragmentInfo),
/// An inline fragment that establishes an absolute containing block for its descendants (i.e.
/// a positioned inline fragment).
InlineAbsolute(InlineAbsoluteFragmentInfo),
ScannedText(Box<ScannedTextFragmentInfo>),
Table,
TableCell,
TableColumn(TableColumnFragmentInfo),
TableRow,
TableWrapper,
Multicol,
MulticolColumn,
UnscannedText(Box<UnscannedTextFragmentInfo>),
}
impl SpecificFragmentInfo {
fn restyle_damage(&self) -> RestyleDamage {
let flow =
match *self {
SpecificFragmentInfo::Canvas(_) |
SpecificFragmentInfo::GeneratedContent(_) |
SpecificFragmentInfo::Iframe(_) |
SpecificFragmentInfo::Image(_) |
SpecificFragmentInfo::ScannedText(_) |
SpecificFragmentInfo::Svg(_) |
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableColumn(_) |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::TableWrapper |
SpecificFragmentInfo::Multicol |
SpecificFragmentInfo::MulticolColumn |
SpecificFragmentInfo::UnscannedText(_) |
SpecificFragmentInfo::Generic => return RestyleDamage::empty(),
SpecificFragmentInfo::InlineAbsoluteHypothetical(ref info) => &info.flow_ref,
SpecificFragmentInfo::InlineAbsolute(ref info) => &info.flow_ref,
SpecificFragmentInfo::InlineBlock(ref info) => &info.flow_ref,
};
flow::base(&**flow).restyle_damage
}
pub fn get_type(&self) -> &'static str {
match *self {
SpecificFragmentInfo::Canvas(_) => "SpecificFragmentInfo::Canvas",
SpecificFragmentInfo::Generic => "SpecificFragmentInfo::Generic",
SpecificFragmentInfo::GeneratedContent(_) => "SpecificFragmentInfo::GeneratedContent",
SpecificFragmentInfo::Iframe(_) => "SpecificFragmentInfo::Iframe",
SpecificFragmentInfo::Image(_) => "SpecificFragmentInfo::Image",
SpecificFragmentInfo::InlineAbsolute(_) => "SpecificFragmentInfo::InlineAbsolute",
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) => {
"SpecificFragmentInfo::InlineAbsoluteHypothetical"
}
SpecificFragmentInfo::InlineBlock(_) => "SpecificFragmentInfo::InlineBlock",
SpecificFragmentInfo::ScannedText(_) => "SpecificFragmentInfo::ScannedText",
SpecificFragmentInfo::Svg(_) => "SpecificFragmentInfo::Svg",
SpecificFragmentInfo::Table => "SpecificFragmentInfo::Table",
SpecificFragmentInfo::TableCell => "SpecificFragmentInfo::TableCell",
SpecificFragmentInfo::TableColumn(_) => "SpecificFragmentInfo::TableColumn",
SpecificFragmentInfo::TableRow => "SpecificFragmentInfo::TableRow",
SpecificFragmentInfo::TableWrapper => "SpecificFragmentInfo::TableWrapper",
SpecificFragmentInfo::Multicol => "SpecificFragmentInfo::Multicol",
SpecificFragmentInfo::MulticolColumn => "SpecificFragmentInfo::MulticolColumn",
SpecificFragmentInfo::UnscannedText(_) => "SpecificFragmentInfo::UnscannedText",
}
}
}
impl fmt::Debug for SpecificFragmentInfo {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
SpecificFragmentInfo::ScannedText(ref info) => write!(f, "{:?}", info.text()),
SpecificFragmentInfo::UnscannedText(ref info) => write!(f, "{:?}", info.text),
_ => Ok(())
}
}
}
/// Information for generated content.
#[derive(Clone)]
pub enum GeneratedContentInfo {
ListItem,
ContentItem(ContentItem),
/// Placeholder for elements with generated content that did not generate any fragments.
Empty,
}
/// A hypothetical box (see CSS 2.1 § 10.3.7) for an absolutely-positioned block that was declared
/// with `display: inline;`.
///
/// FIXME(pcwalton): Stop leaking this `FlowRef` to layout; that is not memory safe because layout
/// can clone it.
#[derive(Clone)]
pub struct InlineAbsoluteHypotheticalFragmentInfo {
pub flow_ref: FlowRef,
}
impl InlineAbsoluteHypotheticalFragmentInfo {
pub fn new(flow_ref: FlowRef) -> InlineAbsoluteHypotheticalFragmentInfo {
InlineAbsoluteHypotheticalFragmentInfo {
flow_ref: flow_ref,
}
}
}
/// A fragment that represents an inline-block element.
///
/// FIXME(pcwalton): Stop leaking this `FlowRef` to layout; that is not memory safe because layout
/// can clone it.
#[derive(Clone)]
pub struct InlineBlockFragmentInfo {
pub flow_ref: FlowRef,
}
impl InlineBlockFragmentInfo {
pub fn new(flow_ref: FlowRef) -> InlineBlockFragmentInfo {
InlineBlockFragmentInfo {
flow_ref: flow_ref,
}
}
}
/// An inline fragment that establishes an absolute containing block for its descendants (i.e.
/// a positioned inline fragment).
///
/// FIXME(pcwalton): Stop leaking this `FlowRef` to layout; that is not memory safe because layout
/// can clone it.
#[derive(Clone)]
pub struct InlineAbsoluteFragmentInfo {
pub flow_ref: FlowRef,
}
impl InlineAbsoluteFragmentInfo {
pub fn new(flow_ref: FlowRef) -> InlineAbsoluteFragmentInfo {
InlineAbsoluteFragmentInfo {
flow_ref: flow_ref,
}
}
}
#[derive(Clone)]
pub struct CanvasFragmentInfo {
pub ipc_renderer: Option<Arc<Mutex<IpcSender<CanvasMsg>>>>,
pub dom_width: Au,
pub dom_height: Au,
}
impl CanvasFragmentInfo {
pub fn new(data: HTMLCanvasData) -> CanvasFragmentInfo {
CanvasFragmentInfo {
ipc_renderer: data.ipc_renderer
.map(|renderer| Arc::new(Mutex::new(renderer))),
dom_width: Au::from_px(data.width as i32),
dom_height: Au::from_px(data.height as i32),
}
}
}
#[derive(Clone)]
pub struct SvgFragmentInfo {
pub dom_width: Au,
pub dom_height: Au,
}
impl SvgFragmentInfo {
pub fn new(data: SVGSVGData) -> SvgFragmentInfo {
SvgFragmentInfo {
dom_width: Au::from_px(data.width as i32),
dom_height: Au::from_px(data.height as i32),
}
}
}
/// A fragment that represents a replaced content image and its accompanying borders, shadows, etc.
#[derive(Clone)]
pub struct ImageFragmentInfo {
pub image: Option<Arc<Image>>,
pub metadata: Option<ImageMetadata>,
}
impl ImageFragmentInfo {
/// Creates a new image fragment from the given URL and local image cache.
///
/// FIXME(pcwalton): The fact that image fragments store the cache in the fragment makes little
/// sense to me.
pub fn new(url: Option<ServoUrl>,
shared_layout_context: &SharedLayoutContext)
-> ImageFragmentInfo {
let image_or_metadata = url.and_then(|url| {
shared_layout_context.get_or_request_image_or_meta(url, UsePlaceholder::Yes)
});
let (image, metadata) = match image_or_metadata {
Some(ImageOrMetadataAvailable::ImageAvailable(i)) => {
(Some(i.clone()), Some(ImageMetadata { height: i.height, width: i.width } ))
}
Some(ImageOrMetadataAvailable::MetadataAvailable(m)) => {
(None, Some(m))
}
None => {
(None, None)
}
};
ImageFragmentInfo {
image: image,
metadata: metadata,
}
}
pub fn tile_image_round(position: &mut Au,
size: &mut Au,
absolute_anchor_origin: Au,
image_size: &mut Au) {
if *size == Au(0) || *image_size == Au(0) {
*position = Au(0);
*size =Au(0);
return;
}
let number_of_tiles = (size.to_f32_px() / image_size.to_f32_px()).round().max(1.0);
*image_size = *size / (number_of_tiles as i32);
ImageFragmentInfo::tile_image(position, size, absolute_anchor_origin, *image_size);
}
pub fn tile_image_spaced(position: &mut Au,
size: &mut Au,
tile_spacing: &mut Au,
absolute_anchor_origin: Au,
image_size: Au) {
if *size == Au(0) || image_size == Au(0) {
*position = Au(0);
*size = Au(0);
*tile_spacing = Au(0);
return;
}
// Per the spec, if the space available is not enough for two images, just tile as
// normal but only display a single tile.
if image_size * 2 >= *size {
ImageFragmentInfo::tile_image(position,
size,
absolute_anchor_origin,
image_size);
*tile_spacing = Au(0);
*size = image_size;
return;
}
// Take the box size, remove room for two tiles on the edges, and then calculate how many
// other tiles fit in between them.
let size_remaining = *size - (image_size * 2);
let num_middle_tiles = (size_remaining.to_f32_px() / image_size.to_f32_px()).floor() as i32;
// Allocate the remaining space as padding between tiles. background-position is ignored
// as per the spec, so the position is just the box origin. We are also ignoring
// background-attachment here, which seems unspecced when combined with
// background-repeat: space.
let space_for_middle_tiles = image_size * num_middle_tiles;
*tile_spacing = (size_remaining - space_for_middle_tiles) / (num_middle_tiles + 1);
}
/// Tile an image
pub fn tile_image(position: &mut Au,
size: &mut Au,
absolute_anchor_origin: Au,
image_size: Au) {
// Avoid division by zero below!
if image_size == Au(0) {
return
}
let delta_pixels = absolute_anchor_origin - *position;
let image_size_px = image_size.to_f32_px();
let tile_count = ((delta_pixels.to_f32_px() + image_size_px - 1.0) / image_size_px).floor();
let offset = image_size * (tile_count as i32);
let new_position = absolute_anchor_origin - offset;
*size = *position - new_position + *size;
*position = new_position;
}
}
/// A fragment that represents an inline frame (iframe). This stores the pipeline ID so that the
/// size of this iframe can be communicated via the constellation to the iframe's own layout thread.
#[derive(Clone)]
pub struct IframeFragmentInfo {
/// The pipeline ID of this iframe.
pub pipeline_id: PipelineId,
}
impl IframeFragmentInfo {
/// Creates the information specific to an iframe fragment.
pub fn new<N: ThreadSafeLayoutNode>(node: &N) -> IframeFragmentInfo {
let pipeline_id = node.iframe_pipeline_id();
IframeFragmentInfo {
pipeline_id: pipeline_id,
}
}
}
/// A scanned text fragment represents a single run of text with a distinct style. A `TextFragment`
/// may be split into two or more fragments across line breaks. Several `TextFragment`s may
/// correspond to a single DOM text node. Split text fragments are implemented by referring to
/// subsets of a single `TextRun` object.
#[derive(Clone)]
pub struct ScannedTextFragmentInfo {
/// The text run that this represents.
pub run: Arc<TextRun>,
/// The intrinsic size of the text fragment.
pub content_size: LogicalSize<Au>,
/// The byte offset of the insertion point, if any.
pub insertion_point: Option<ByteIndex>,
/// The range within the above text run that this represents.
pub range: Range<ByteIndex>,
/// The endpoint of the above range, including whitespace that was stripped out. This exists
/// so that we can restore the range to its original value (before line breaking occurred) when
/// performing incremental reflow.
pub range_end_including_stripped_whitespace: ByteIndex,
pub flags: ScannedTextFlags,
}
bitflags! {
pub flags ScannedTextFlags: u8 {
/// Whether a line break is required after this fragment if wrapping on newlines (e.g. if
/// `white-space: pre` is in effect).
const REQUIRES_LINE_BREAK_AFTERWARD_IF_WRAPPING_ON_NEWLINES = 0x01,
/// Is this fragment selected?
const SELECTED = 0x02,
}
}
impl ScannedTextFragmentInfo {
/// Creates the information specific to a scanned text fragment from a range and a text run.
pub fn new(run: Arc<TextRun>,
range: Range<ByteIndex>,
content_size: LogicalSize<Au>,
insertion_point: Option<ByteIndex>,
flags: ScannedTextFlags)
-> ScannedTextFragmentInfo {
ScannedTextFragmentInfo {
run: run,
range: range,
insertion_point: insertion_point,
content_size: content_size,
range_end_including_stripped_whitespace: range.end(),
flags: flags,
}
}
pub fn text(&self) -> &str {
&self.run.text[self.range.begin().to_usize() .. self.range.end().to_usize()]
}
pub fn requires_line_break_afterward_if_wrapping_on_newlines(&self) -> bool {
self.flags.contains(REQUIRES_LINE_BREAK_AFTERWARD_IF_WRAPPING_ON_NEWLINES)
}
pub fn selected(&self) -> bool {
self.flags.contains(SELECTED)
}
}
/// Describes how to split a fragment. This is used during line breaking as part of the return
/// value of `find_split_info_for_inline_size()`.
#[derive(Debug, Clone)]
pub struct SplitInfo {
// TODO(bjz): this should only need to be a single character index, but both values are
// currently needed for splitting in the `inline::try_append_*` functions.
pub range: Range<ByteIndex>,
pub inline_size: Au,
}
impl SplitInfo {
fn new(range: Range<ByteIndex>, info: &ScannedTextFragmentInfo) -> SplitInfo {
let inline_size = info.run.advance_for_range(&range);
SplitInfo {
range: range,
inline_size: inline_size,
}
}
}
/// Describes how to split a fragment into two. This contains up to two `SplitInfo`s.
pub struct SplitResult {
/// The part of the fragment that goes on the first line.
pub inline_start: Option<SplitInfo>,
/// The part of the fragment that goes on the second line.
pub inline_end: Option<SplitInfo>,
/// The text run which is being split.
pub text_run: Arc<TextRun>,
}
/// Describes how a fragment should be truncated.
pub struct TruncationResult {
/// The part of the fragment remaining after truncation.
pub split: SplitInfo,
/// The text run which is being truncated.
pub text_run: Arc<TextRun>,
}
/// Data for an unscanned text fragment. Unscanned text fragments are the results of flow
/// construction that have not yet had their inline-size determined.
#[derive(Clone)]
pub struct UnscannedTextFragmentInfo {
/// The text inside the fragment.
pub text: Box<str>,
/// The selected text range. An empty range represents the insertion point.
pub selection: Option<Range<ByteIndex>>,
}
impl UnscannedTextFragmentInfo {
/// Creates a new instance of `UnscannedTextFragmentInfo` from the given text.
#[inline]
pub fn new(text: String, selection: Option<Range<ByteIndex>>) -> UnscannedTextFragmentInfo {
UnscannedTextFragmentInfo {
text: text.into_boxed_str(),
selection: selection,
}
}
}
/// A fragment that represents a table column.
#[derive(Copy, Clone)]
pub struct TableColumnFragmentInfo {
/// the number of columns a <col> element should span
pub span: u32,
}
impl TableColumnFragmentInfo {
/// Create the information specific to an table column fragment.
pub fn new<N: ThreadSafeLayoutNode>(node: &N) -> TableColumnFragmentInfo {
let element = node.as_element().unwrap();
let span = element.get_attr(&ns!(), &local_name!("span"))
.and_then(|string| string.parse().ok())
.unwrap_or(0);
TableColumnFragmentInfo {
span: span,
}
}
}
impl Fragment {
/// Constructs a new `Fragment` instance.
pub fn new<N: ThreadSafeLayoutNode>(node: &N, specific: SpecificFragmentInfo, ctx: &LayoutContext) -> Fragment {
let style_context = ctx.style_context();
let style = node.style(style_context);
let writing_mode = style.writing_mode;
let mut restyle_damage = node.restyle_damage();
restyle_damage.remove(RECONSTRUCT_FLOW);
Fragment {
node: node.opaque(),
style: style,
selected_style: node.selected_style(),
restyle_damage: restyle_damage,
border_box: LogicalRect::zero(writing_mode),
border_padding: LogicalMargin::zero(writing_mode),
margin: LogicalMargin::zero(writing_mode),
specific: specific,
inline_context: None,
pseudo: node.get_pseudo_element_type().strip(),
flags: FragmentFlags::empty(),
debug_id: DebugId::new(),
stacking_context_id: StackingContextId::new(0),
}
}
/// Constructs a new `Fragment` instance from an opaque node.
pub fn from_opaque_node_and_style(node: OpaqueNode,
pseudo: PseudoElementType<()>,
style: Arc<ServoComputedValues>,
selected_style: Arc<ServoComputedValues>,
mut restyle_damage: RestyleDamage,
specific: SpecificFragmentInfo)
-> Fragment {
let writing_mode = style.writing_mode;
restyle_damage.remove(RECONSTRUCT_FLOW);
Fragment {
node: node,
style: style,
selected_style: selected_style,
restyle_damage: restyle_damage,
border_box: LogicalRect::zero(writing_mode),
border_padding: LogicalMargin::zero(writing_mode),
margin: LogicalMargin::zero(writing_mode),
specific: specific,
inline_context: None,
pseudo: pseudo,
flags: FragmentFlags::empty(),
debug_id: DebugId::new(),
stacking_context_id: StackingContextId::new(0),
}
}
/// Creates an anonymous fragment just like this one but with the given style and fragment
/// type. For the new anonymous fragment, layout-related values (border box, etc.) are reset to
/// initial values.
pub fn create_similar_anonymous_fragment(&self,
style: Arc<ServoComputedValues>,
specific: SpecificFragmentInfo)
-> Fragment {
let writing_mode = style.writing_mode;
Fragment {
node: self.node,
style: style,
selected_style: self.selected_style.clone(),
restyle_damage: self.restyle_damage,
border_box: LogicalRect::zero(writing_mode),
border_padding: LogicalMargin::zero(writing_mode),
margin: LogicalMargin::zero(writing_mode),
specific: specific,
inline_context: None,
pseudo: self.pseudo,
flags: FragmentFlags::empty(),
debug_id: DebugId::new(),
stacking_context_id: StackingContextId::new(0),
}
}
/// Transforms this fragment into another fragment of the given type, with the given size,
/// preserving all the other data.
pub fn transform(&self, size: LogicalSize<Au>, info: SpecificFragmentInfo)
-> Fragment {
let new_border_box = LogicalRect::from_point_size(self.style.writing_mode,
self.border_box.start,
size);
let mut restyle_damage = RestyleDamage::rebuild_and_reflow();
restyle_damage.remove(RECONSTRUCT_FLOW);
Fragment {
node: self.node,
style: self.style.clone(),
selected_style: self.selected_style.clone(),
restyle_damage: restyle_damage,
border_box: new_border_box,
border_padding: self.border_padding,
margin: self.margin,
specific: info,
inline_context: self.inline_context.clone(),
pseudo: self.pseudo.clone(),
flags: FragmentFlags::empty(),
debug_id: self.debug_id.clone(),
stacking_context_id: StackingContextId::new(0),
}
}
/// Transforms this fragment using the given `SplitInfo`, preserving all the other data.
pub fn transform_with_split_info(&self, split: &SplitInfo, text_run: Arc<TextRun>)
-> Fragment {
let size = LogicalSize::new(self.style.writing_mode,
split.inline_size,
self.border_box.size.block);
// Preserve the insertion point if it is in this fragment's range or it is at line end.
let (flags, insertion_point) = match self.specific {
SpecificFragmentInfo::ScannedText(ref info) => {
match info.insertion_point {
Some(index) if split.range.contains(index) => (info.flags, info.insertion_point),
Some(index) if index == ByteIndex(text_run.text.chars().count() as isize - 1) &&
index == split.range.end() => (info.flags, info.insertion_point),
_ => (info.flags, None)
}
},
_ => (ScannedTextFlags::empty(), None)
};
let info = box ScannedTextFragmentInfo::new(
text_run,
split.range,
size,
insertion_point,
flags);
self.transform(size, SpecificFragmentInfo::ScannedText(info))
}
/// Transforms this fragment into an ellipsis fragment, preserving all the other data.
pub fn transform_into_ellipsis(&self,
layout_context: &LayoutContext,
text_overflow_string: String)
-> Fragment {
let mut unscanned_ellipsis_fragments = LinkedList::new();
unscanned_ellipsis_fragments.push_back(self.transform(
self.border_box.size,
SpecificFragmentInfo::UnscannedText(
box UnscannedTextFragmentInfo::new(text_overflow_string, None))));
let ellipsis_fragments = TextRunScanner::new().scan_for_runs(&mut layout_context.font_context(),
unscanned_ellipsis_fragments);
debug_assert!(ellipsis_fragments.len() == 1);
ellipsis_fragments.fragments.into_iter().next().unwrap()
}
pub fn restyle_damage(&self) -> RestyleDamage {
self.restyle_damage | self.specific.restyle_damage()
}
pub fn contains_node(&self, node_address: OpaqueNode) -> bool {
node_address == self.node ||
self.inline_context.as_ref().map_or(false, |ctx| {
ctx.contains_node(node_address)
})
}
/// Adds a style to the inline context for this fragment. If the inline context doesn't exist
/// yet, it will be created.
pub fn add_inline_context_style(&mut self, node_info: InlineFragmentNodeInfo) {
if self.inline_context.is_none() {
self.inline_context = Some(InlineFragmentContext::new());
}
self.inline_context.as_mut().unwrap().nodes.push(node_info);
}
/// Determines which quantities (border/padding/margin/specified) should be included in the
/// intrinsic inline size of this fragment.
fn quantities_included_in_intrinsic_inline_size(&self)
-> QuantitiesIncludedInIntrinsicInlineSizes {
match self.specific {
SpecificFragmentInfo::Canvas(_) |
SpecificFragmentInfo::Generic |
SpecificFragmentInfo::GeneratedContent(_) |
SpecificFragmentInfo::Iframe(_) |
SpecificFragmentInfo::Image(_) |
SpecificFragmentInfo::InlineAbsolute(_) |
SpecificFragmentInfo::Multicol |
SpecificFragmentInfo::Svg(_) => {
QuantitiesIncludedInIntrinsicInlineSizes::all()
}
SpecificFragmentInfo::Table => {
INTRINSIC_INLINE_SIZE_INCLUDES_SPECIFIED |
INTRINSIC_INLINE_SIZE_INCLUDES_PADDING |
INTRINSIC_INLINE_SIZE_INCLUDES_BORDER
}
SpecificFragmentInfo::TableCell => {
let base_quantities = INTRINSIC_INLINE_SIZE_INCLUDES_PADDING |
INTRINSIC_INLINE_SIZE_INCLUDES_SPECIFIED;
if self.style.get_inheritedtable().border_collapse ==
border_collapse::T::separate {
base_quantities | INTRINSIC_INLINE_SIZE_INCLUDES_BORDER
} else {
base_quantities
}
}
SpecificFragmentInfo::TableWrapper => {
let base_quantities = INTRINSIC_INLINE_SIZE_INCLUDES_MARGINS |
INTRINSIC_INLINE_SIZE_INCLUDES_SPECIFIED;
if self.style.get_inheritedtable().border_collapse ==
border_collapse::T::separate {
base_quantities | INTRINSIC_INLINE_SIZE_INCLUDES_BORDER
} else {
base_quantities
}
}
SpecificFragmentInfo::TableRow => {
let base_quantities = INTRINSIC_INLINE_SIZE_INCLUDES_SPECIFIED;
if self.style.get_inheritedtable().border_collapse ==
border_collapse::T::separate {
base_quantities | INTRINSIC_INLINE_SIZE_INCLUDES_BORDER
} else {
base_quantities
}
}
SpecificFragmentInfo::ScannedText(_) |
SpecificFragmentInfo::TableColumn(_) |
SpecificFragmentInfo::UnscannedText(_) |
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) |
SpecificFragmentInfo::InlineBlock(_) |
SpecificFragmentInfo::MulticolColumn => {
QuantitiesIncludedInIntrinsicInlineSizes::empty()
}
}
}
/// Returns the portion of the intrinsic inline-size that consists of borders/padding and
/// margins, respectively.
///
/// FIXME(#2261, pcwalton): This won't work well for inlines: is this OK?
pub fn surrounding_intrinsic_inline_size(&self) -> (Au, Au) {
let flags = self.quantities_included_in_intrinsic_inline_size();
let style = self.style();
// FIXME(pcwalton): Percentages should be relative to any definite size per CSS-SIZING.
// This will likely need to be done by pushing down definite sizes during selector
// cascading.
let margin = if flags.contains(INTRINSIC_INLINE_SIZE_INCLUDES_MARGINS) {
let margin = style.logical_margin();
(MaybeAuto::from_style(margin.inline_start, Au(0)).specified_or_zero() +
MaybeAuto::from_style(margin.inline_end, Au(0)).specified_or_zero())
} else {
Au(0)
};
// FIXME(pcwalton): Percentages should be relative to any definite size per CSS-SIZING.
// This will likely need to be done by pushing down definite sizes during selector
// cascading.
let padding = if flags.contains(INTRINSIC_INLINE_SIZE_INCLUDES_PADDING) {
let padding = style.logical_padding();
(model::specified(padding.inline_start, Au(0)) +
model::specified(padding.inline_end, Au(0)))
} else {
Au(0)
};
let border = if flags.contains(INTRINSIC_INLINE_SIZE_INCLUDES_BORDER) {
self.border_width().inline_start_end()
} else {
Au(0)
};
(border + padding, margin)
}
/// Uses the style only to estimate the intrinsic inline-sizes. These may be modified for text
/// or replaced elements.
pub fn style_specified_intrinsic_inline_size(&self) -> IntrinsicISizesContribution {
let flags = self.quantities_included_in_intrinsic_inline_size();
let style = self.style();
// FIXME(#2261, pcwalton): This won't work well for inlines: is this OK?
let (border_padding, margin) = self.surrounding_intrinsic_inline_size();
let mut specified = Au(0);
if flags.contains(INTRINSIC_INLINE_SIZE_INCLUDES_SPECIFIED) {
specified = MaybeAuto::from_style(style.content_inline_size(),
Au(0)).specified_or_zero();
specified = max(model::specified(style.min_inline_size(), Au(0)), specified);
if let Some(max) = model::specified_or_none(style.max_inline_size(), Au(0)) {
specified = min(specified, max)
}
if self.style.get_position().box_sizing == box_sizing::T::border_box {
specified -= border_padding
}
}
IntrinsicISizesContribution {
content_intrinsic_sizes: IntrinsicISizes {
minimum_inline_size: specified,
preferred_inline_size: specified,
},
surrounding_size: border_padding + margin,
}
}
/// intrinsic width of this replaced element.
#[inline]
pub fn intrinsic_width(&self) -> Au {
match self.specific {
SpecificFragmentInfo::Image(ref info) => {
if let Some(ref data) = info.metadata {
Au::from_px(data.width as i32)
} else {
Au(0)
}
}
SpecificFragmentInfo::Canvas(ref info) => info.dom_width,
SpecificFragmentInfo::Svg(ref info) => info.dom_width,
// Note: Currently for replaced element with no intrinsic size,
// this function simply returns the default object size. As long as
// these elements do not have intrinsic aspect ratio this should be
// sufficient, but we may need to investigate if this is enough for
// use cases like SVG.
SpecificFragmentInfo::Iframe(_) => Au::from_px(DEFAULT_REPLACED_WIDTH),
_ => panic!("Trying to get intrinsic width on non-replaced element!")
}
}
/// intrinsic width of this replaced element.
#[inline]
pub fn intrinsic_height(&self) -> Au {
match self.specific {
SpecificFragmentInfo::Image(ref info) => {
if let Some(ref data) = info.metadata {
Au::from_px(data.height as i32)
} else {
Au(0)
}
}
SpecificFragmentInfo::Canvas(ref info) => info.dom_height,
SpecificFragmentInfo::Svg(ref info) => info.dom_height,
SpecificFragmentInfo::Iframe(_) => Au::from_px(DEFAULT_REPLACED_HEIGHT),
_ => panic!("Trying to get intrinsic height on non-replaced element!")
}
}
/// Whether this replace element has intrinsic aspect ratio.
pub fn has_intrinsic_ratio(&self) -> bool {
match self.specific {
SpecificFragmentInfo::Image(_) |
SpecificFragmentInfo::Canvas(_) |
// TODO(stshine): According to the SVG spec, whether a SVG element has intrinsic
// aspect ratio is determined by the `preserveAspectRatio` attribute. Since for
// now SVG is far from implemented, we simply choose the default behavior that
// the intrinsic aspect ratio is preserved.
// https://svgwg.org/svg2-draft/coords.html#PreserveAspectRatioAttribute
SpecificFragmentInfo::Svg(_) =>
self.intrinsic_width() != Au(0) && self.intrinsic_height() != Au(0),
_ => false
}
}
/// CSS 2.1 § 10.3.2 & 10.6.2 Calculate the used width and height of a replaced element.
/// When a parameter is `None` it means the specified size in certain direction
/// is unconstrained. The inline containing size can also be `None` since this
/// method is also used for calculating intrinsic inline size contribution.
pub fn calculate_replaced_sizes(&self,
containing_inline_size: Option<Au>,
containing_block_size: Option<Au>)
-> (Au, Au) {
let (intrinsic_inline_size, intrinsic_block_size) = if self.style.writing_mode.is_vertical() {
(self.intrinsic_height(), self.intrinsic_width())
} else {
(self.intrinsic_width(), self.intrinsic_height())
};
// Make sure the size we used here is for content box since they may be
// transferred by the intrinsic aspect ratio.
let inline_size = style_length(self.style.content_inline_size(), containing_inline_size)
.map(|x| x - self.box_sizing_boundary(Direction::Inline));
let block_size = style_length(self.style.content_block_size(), containing_block_size)
.map(|x| x - self.box_sizing_boundary(Direction::Block));
let inline_constraint = self.size_constraint(containing_inline_size, Direction::Inline);
let block_constraint = self.size_constraint(containing_block_size, Direction::Block);
// https://drafts.csswg.org/css-images-3/#default-sizing
match (inline_size, block_size) {
// If the specified size is a definite width and height, the concrete
// object size is given that width and height.
(MaybeAuto::Specified(inline_size), MaybeAuto::Specified(block_size)) =>
(inline_constraint.clamp(inline_size), block_constraint.clamp(block_size)),
// If the specified size is only a width or height (but not both)
// then the concrete object size is given that specified width or
// height. The other dimension is calculated as follows:
//
// If the object has an intrinsic aspect ratio, the missing dimension
// of the concrete object size is calculated using the intrinsic
// aspect ratio and the present dimension.
//
// Otherwise, if the missing dimension is present in the objects intrinsic
// dimensions, the missing dimension is taken from the objects intrinsic
// dimensions. Otherwise it is taken from the default object size.
(MaybeAuto::Specified(inline_size), MaybeAuto::Auto) => {
let inline_size = inline_constraint.clamp(inline_size);
let block_size = if self.has_intrinsic_ratio() {
// Note: We can not precompute the ratio and store it as a float, because
// doing so may result one pixel difference in calculation for certain
// images, thus make some tests fail.
inline_size * intrinsic_block_size.0 / intrinsic_inline_size.0
} else {
intrinsic_block_size
};
(inline_size, block_constraint.clamp(block_size))
}
(MaybeAuto::Auto, MaybeAuto::Specified(block_size)) => {
let block_size = block_constraint.clamp(block_size);
let inline_size = if self.has_intrinsic_ratio() {
block_size * intrinsic_inline_size.0 / intrinsic_block_size.0
} else {
intrinsic_inline_size
};
(inline_constraint.clamp(inline_size), block_size)
}
// https://drafts.csswg.org/css2/visudet.html#min-max-widths
(MaybeAuto::Auto, MaybeAuto::Auto) => {
if self.has_intrinsic_ratio() {
// This approch follows the spirit of cover and contain constraint.
// https://drafts.csswg.org/css-images-3/#cover-contain
// First, create two rectangles that keep aspect ratio while may be clamped
// by the contraints;
let first_isize = inline_constraint.clamp(intrinsic_inline_size);
let first_bsize = first_isize * intrinsic_block_size.0 / intrinsic_inline_size.0;
let second_bsize = block_constraint.clamp(intrinsic_block_size);
let second_isize = second_bsize * intrinsic_inline_size.0 / intrinsic_block_size.0;
let (inline_size, block_size) = match (first_isize.cmp(&intrinsic_inline_size) ,
second_isize.cmp(&intrinsic_inline_size)) {
(Ordering::Equal, Ordering::Equal) =>
(first_isize, first_bsize),
// When only one rectangle is clamped, use it;
(Ordering::Equal, _) =>
(second_isize, second_bsize),
(_, Ordering::Equal) =>
(first_isize, first_bsize),
// When both rectangles grow (smaller than min sizes),
// Choose the larger one;
(Ordering::Greater, Ordering::Greater) =>
if first_isize > second_isize {
(first_isize, first_bsize)
} else {
(second_isize, second_bsize)
},
// When both rectangles shrink (larger than max sizes),
// Choose the smaller one;
(Ordering::Less, Ordering::Less) =>
if first_isize > second_isize {
(second_isize, second_bsize)
} else {
(first_isize, first_bsize)
},
// It does not matter which we choose here, because both sizes
// will be clamped to constraint;
(Ordering::Less, Ordering::Greater) | (Ordering::Greater, Ordering::Less) =>
(first_isize, first_bsize)
};
// Clamp the result and we are done :-)
(inline_constraint.clamp(inline_size), block_constraint.clamp(block_size))
} else {
(inline_constraint.clamp(intrinsic_inline_size),
block_constraint.clamp(intrinsic_block_size))
}
}
}
}
/// Return a size constraint that can be used the clamp size in given direction.
/// To take `box-sizing: border-box` into account, the `border_padding` field
/// must be initialized first.
///
/// TODO(stshine): Maybe there is a more convenient way.
pub fn size_constraint(&self, containing_size: Option<Au>, direction: Direction) -> SizeConstraint {
let (style_min_size, style_max_size) = match direction {
Direction::Inline => (self.style.min_inline_size(), self.style.max_inline_size()),
Direction::Block => (self.style.min_block_size(), self.style.max_block_size())
};
let border = if self.style().get_position().box_sizing == box_sizing::T::border_box {
Some(self.border_padding.start_end(direction))
} else {
None
};
SizeConstraint::new(containing_size, style_min_size, style_max_size, border)
}
/// Returns a guess as to the distances from the margin edge of this fragment to its content
/// in the inline direction. This will generally be correct unless percentages are involved.
///
/// This is used for the float placement speculation logic.
pub fn guess_inline_content_edge_offsets(&self) -> SpeculatedInlineContentEdgeOffsets {
let logical_margin = self.style.logical_margin();
let logical_padding = self.style.logical_padding();
let border_width = self.border_width();
SpeculatedInlineContentEdgeOffsets {
start: MaybeAuto::from_style(logical_margin.inline_start, Au(0)).specified_or_zero() +
model::specified(logical_padding.inline_start, Au(0)) +
border_width.inline_start,
end: MaybeAuto::from_style(logical_margin.inline_end, Au(0)).specified_or_zero() +
model::specified(logical_padding.inline_end, Au(0)) +
border_width.inline_end,
}
}
/// Returns the sum of the inline-sizes of all the borders of this fragment. Note that this
/// can be expensive to compute, so if possible use the `border_padding` field instead.
#[inline]
pub fn border_width(&self) -> LogicalMargin<Au> {
let style_border_width = match self.specific {
SpecificFragmentInfo::ScannedText(_) |
SpecificFragmentInfo::InlineBlock(_) => LogicalMargin::zero(self.style.writing_mode),
_ => self.style().logical_border_width(),
};
match self.inline_context {
None => style_border_width,
Some(ref inline_fragment_context) => {
// NOTE: We can have nodes with different writing mode inside
// the inline fragment context, so we need to overwrite the
// writing mode to compute the child logical sizes.
let writing_mode = self.style.writing_mode;
inline_fragment_context.nodes.iter().fold(style_border_width, |accumulator, node| {
let mut this_border_width =
node.style.border_width_for_writing_mode(writing_mode);
if !node.flags.contains(FIRST_FRAGMENT_OF_ELEMENT) {
this_border_width.inline_start = Au(0)
}
if !node.flags.contains(LAST_FRAGMENT_OF_ELEMENT) {
this_border_width.inline_end = Au(0)
}
accumulator + this_border_width
})
}
}
}
/// Returns the border width in given direction if this fragment has property
/// 'box-sizing: border-box'. The `border_padding` field must have been initialized.
pub fn box_sizing_boundary(&self, direction: Direction) -> Au {
match (self.style().get_position().box_sizing, direction) {
(box_sizing::T::border_box, Direction::Inline) => {
self.border_padding.inline_start_end()
}
(box_sizing::T::border_box, Direction::Block) => {
self.border_padding.block_start_end()
}
_ => Au(0)
}
}
/// Computes the margins in the inline direction from the containing block inline-size and the
/// style. After this call, the inline direction of the `margin` field will be correct.
///
/// Do not use this method if the inline direction margins are to be computed some other way
/// (for example, via constraint solving for blocks).
pub fn compute_inline_direction_margins(&mut self, containing_block_inline_size: Au) {
match self.specific {
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::TableColumn(_) |
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) => {
self.margin.inline_start = Au(0);
self.margin.inline_end = Au(0);
return
}
SpecificFragmentInfo::InlineBlock(_) => {
// Inline-blocks do not take self margins into account but do account for margins
// from outer inline contexts.
self.margin.inline_start = Au(0);
self.margin.inline_end = Au(0);
}
_ => {
let margin = self.style().logical_margin();
self.margin.inline_start =
MaybeAuto::from_style(margin.inline_start,
containing_block_inline_size).specified_or_zero();
self.margin.inline_end =
MaybeAuto::from_style(margin.inline_end,
containing_block_inline_size).specified_or_zero();
}
}
if let Some(ref inline_context) = self.inline_context {
for node in &inline_context.nodes {
let margin = node.style.logical_margin();
let this_inline_start_margin = if !node.flags.contains(FIRST_FRAGMENT_OF_ELEMENT) {
Au(0)
} else {
MaybeAuto::from_style(margin.inline_start,
containing_block_inline_size).specified_or_zero()
};
let this_inline_end_margin = if !node.flags.contains(LAST_FRAGMENT_OF_ELEMENT) {
Au(0)
} else {
MaybeAuto::from_style(margin.inline_end,
containing_block_inline_size).specified_or_zero()
};
self.margin.inline_start = self.margin.inline_start + this_inline_start_margin;
self.margin.inline_end = self.margin.inline_end + this_inline_end_margin;
}
}
}
/// Computes the margins in the block direction from the containing block inline-size and the
/// style. After this call, the block direction of the `margin` field will be correct.
///
/// Do not use this method if the block direction margins are to be computed some other way
/// (for example, via constraint solving for absolutely-positioned flows).
pub fn compute_block_direction_margins(&mut self, containing_block_inline_size: Au) {
match self.specific {
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::TableColumn(_) => {
self.margin.block_start = Au(0);
self.margin.block_end = Au(0)
}
_ => {
// NB: Percentages are relative to containing block inline-size (not block-size)
// per CSS 2.1.
let margin = self.style().logical_margin();
self.margin.block_start =
MaybeAuto::from_style(margin.block_start, containing_block_inline_size)
.specified_or_zero();
self.margin.block_end =
MaybeAuto::from_style(margin.block_end, containing_block_inline_size)
.specified_or_zero();
}
}
}
/// Computes the border and padding in both inline and block directions from the containing
/// block inline-size and the style. After this call, the `border_padding` field will be
/// correct.
///
/// TODO(pcwalton): Remove `border_collapse`; we can figure it out from our style and specific
/// fragment info.
pub fn compute_border_and_padding(&mut self,
containing_block_inline_size: Au,
border_collapse: border_collapse::T) {
// Compute border.
let border = match border_collapse {
border_collapse::T::separate => self.border_width(),
border_collapse::T::collapse => LogicalMargin::zero(self.style.writing_mode),
};
// Compute padding from the fragment's style.
//
// This is zero in the case of `inline-block` because that padding is applied to the
// wrapped block, not the fragment.
let padding_from_style = match self.specific {
SpecificFragmentInfo::TableColumn(_) |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::TableWrapper |
SpecificFragmentInfo::InlineBlock(_) => LogicalMargin::zero(self.style.writing_mode),
_ => model::padding_from_style(self.style(), containing_block_inline_size, self.style().writing_mode),
};
// Compute padding from the inline fragment context.
let padding_from_inline_fragment_context = match (&self.specific, &self.inline_context) {
(_, &None) |
(&SpecificFragmentInfo::TableColumn(_), _) |
(&SpecificFragmentInfo::TableRow, _) |
(&SpecificFragmentInfo::TableWrapper, _) => {
LogicalMargin::zero(self.style.writing_mode)
}
(_, &Some(ref inline_fragment_context)) => {
let writing_mode = self.style.writing_mode;
let zero_padding = LogicalMargin::zero(writing_mode);
inline_fragment_context.nodes.iter().fold(zero_padding, |accumulator, node| {
let mut padding = model::padding_from_style(&*node.style, Au(0), writing_mode);
if !node.flags.contains(FIRST_FRAGMENT_OF_ELEMENT) {
padding.inline_start = Au(0)
}
if !node.flags.contains(LAST_FRAGMENT_OF_ELEMENT) {
padding.inline_end = Au(0)
}
accumulator + padding
})
}
};
self.border_padding = border + padding_from_style + padding_from_inline_fragment_context
}
// Return offset from original position because of `position: relative`.
pub fn relative_position(&self, containing_block_size: &LogicalSize<Au>) -> LogicalSize<Au> {
fn from_style(style: &ServoComputedValues, container_size: &LogicalSize<Au>)
-> LogicalSize<Au> {
let offsets = style.logical_position();
let offset_i = if offsets.inline_start != LengthOrPercentageOrAuto::Auto {
MaybeAuto::from_style(offsets.inline_start,
container_size.inline).specified_or_zero()
} else {
-MaybeAuto::from_style(offsets.inline_end,
container_size.inline).specified_or_zero()
};
let offset_b = if offsets.block_start != LengthOrPercentageOrAuto::Auto {
MaybeAuto::from_style(offsets.block_start,
container_size.block).specified_or_zero()
} else {
-MaybeAuto::from_style(offsets.block_end,
container_size.block).specified_or_zero()
};
LogicalSize::new(style.writing_mode, offset_i, offset_b)
}
// Go over the ancestor fragments and add all relative offsets (if any).
let mut rel_pos = if self.style().get_box().position == position::T::relative {
from_style(self.style(), containing_block_size)
} else {
LogicalSize::zero(self.style.writing_mode)
};
if let Some(ref inline_fragment_context) = self.inline_context {
for node in &inline_fragment_context.nodes {
if node.style.get_box().position == position::T::relative {
rel_pos = rel_pos + from_style(&*node.style, containing_block_size);
}
}
}
rel_pos
}
/// Always inline for SCCP.
///
/// FIXME(pcwalton): Just replace with the clear type from the style module for speed?
#[inline(always)]
pub fn clear(&self) -> Option<ClearType> {
let style = self.style();
match style.get_box().clear {
clear::T::none => None,
clear::T::left => Some(ClearType::Left),
clear::T::right => Some(ClearType::Right),
clear::T::both => Some(ClearType::Both),
}
}
#[inline(always)]
pub fn style(&self) -> &ServoComputedValues {
&*self.style
}
#[inline(always)]
pub fn selected_style(&self) -> &ServoComputedValues {
&*self.selected_style
}
pub fn white_space(&self) -> white_space::T {
self.style().get_inheritedtext().white_space
}
pub fn color(&self) -> color::T {
self.style().get_color().color
}
/// Returns the text decoration of this fragment, according to the style of the nearest ancestor
/// element.
///
/// NB: This may not be the actual text decoration, because of the override rules specified in
/// CSS 2.1 § 16.3.1. Unfortunately, computing this properly doesn't really fit into Servo's
/// model. Therefore, this is a best lower bound approximation, but the end result may actually
/// have the various decoration flags turned on afterward.
pub fn text_decoration(&self) -> text_decoration::T {
self.style().get_text().text_decoration
}
/// Returns the inline-start offset from margin edge to content edge.
///
/// FIXME(#2262, pcwalton): I think this method is pretty bogus, because it won't work for
/// inlines.
pub fn inline_start_offset(&self) -> Au {
match self.specific {
SpecificFragmentInfo::TableWrapper => self.margin.inline_start,
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableRow => self.border_padding.inline_start,
SpecificFragmentInfo::TableColumn(_) => Au(0),
_ => self.margin.inline_start + self.border_padding.inline_start,
}
}
/// Returns true if this element can be split. This is true for text fragments, unless
/// `white-space: pre` or `white-space: nowrap` is set.
pub fn can_split(&self) -> bool {
self.is_scanned_text_fragment() && self.white_space().allow_wrap()
}
/// Returns true if and only if this fragment is a generated content fragment.
pub fn is_unscanned_generated_content(&self) -> bool {
match self.specific {
SpecificFragmentInfo::GeneratedContent(box GeneratedContentInfo::Empty) => false,
SpecificFragmentInfo::GeneratedContent(..) => true,
_ => false,
}
}
/// Returns true if and only if this is a scanned text fragment.
pub fn is_scanned_text_fragment(&self) -> bool {
match self.specific {
SpecificFragmentInfo::ScannedText(..) => true,
_ => false,
}
}
/// Computes the intrinsic inline-sizes of this fragment.
pub fn compute_intrinsic_inline_sizes(&mut self) -> IntrinsicISizesContribution {
let mut result = self.style_specified_intrinsic_inline_size();
match self.specific {
SpecificFragmentInfo::Generic |
SpecificFragmentInfo::GeneratedContent(_) |
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableColumn(_) |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::TableWrapper |
SpecificFragmentInfo::Multicol |
SpecificFragmentInfo::MulticolColumn |
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) => {}
SpecificFragmentInfo::InlineBlock(ref info) => {
let block_flow = info.flow_ref.as_block();
result.union_block(&block_flow.base.intrinsic_inline_sizes)
}
SpecificFragmentInfo::InlineAbsolute(ref info) => {
let block_flow = info.flow_ref.as_block();
result.union_block(&block_flow.base.intrinsic_inline_sizes)
}
SpecificFragmentInfo::Image(_) |
SpecificFragmentInfo::Canvas(_) |
SpecificFragmentInfo::Iframe(_) |
SpecificFragmentInfo::Svg(_) => {
let mut inline_size = match self.style.content_inline_size() {
LengthOrPercentageOrAuto::Auto |
LengthOrPercentageOrAuto::Percentage(_) => {
// We have to initialize the `border_padding` field first to make
// the size constraints work properly.
// TODO(stshine): Find a cleaner way to do this.
let padding = self.style.logical_padding();
self.border_padding.inline_start = model::specified(padding.inline_start, Au(0));
self.border_padding.inline_end = model::specified(padding.inline_end, Au(0));
self.border_padding.block_start = model::specified(padding.block_start, Au(0));
self.border_padding.block_end = model::specified(padding.block_end, Au(0));
let border = self.border_width();
self.border_padding.inline_start += border.inline_start;
self.border_padding.inline_end += border.inline_end;
self.border_padding.block_start += border.block_start;
self.border_padding.block_end += border.block_end;
let (result_inline, _) = self.calculate_replaced_sizes(None, None);
result_inline
}
LengthOrPercentageOrAuto::Length(length) => length,
LengthOrPercentageOrAuto::Calc(calc) => calc.length(),
};
let size_constraint = self.size_constraint(None, Direction::Inline);
inline_size = size_constraint.clamp(inline_size);
result.union_block(&IntrinsicISizes {
minimum_inline_size: inline_size,
preferred_inline_size: inline_size,
});
}
SpecificFragmentInfo::ScannedText(ref text_fragment_info) => {
let range = &text_fragment_info.range;
// See http://dev.w3.org/csswg/css-sizing/#max-content-inline-size.
// TODO: Account for soft wrap opportunities.
let max_line_inline_size = text_fragment_info.run
.metrics_for_range(range)
.advance_width;
let min_line_inline_size = if self.white_space().allow_wrap() {
text_fragment_info.run.min_width_for_range(range)
} else {
max_line_inline_size
};
result.union_block(&IntrinsicISizes {
minimum_inline_size: min_line_inline_size,
preferred_inline_size: max_line_inline_size,
})
}
SpecificFragmentInfo::UnscannedText(..) => {
panic!("Unscanned text fragments should have been scanned by now!")
}
};
// Take borders and padding for parent inline fragments into account, if necessary.
if self.is_primary_fragment() {
let writing_mode = self.style.writing_mode;
if let Some(ref context) = self.inline_context {
for node in &context.nodes {
let mut border_width = node.style.logical_border_width();
let mut padding = model::padding_from_style(&*node.style, Au(0), writing_mode);
let mut margin = model::specified_margin_from_style(&*node.style, writing_mode);
if !node.flags.contains(FIRST_FRAGMENT_OF_ELEMENT) {
border_width.inline_start = Au(0);
padding.inline_start = Au(0);
margin.inline_start = Au(0);
}
if !node.flags.contains(LAST_FRAGMENT_OF_ELEMENT) {
border_width.inline_end = Au(0);
padding.inline_end = Au(0);
margin.inline_end = Au(0);
}
result.surrounding_size =
result.surrounding_size +
border_width.inline_start_end() +
padding.inline_start_end() +
margin.inline_start_end();
}
}
}
result
}
/// Returns the narrowest inline-size that the first splittable part of this fragment could
/// possibly be split to. (In most cases, this returns the inline-size of the first word in
/// this fragment.)
pub fn minimum_splittable_inline_size(&self) -> Au {
match self.specific {
SpecificFragmentInfo::ScannedText(ref text) => {
text.run.minimum_splittable_inline_size(&text.range)
}
_ => Au(0),
}
}
/// Returns the dimensions of the content box.
///
/// This is marked `#[inline]` because it is frequently called when only one or two of the
/// values are needed and that will save computation.
#[inline]
pub fn content_box(&self) -> LogicalRect<Au> {
self.border_box - self.border_padding
}
/// Attempts to find the split positions of a text fragment so that its inline-size is no more
/// than `max_inline_size`.
///
/// A return value of `None` indicates that the fragment could not be split. Otherwise the
/// information pertaining to the split is returned. The inline-start and inline-end split
/// information are both optional due to the possibility of them being whitespace.
pub fn calculate_split_position(&self, max_inline_size: Au, starts_line: bool)
-> Option<SplitResult> {
let text_fragment_info = match self.specific {
SpecificFragmentInfo::ScannedText(ref text_fragment_info)
=> text_fragment_info,
_ => return None,
};
let mut flags = SplitOptions::empty();
if starts_line {
flags.insert(STARTS_LINE);
if self.style().get_inheritedtext().overflow_wrap == overflow_wrap::T::break_word {
flags.insert(RETRY_AT_CHARACTER_BOUNDARIES)
}
}
match self.style().get_inheritedtext().word_break {
word_break::T::normal | word_break::T::keep_all => {
// Break at normal word boundaries. keep-all forbids soft wrap opportunities.
let natural_word_breaking_strategy =
text_fragment_info.run.natural_word_slices_in_range(&text_fragment_info.range);
self.calculate_split_position_using_breaking_strategy(
natural_word_breaking_strategy,
max_inline_size,
flags)
}
word_break::T::break_all => {
// Break at character boundaries.
let character_breaking_strategy =
text_fragment_info.run.character_slices_in_range(&text_fragment_info.range);
flags.remove(RETRY_AT_CHARACTER_BOUNDARIES);
self.calculate_split_position_using_breaking_strategy(
character_breaking_strategy,
max_inline_size,
flags)
}
}
}
/// Truncates this fragment to the given `max_inline_size`, using a character-based breaking
/// strategy. If no characters could fit, returns `None`.
pub fn truncate_to_inline_size(&self, max_inline_size: Au) -> Option<TruncationResult> {
let text_fragment_info =
if let SpecificFragmentInfo::ScannedText(ref text_fragment_info) = self.specific {
text_fragment_info
} else {
return None
};
let character_breaking_strategy =
text_fragment_info.run.character_slices_in_range(&text_fragment_info.range);
match self.calculate_split_position_using_breaking_strategy(character_breaking_strategy,
max_inline_size,
SplitOptions::empty()) {
None => None,
Some(split_info) => {
match split_info.inline_start {
None => None,
Some(split) => {
Some(TruncationResult {
split: split,
text_run: split_info.text_run.clone(),
})
}
}
}
}
}
/// A helper method that uses the breaking strategy described by `slice_iterator` (at present,
/// either natural word breaking or character breaking) to split this fragment.
fn calculate_split_position_using_breaking_strategy<'a, I>(
&self,
slice_iterator: I,
max_inline_size: Au,
flags: SplitOptions)
-> Option<SplitResult>
where I: Iterator<Item=TextRunSlice<'a>> {
let text_fragment_info = match self.specific {
SpecificFragmentInfo::ScannedText(ref text_fragment_info)
=> text_fragment_info,
_ => return None,
};
let mut remaining_inline_size = max_inline_size - self.border_padding.inline_start_end();
let mut inline_start_range = Range::new(text_fragment_info.range.begin(), ByteIndex(0));
let mut inline_end_range = None;
let mut overflowing = false;
debug!("calculate_split_position_using_breaking_strategy: splitting text fragment \
(strlen={}, range={:?}, max_inline_size={:?})",
text_fragment_info.run.text.len(),
text_fragment_info.range,
max_inline_size);
for slice in slice_iterator {
debug!("calculate_split_position_using_breaking_strategy: considering slice \
(offset={:?}, slice range={:?}, remaining_inline_size={:?})",
slice.offset,
slice.range,
remaining_inline_size);
// Use the `remaining_inline_size` to find a split point if possible. If not, go around
// the loop again with the next slice.
let metrics = text_fragment_info.run.metrics_for_slice(slice.glyphs, &slice.range);
let advance = metrics.advance_width;
// Have we found the split point?
if advance <= remaining_inline_size || slice.glyphs.is_whitespace() {
// Keep going; we haven't found the split point yet.
debug!("calculate_split_position_using_breaking_strategy: enlarging span");
remaining_inline_size = remaining_inline_size - advance;
inline_start_range.extend_by(slice.range.length());
continue
}
// The advance is more than the remaining inline-size, so split here. First, check to
// see if we're going to overflow the line. If so, perform a best-effort split.
let mut remaining_range = slice.text_run_range();
let split_is_empty = inline_start_range.is_empty() &&
!(self.requires_line_break_afterward_if_wrapping_on_newlines() &&
!self.white_space().allow_wrap());
if split_is_empty {
// We're going to overflow the line.
overflowing = true;
inline_start_range = slice.text_run_range();
remaining_range = Range::new(slice.text_run_range().end(), ByteIndex(0));
remaining_range.extend_to(text_fragment_info.range.end());
}
// Check to see if we need to create an inline-end chunk.
let slice_begin = remaining_range.begin();
if slice_begin < text_fragment_info.range.end() {
// There still some things left over at the end of the line, so create the
// inline-end chunk.
let mut inline_end = remaining_range;
inline_end.extend_to(text_fragment_info.range.end());
inline_end_range = Some(inline_end);
debug!("calculate_split_position: splitting remainder with inline-end range={:?}",
inline_end);
}
// If we failed to find a suitable split point, we're on the verge of overflowing the
// line.
if split_is_empty || overflowing {
// If we've been instructed to retry at character boundaries (probably via
// `overflow-wrap: break-word`), do so.
if flags.contains(RETRY_AT_CHARACTER_BOUNDARIES) {
let character_breaking_strategy =
text_fragment_info.run
.character_slices_in_range(&text_fragment_info.range);
let mut flags = flags;
flags.remove(RETRY_AT_CHARACTER_BOUNDARIES);
return self.calculate_split_position_using_breaking_strategy(
character_breaking_strategy,
max_inline_size,
flags)
}
// We aren't at the start of the line, so don't overflow. Let inline layout wrap to
// the next line instead.
if !flags.contains(STARTS_LINE) {
return None
}
}
break
}
let split_is_empty = inline_start_range.is_empty() &&
!self.requires_line_break_afterward_if_wrapping_on_newlines();
let inline_start = if !split_is_empty {
Some(SplitInfo::new(inline_start_range, &**text_fragment_info))
} else {
None
};
let inline_end = inline_end_range.map(|inline_end_range| {
SplitInfo::new(inline_end_range, &**text_fragment_info)
});
Some(SplitResult {
inline_start: inline_start,
inline_end: inline_end,
text_run: text_fragment_info.run.clone(),
})
}
/// The opposite of `calculate_split_position_using_breaking_strategy`: merges this fragment
/// with the next one.
pub fn merge_with(&mut self, next_fragment: Fragment) {
match (&mut self.specific, &next_fragment.specific) {
(&mut SpecificFragmentInfo::ScannedText(ref mut this_info),
&SpecificFragmentInfo::ScannedText(ref other_info)) => {
debug_assert!(arc_ptr_eq(&this_info.run, &other_info.run));
this_info.range_end_including_stripped_whitespace =
other_info.range_end_including_stripped_whitespace;
if other_info.requires_line_break_afterward_if_wrapping_on_newlines() {
this_info.flags.insert(REQUIRES_LINE_BREAK_AFTERWARD_IF_WRAPPING_ON_NEWLINES);
}
if other_info.insertion_point.is_some() {
this_info.insertion_point = other_info.insertion_point;
}
self.border_padding.inline_end = next_fragment.border_padding.inline_end;
self.margin.inline_end = next_fragment.margin.inline_end;
}
_ => panic!("Can only merge two scanned-text fragments!"),
}
self.reset_text_range_and_inline_size();
self.meld_with_next_inline_fragment(&next_fragment);
}
/// Restore any whitespace that was stripped from a text fragment, and recompute inline metrics
/// if necessary.
pub fn reset_text_range_and_inline_size(&mut self) {
if let SpecificFragmentInfo::ScannedText(ref mut info) = self.specific {
if info.run.extra_word_spacing != Au(0) {
Arc::make_mut(&mut info.run).extra_word_spacing = Au(0);
}
// FIXME (mbrubeck): Do we need to restore leading too?
let range_end = info.range_end_including_stripped_whitespace;
if info.range.end() == range_end {
return
}
info.range.extend_to(range_end);
info.content_size.inline = info.run.metrics_for_range(&info.range).advance_width;
self.border_box.size.inline = info.content_size.inline +
self.border_padding.inline_start_end();
}
}
/// Assigns replaced inline-size, padding, and margins for this fragment only if it is replaced
/// content per CSS 2.1 § 10.3.2.
pub fn assign_replaced_inline_size_if_necessary(&mut self,
container_inline_size: Au,
container_block_size: Option<Au>) {
match self.specific {
SpecificFragmentInfo::Generic |
SpecificFragmentInfo::GeneratedContent(_) |
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::TableWrapper |
SpecificFragmentInfo::Multicol |
SpecificFragmentInfo::MulticolColumn => return,
SpecificFragmentInfo::TableColumn(_) => {
panic!("Table column fragments do not have inline size")
}
SpecificFragmentInfo::UnscannedText(_) => {
panic!("Unscanned text fragments should have been scanned by now!")
}
SpecificFragmentInfo::Canvas(_) |
SpecificFragmentInfo::Image(_) |
SpecificFragmentInfo::Iframe(_) |
SpecificFragmentInfo::InlineBlock(_) |
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) |
SpecificFragmentInfo::InlineAbsolute(_) |
SpecificFragmentInfo::ScannedText(_) |
SpecificFragmentInfo::Svg(_) => {}
};
match self.specific {
// Inline blocks
SpecificFragmentInfo::InlineAbsoluteHypothetical(ref mut info) => {
let block_flow = FlowRef::deref_mut(&mut info.flow_ref).as_mut_block();
block_flow.base.position.size.inline =
block_flow.base.intrinsic_inline_sizes.preferred_inline_size;
// This is a hypothetical box, so it takes up no space.
self.border_box.size.inline = Au(0);
}
SpecificFragmentInfo::InlineBlock(ref mut info) => {
let block_flow = FlowRef::deref_mut(&mut info.flow_ref).as_mut_block();
self.border_box.size.inline =
max(block_flow.base.intrinsic_inline_sizes.minimum_inline_size,
block_flow.base.intrinsic_inline_sizes.preferred_inline_size);
block_flow.base.block_container_inline_size = self.border_box.size.inline;
block_flow.base.block_container_writing_mode = self.style.writing_mode;
}
SpecificFragmentInfo::InlineAbsolute(ref mut info) => {
let block_flow = FlowRef::deref_mut(&mut info.flow_ref).as_mut_block();
self.border_box.size.inline =
max(block_flow.base.intrinsic_inline_sizes.minimum_inline_size,
block_flow.base.intrinsic_inline_sizes.preferred_inline_size);
block_flow.base.block_container_inline_size = self.border_box.size.inline;
block_flow.base.block_container_writing_mode = self.style.writing_mode;
}
// Text
SpecificFragmentInfo::ScannedText(ref info) => {
// Scanned text fragments will have already had their content inline-sizes assigned
// by this point.
self.border_box.size.inline = info.content_size.inline +
self.border_padding.inline_start_end();
}
// Replaced elements
_ if self.is_replaced() => {
let (inline_size, block_size) =
self.calculate_replaced_sizes(Some(container_inline_size), container_block_size);
self.border_box.size.inline = inline_size + self.border_padding.inline_start_end();
self.border_box.size.block = block_size + self.border_padding.block_start_end();
}
ref unhandled @ _ => panic!("this case should have been handled above: {:?}", unhandled),
}
}
/// Assign block-size for this fragment if it is replaced content. The inline-size must have
/// been assigned first.
///
/// Ideally, this should follow CSS 2.1 § 10.6.2.
pub fn assign_replaced_block_size_if_necessary(&mut self) {
match self.specific {
SpecificFragmentInfo::Generic |
SpecificFragmentInfo::GeneratedContent(_) |
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::TableWrapper |
SpecificFragmentInfo::Multicol |
SpecificFragmentInfo::MulticolColumn => return,
SpecificFragmentInfo::TableColumn(_) => {
panic!("Table column fragments do not have block size")
}
SpecificFragmentInfo::UnscannedText(_) => {
panic!("Unscanned text fragments should have been scanned by now!")
}
SpecificFragmentInfo::Canvas(_) |
SpecificFragmentInfo::Iframe(_) |
SpecificFragmentInfo::Image(_) |
SpecificFragmentInfo::InlineBlock(_) |
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) |
SpecificFragmentInfo::InlineAbsolute(_) |
SpecificFragmentInfo::ScannedText(_) |
SpecificFragmentInfo::Svg(_) => {}
}
match self.specific {
// Text
SpecificFragmentInfo::ScannedText(ref info) => {
// Scanned text fragments' content block-sizes are calculated by the text run
// scanner during flow construction.
self.border_box.size.block = info.content_size.block +
self.border_padding.block_start_end();
}
// Inline blocks
SpecificFragmentInfo::InlineBlock(ref mut info) => {
// Not the primary fragment, so we do not take the noncontent size into account.
let block_flow = FlowRef::deref_mut(&mut info.flow_ref).as_block();
self.border_box.size.block = block_flow.base.position.size.block +
block_flow.fragment.margin.block_start_end()
}
SpecificFragmentInfo::InlineAbsoluteHypothetical(ref mut info) => {
// Not the primary fragment, so we do not take the noncontent size into account.
let block_flow = FlowRef::deref_mut(&mut info.flow_ref).as_block();
self.border_box.size.block = block_flow.base.position.size.block;
}
SpecificFragmentInfo::InlineAbsolute(ref mut info) => {
// Not the primary fragment, so we do not take the noncontent size into account.
let block_flow = FlowRef::deref_mut(&mut info.flow_ref).as_block();
self.border_box.size.block = block_flow.base.position.size.block +
block_flow.fragment.margin.block_start_end()
}
// Replaced elements
_ if self.is_replaced() => {},
ref unhandled @ _ => panic!("should have been handled above: {:?}", unhandled),
}
}
/// Returns true if this fragment is replaced content.
pub fn is_replaced(&self) -> bool {
match self.specific {
SpecificFragmentInfo::Iframe(_) |
SpecificFragmentInfo::Canvas(_) |
SpecificFragmentInfo::Image(_) |
SpecificFragmentInfo::Svg(_) => true,
_ => false
}
}
/// Returns true if this fragment is replaced content or an inline-block or false otherwise.
pub fn is_replaced_or_inline_block(&self) -> bool {
match self.specific {
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) |
SpecificFragmentInfo::InlineBlock(_) => true,
_ => self.is_replaced(),
}
}
/// Calculates block-size above baseline, depth below baseline, and ascent for this fragment
/// when used in an inline formatting context. See CSS 2.1 § 10.8.1.
///
/// This does not take `vertical-align` into account. For that, use `aligned_inline_metrics()`.
fn content_inline_metrics(&self, layout_context: &LayoutContext) -> InlineMetrics {
// CSS 2.1 § 10.8: "The height of each inline-level box in the line box is
// calculated. For replaced elements, inline-block elements, and inline-table
// elements, this is the height of their margin box."
//
// FIXME(pcwalton): We have to handle `Generic` and `GeneratedContent` here to avoid
// crashing in a couple of `css21_dev/html4/content-` WPTs, but I don't see how those two
// fragment types should end up inside inlines. (In the case of `GeneratedContent`, those
// fragment types should have been resolved by now…)
let inline_metrics = match self.specific {
SpecificFragmentInfo::Canvas(_) | SpecificFragmentInfo::Iframe(_) |
SpecificFragmentInfo::Image(_) | SpecificFragmentInfo::Svg(_) |
SpecificFragmentInfo::Generic | SpecificFragmentInfo::GeneratedContent(_) => {
let ascent = self.border_box.size.block + self.margin.block_end;
InlineMetrics {
space_above_baseline: ascent + self.margin.block_start,
space_below_baseline: Au(0),
ascent: ascent,
}
}
SpecificFragmentInfo::ScannedText(ref info) => {
// Fragments with no glyphs don't contribute any inline metrics.
// TODO: Filter out these fragments during flow construction?
if info.insertion_point.is_none() && info.content_size.inline == Au(0) {
return InlineMetrics::new(Au(0), Au(0), Au(0));
}
// See CSS 2.1 § 10.8.1.
let font_metrics = text::font_metrics_for_style(&mut layout_context.font_context(),
self.style.get_font_arc());
let line_height = text::line_height_from_style(&*self.style, &font_metrics);
InlineMetrics::from_font_metrics(&info.run.font_metrics, line_height)
}
SpecificFragmentInfo::InlineBlock(ref info) => {
inline_metrics_of_block(&info.flow_ref, &*self.style)
}
SpecificFragmentInfo::InlineAbsoluteHypothetical(ref info) => {
inline_metrics_of_block(&info.flow_ref, &*self.style)
}
SpecificFragmentInfo::InlineAbsolute(_) => {
InlineMetrics::new(Au(0), Au(0), Au(0))
}
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableColumn(_) |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::TableWrapper |
SpecificFragmentInfo::Multicol |
SpecificFragmentInfo::MulticolColumn |
SpecificFragmentInfo::UnscannedText(_) => {
unreachable!("Shouldn't see fragments of this type here!")
}
};
return inline_metrics;
fn inline_metrics_of_block(flow: &FlowRef, style: &ServoComputedValues) -> InlineMetrics {
// CSS 2.1 § 10.8: "The height of each inline-level box in the line box is calculated.
// For replaced elements, inline-block elements, and inline-table elements, this is the
// height of their margin box."
//
// CSS 2.1 § 10.8.1: "The baseline of an 'inline-block' is the baseline of its last
// line box in the normal flow, unless it has either no in-flow line boxes or if its
// 'overflow' property has a computed value other than 'visible', in which case the
// baseline is the bottom margin edge."
//
// NB: We must use `block_flow.fragment.border_box.size.block` here instead of
// `block_flow.base.position.size.block` because sometimes the latter is late-computed
// and isn't up to date at this point.
let block_flow = flow.as_block();
let start_margin = block_flow.fragment.margin.block_start;
let end_margin = block_flow.fragment.margin.block_end;
if style.get_box().overflow_y.0 == overflow_x::T::visible {
if let Some(baseline_offset) = flow.baseline_offset_of_last_line_box_in_flow() {
let ascent = baseline_offset + start_margin;
let space_below_baseline = block_flow.fragment.border_box.size.block -
baseline_offset + end_margin;
return InlineMetrics::new(ascent, space_below_baseline, baseline_offset)
}
}
let ascent = block_flow.fragment.border_box.size.block + end_margin;
let space_above_baseline = start_margin + ascent;
InlineMetrics::new(space_above_baseline, Au(0), ascent)
}
}
/// Calculates the offset from the baseline that applies to this fragment due to
/// `vertical-align`. Positive values represent downward displacement.
///
/// If `actual_line_metrics` is supplied, then these metrics are used to determine the
/// displacement of the fragment when `top` or `bottom` `vertical-align` values are
/// encountered. If this is not supplied, then `top` and `bottom` values are ignored.
fn vertical_alignment_offset(&self,
layout_context: &LayoutContext,
content_inline_metrics: &InlineMetrics,
minimum_line_metrics: &LineMetrics,
actual_line_metrics: Option<&LineMetrics>)
-> Au {
let mut offset = Au(0);
for style in self.inline_styles() {
// If any of the inline styles say `top` or `bottom`, adjust the vertical align
// appropriately.
//
// FIXME(#5624, pcwalton): This passes our current reftests but isn't the right thing
// to do.
match style.get_box().vertical_align {
vertical_align::T::baseline => {}
vertical_align::T::middle => {
let font_metrics =
text::font_metrics_for_style(&mut layout_context.font_context(),
style.get_font_arc());
offset += (content_inline_metrics.ascent -
content_inline_metrics.space_below_baseline -
font_metrics.x_height).scale_by(0.5)
}
vertical_align::T::sub => {
offset += minimum_line_metrics.space_needed()
.scale_by(FONT_SUBSCRIPT_OFFSET_RATIO)
}
vertical_align::T::super_ => {
offset -= minimum_line_metrics.space_needed()
.scale_by(FONT_SUPERSCRIPT_OFFSET_RATIO)
}
vertical_align::T::text_top => {
offset = self.content_inline_metrics(layout_context).ascent -
minimum_line_metrics.space_above_baseline
}
vertical_align::T::text_bottom => {
offset = minimum_line_metrics.space_below_baseline -
self.content_inline_metrics(layout_context).space_below_baseline
}
vertical_align::T::top => {
if let Some(actual_line_metrics) = actual_line_metrics {
offset = content_inline_metrics.ascent -
actual_line_metrics.space_above_baseline
}
}
vertical_align::T::bottom => {
if let Some(actual_line_metrics) = actual_line_metrics {
offset = actual_line_metrics.space_below_baseline -
content_inline_metrics.space_below_baseline
}
}
vertical_align::T::LengthOrPercentage(LengthOrPercentage::Length(length)) => {
offset -= length
}
vertical_align::T::LengthOrPercentage(LengthOrPercentage::Percentage(
percentage)) => {
offset -= minimum_line_metrics.space_needed().scale_by(percentage)
}
vertical_align::T::LengthOrPercentage(LengthOrPercentage::Calc(formula)) => {
offset -= minimum_line_metrics.space_needed().scale_by(formula.percentage()) +
formula.length()
}
}
}
offset
}
/// Calculates block-size above baseline, depth below baseline, and ascent for this fragment
/// when used in an inline formatting context, taking `vertical-align` (other than `top` or
/// `bottom`) into account. See CSS 2.1 § 10.8.1.
///
/// If `actual_line_metrics` is supplied, then these metrics are used to determine the
/// displacement of the fragment when `top` or `bottom` `vertical-align` values are
/// encountered. If this is not supplied, then `top` and `bottom` values are ignored.
pub fn aligned_inline_metrics(&self,
layout_context: &LayoutContext,
minimum_line_metrics: &LineMetrics,
actual_line_metrics: Option<&LineMetrics>)
-> InlineMetrics {
let content_inline_metrics = self.content_inline_metrics(layout_context);
let vertical_alignment_offset = self.vertical_alignment_offset(layout_context,
&content_inline_metrics,
minimum_line_metrics,
actual_line_metrics);
let mut space_above_baseline = match actual_line_metrics {
None => content_inline_metrics.space_above_baseline,
Some(actual_line_metrics) => actual_line_metrics.space_above_baseline,
};
space_above_baseline = space_above_baseline - vertical_alignment_offset;
let space_below_baseline = content_inline_metrics.space_below_baseline +
vertical_alignment_offset;
let ascent = content_inline_metrics.ascent - vertical_alignment_offset;
InlineMetrics::new(space_above_baseline, space_below_baseline, ascent)
}
/// Returns true if this fragment is a hypothetical box. See CSS 2.1 § 10.3.7.
pub fn is_hypothetical(&self) -> bool {
match self.specific {
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) => true,
_ => false,
}
}
/// Returns true if this fragment can merge with another immediately-following fragment or
/// false otherwise.
pub fn can_merge_with_fragment(&self, other: &Fragment) -> bool {
match (&self.specific, &other.specific) {
(&SpecificFragmentInfo::UnscannedText(ref first_unscanned_text),
&SpecificFragmentInfo::UnscannedText(_)) => {
// FIXME: Should probably use a whitelist of styles that can safely differ (#3165)
if self.style().get_font() != other.style().get_font() ||
self.text_decoration() != other.text_decoration() ||
self.white_space() != other.white_space() ||
self.color() != other.color() {
return false
}
if first_unscanned_text.text.ends_with('\n') {
return false
}
// If this node has any styles that have border/padding/margins on the following
// side, then we can't merge with the next fragment.
if let Some(ref inline_context) = self.inline_context {
for inline_context_node in inline_context.nodes.iter() {
if !inline_context_node.flags.contains(LAST_FRAGMENT_OF_ELEMENT) {
continue
}
if inline_context_node.style.logical_margin().inline_end !=
LengthOrPercentageOrAuto::Length(Au(0)) {
return false
}
if inline_context_node.style.logical_padding().inline_end !=
LengthOrPercentage::Length(Au(0)) {
return false
}
if inline_context_node.style.logical_border_width().inline_end != Au(0) {
return false
}
}
}
// If the next fragment has any styles that have border/padding/margins on the
// preceding side, then it can't merge with us.
if let Some(ref inline_context) = other.inline_context {
for inline_context_node in inline_context.nodes.iter() {
if !inline_context_node.flags.contains(FIRST_FRAGMENT_OF_ELEMENT) {
continue
}
if inline_context_node.style.logical_margin().inline_start !=
LengthOrPercentageOrAuto::Length(Au(0)) {
return false
}
if inline_context_node.style.logical_padding().inline_start !=
LengthOrPercentage::Length(Au(0)) {
return false
}
if inline_context_node.style.logical_border_width().inline_start != Au(0) {
return false
}
}
}
true
}
_ => false,
}
}
/// Returns true if and only if this is the *primary fragment* for the fragment's style object
/// (conceptually, though style sharing makes this not really true, of course). The primary
/// fragment is the one that draws backgrounds, borders, etc., and takes borders, padding and
/// margins into account. Every style object has at most one primary fragment.
///
/// At present, all fragments are primary fragments except for inline-block and table wrapper
/// fragments. Inline-block fragments are not primary fragments because the corresponding block
/// flow is the primary fragment, while table wrapper fragments are not primary fragments
/// because the corresponding table flow is the primary fragment.
pub fn is_primary_fragment(&self) -> bool {
match self.specific {
SpecificFragmentInfo::InlineBlock(_) |
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) |
SpecificFragmentInfo::InlineAbsolute(_) |
SpecificFragmentInfo::MulticolColumn |
SpecificFragmentInfo::TableWrapper => false,
SpecificFragmentInfo::Canvas(_) |
SpecificFragmentInfo::Generic |
SpecificFragmentInfo::GeneratedContent(_) |
SpecificFragmentInfo::Iframe(_) |
SpecificFragmentInfo::Image(_) |
SpecificFragmentInfo::ScannedText(_) |
SpecificFragmentInfo::Svg(_) |
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableColumn(_) |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::Multicol |
SpecificFragmentInfo::UnscannedText(_) => true,
}
}
/// Determines the inline sizes of inline-block fragments. These cannot be fully computed until
/// inline size assignment has run for the child flow: thus it is computed "late", during
/// block size assignment.
pub fn update_late_computed_replaced_inline_size_if_necessary(&mut self) {
if let SpecificFragmentInfo::InlineBlock(ref mut inline_block_info) = self.specific {
let block_flow = FlowRef::deref_mut(&mut inline_block_info.flow_ref).as_block();
let margin = block_flow.fragment.style.logical_margin();
self.border_box.size.inline = block_flow.fragment.border_box.size.inline +
MaybeAuto::from_style(margin.inline_start, Au(0)).specified_or_zero() +
MaybeAuto::from_style(margin.inline_end, Au(0)).specified_or_zero()
}
}
pub fn update_late_computed_inline_position_if_necessary(&mut self) {
if let SpecificFragmentInfo::InlineAbsoluteHypothetical(ref mut info) = self.specific {
let position = self.border_box.start.i;
FlowRef::deref_mut(&mut info.flow_ref)
.update_late_computed_inline_position_if_necessary(position)
}
}
pub fn update_late_computed_block_position_if_necessary(&mut self) {
if let SpecificFragmentInfo::InlineAbsoluteHypothetical(ref mut info) = self.specific {
let position = self.border_box.start.b;
FlowRef::deref_mut(&mut info.flow_ref)
.update_late_computed_block_position_if_necessary(position)
}
}
pub fn repair_style(&mut self, new_style: &Arc<ServoComputedValues>) {
self.style = (*new_style).clone()
}
/// Given the stacking-context-relative position of the containing flow, returns the border box
/// of this fragment relative to the parent stacking context. This takes `position: relative`
/// into account.
///
/// If `coordinate_system` is `Parent`, this returns the border box in the parent stacking
/// context's coordinate system. Otherwise, if `coordinate_system` is `Own` and this fragment
/// establishes a stacking context itself, this returns a border box anchored at (0, 0). (If
/// this fragment does not establish a stacking context, then it always belongs to its parent
/// stacking context and thus `coordinate_system` is ignored.)
///
/// This is the method you should use for display list construction as well as
/// `getBoundingClientRect()` and so forth.
pub fn stacking_relative_border_box(&self,
stacking_relative_flow_origin: &Point2D<Au>,
relative_containing_block_size: &LogicalSize<Au>,
relative_containing_block_mode: WritingMode,
coordinate_system: CoordinateSystem)
-> Rect<Au> {
let container_size =
relative_containing_block_size.to_physical(relative_containing_block_mode);
let border_box = self.border_box.to_physical(self.style.writing_mode, container_size);
if coordinate_system == CoordinateSystem::Own && self.establishes_stacking_context() {
return Rect::new(Point2D::zero(), border_box.size)
}
// FIXME(pcwalton): This can double-count relative position sometimes for inlines (e.g.
// `<div style="position:relative">x</div>`, because the `position:relative` trickles down
// to the inline flow. Possibly we should extend the notion of "primary fragment" to fix
// this.
let relative_position = self.relative_position(relative_containing_block_size);
border_box.translate_by_size(&relative_position.to_physical(self.style.writing_mode))
.translate(stacking_relative_flow_origin)
}
/// Given the stacking-context-relative border box, returns the stacking-context-relative
/// content box.
pub fn stacking_relative_content_box(&self, stacking_relative_border_box: &Rect<Au>)
-> Rect<Au> {
let border_padding = self.border_padding.to_physical(self.style.writing_mode);
Rect::new(Point2D::new(stacking_relative_border_box.origin.x + border_padding.left,
stacking_relative_border_box.origin.y + border_padding.top),
Size2D::new(stacking_relative_border_box.size.width - border_padding.horizontal(),
stacking_relative_border_box.size.height - border_padding.vertical()))
}
/// Returns true if this fragment establishes a new stacking context and false otherwise.
pub fn establishes_stacking_context(&self) -> bool {
// Text fragments shouldn't create stacking contexts.
match self.specific {
SpecificFragmentInfo::ScannedText(_) |
SpecificFragmentInfo::UnscannedText(_) => return false,
_ => {}
}
if self.style().get_effects().opacity != 1.0 {
return true
}
if !self.style().get_effects().filter.is_empty() {
return true
}
if self.style().get_effects().mix_blend_mode != mix_blend_mode::T::normal {
return true
}
if self.style().get_box().transform.0.is_some() {
return true
}
// TODO(mrobinson): Determine if this is necessary, since blocks with
// transformations already create stacking contexts.
if let Either::First(ref _length) = self.style().get_box().perspective {
return true
}
// Fixed position blocks always create stacking contexts.
if self.style.get_box().position == position::T::fixed {
return true
}
match self.style().get_used_transform_style() {
transform_style::T::flat | transform_style::T::preserve_3d => {
return true
}
transform_style::T::auto => {}
}
match (self.style().get_box().position,
self.style().get_position().z_index,
self.style().get_box().overflow_x,
self.style().get_box().overflow_y.0) {
(position::T::absolute,
z_index::T::Auto,
overflow_x::T::visible,
overflow_x::T::visible) |
(position::T::fixed,
z_index::T::Auto,
overflow_x::T::visible,
overflow_x::T::visible) |
(position::T::relative,
z_index::T::Auto,
overflow_x::T::visible,
overflow_x::T::visible) => false,
(position::T::absolute, _, _, _) |
(position::T::fixed, _, _, _) |
(position::T::relative, _, _, _) => true,
(position::T::static_, _, _, _) => false
}
}
// Get the effective z-index of this fragment. Z-indices only apply to positioned element
// per CSS 2 9.9.1 (http://www.w3.org/TR/CSS2/visuren.html#z-index), so this value may differ
// from the value specified in the style.
pub fn effective_z_index(&self) -> i32 {
match self.style().get_box().position {
position::T::static_ => {},
_ => return self.style().get_position().z_index.number_or_zero(),
}
if self.style().get_box().transform.0.is_some() {
return self.style().get_position().z_index.number_or_zero();
}
match self.style().get_box().display {
display::T::flex => self.style().get_position().z_index.number_or_zero(),
_ => 0,
}
}
/// Computes the overflow rect of this fragment relative to the start of the flow.
pub fn compute_overflow(&self,
flow_size: &Size2D<Au>,
relative_containing_block_size: &LogicalSize<Au>)
-> Overflow {
let mut border_box = self.border_box.to_physical(self.style.writing_mode, *flow_size);
// Relative position can cause us to draw outside our border box.
//
// FIXME(pcwalton): I'm not a fan of the way this makes us crawl though so many styles all
// the time. Can't we handle relative positioning by just adjusting `border_box`?
let relative_position = self.relative_position(relative_containing_block_size);
border_box =
border_box.translate_by_size(&relative_position.to_physical(self.style.writing_mode));
let mut overflow = Overflow::from_rect(&border_box);
// Box shadows cause us to draw outside our border box.
for box_shadow in &self.style().get_effects().box_shadow.0 {
let offset = Point2D::new(box_shadow.offset_x, box_shadow.offset_y);
let inflation = box_shadow.spread_radius + box_shadow.blur_radius *
BLUR_INFLATION_FACTOR;
overflow.paint = overflow.paint.union(&border_box.translate(&offset)
.inflate(inflation, inflation))
}
// Outlines cause us to draw outside our border box.
let outline_width = self.style.get_outline().outline_width;
if outline_width != Au(0) {
overflow.paint = overflow.paint.union(&border_box.inflate(outline_width,
outline_width))
}
// Include the overflow of the block flow, if any.
match self.specific {
SpecificFragmentInfo::InlineBlock(ref info) => {
let block_flow = info.flow_ref.as_block();
overflow.union(&flow::base(block_flow).overflow);
}
SpecificFragmentInfo::InlineAbsolute(ref info) => {
let block_flow = info.flow_ref.as_block();
overflow.union(&flow::base(block_flow).overflow);
}
_ => (),
}
// FIXME(pcwalton): Sometimes excessively fancy glyphs can make us draw outside our border
// box too.
overflow
}
pub fn requires_line_break_afterward_if_wrapping_on_newlines(&self) -> bool {
match self.specific {
SpecificFragmentInfo::ScannedText(ref scanned_text) => {
scanned_text.requires_line_break_afterward_if_wrapping_on_newlines()
}
_ => false,
}
}
pub fn strip_leading_whitespace_if_necessary(&mut self) -> WhitespaceStrippingResult {
if self.white_space().preserve_spaces() {
return WhitespaceStrippingResult::RetainFragment
}
match self.specific {
SpecificFragmentInfo::ScannedText(ref mut scanned_text_fragment_info) => {
let leading_whitespace_byte_count = scanned_text_fragment_info.text()
.find(|c| !char_is_whitespace(c))
.unwrap_or(scanned_text_fragment_info.text().len());
let whitespace_len = ByteIndex(leading_whitespace_byte_count as isize);
let whitespace_range = Range::new(scanned_text_fragment_info.range.begin(),
whitespace_len);
let text_bounds =
scanned_text_fragment_info.run.metrics_for_range(&whitespace_range).bounding_box;
self.border_box.size.inline = self.border_box.size.inline - text_bounds.size.width;
scanned_text_fragment_info.content_size.inline =
scanned_text_fragment_info.content_size.inline - text_bounds.size.width;
scanned_text_fragment_info.range.adjust_by(whitespace_len, -whitespace_len);
WhitespaceStrippingResult::RetainFragment
}
SpecificFragmentInfo::UnscannedText(ref mut unscanned_text_fragment_info) => {
let mut new_text_string = String::new();
let mut modified = false;
for (i, character) in unscanned_text_fragment_info.text.char_indices() {
if gfx::text::util::is_bidi_control(character) {
new_text_string.push(character);
continue
}
if char_is_whitespace(character) {
modified = true;
continue
}
// Finished processing leading control chars and whitespace.
if modified {
new_text_string.push_str(&unscanned_text_fragment_info.text[i..]);
}
break
}
if modified {
unscanned_text_fragment_info.text = new_text_string.into_boxed_str();
}
WhitespaceStrippingResult::from_unscanned_text_fragment_info(
&unscanned_text_fragment_info)
}
_ => WhitespaceStrippingResult::RetainFragment,
}
}
/// Returns true if the entire fragment was stripped.
pub fn strip_trailing_whitespace_if_necessary(&mut self) -> WhitespaceStrippingResult {
if self.white_space().preserve_spaces() {
return WhitespaceStrippingResult::RetainFragment
}
match self.specific {
SpecificFragmentInfo::ScannedText(ref mut scanned_text_fragment_info) => {
let mut trailing_whitespace_start_byte = 0;
for (i, c) in scanned_text_fragment_info.text().char_indices().rev() {
if !char_is_whitespace(c) {
trailing_whitespace_start_byte = i + c.len_utf8();
break;
}
}
let whitespace_start = ByteIndex(trailing_whitespace_start_byte as isize);
let whitespace_len = scanned_text_fragment_info.range.length() - whitespace_start;
let mut whitespace_range = Range::new(whitespace_start, whitespace_len);
whitespace_range.shift_by(scanned_text_fragment_info.range.begin());
let text_bounds = scanned_text_fragment_info.run
.metrics_for_range(&whitespace_range)
.bounding_box;
self.border_box.size.inline -= text_bounds.size.width;
scanned_text_fragment_info.content_size.inline -= text_bounds.size.width;
scanned_text_fragment_info.range.extend_by(-whitespace_len);
WhitespaceStrippingResult::RetainFragment
}
SpecificFragmentInfo::UnscannedText(ref mut unscanned_text_fragment_info) => {
let mut trailing_bidi_control_characters_to_retain = Vec::new();
let (mut modified, mut last_character_index) = (true, 0);
for (i, character) in unscanned_text_fragment_info.text.char_indices().rev() {
if gfx::text::util::is_bidi_control(character) {
trailing_bidi_control_characters_to_retain.push(character);
continue
}
if char_is_whitespace(character) {
modified = true;
continue
}
last_character_index = i + character.len_utf8();
break
}
if modified {
let mut text = unscanned_text_fragment_info.text.to_string();
text.truncate(last_character_index);
for character in trailing_bidi_control_characters_to_retain.iter().rev() {
text.push(*character);
}
unscanned_text_fragment_info.text = text.into_boxed_str();
}
WhitespaceStrippingResult::from_unscanned_text_fragment_info(
&unscanned_text_fragment_info)
}
_ => WhitespaceStrippingResult::RetainFragment,
}
}
pub fn inline_styles(&self) -> InlineStyleIterator {
InlineStyleIterator::new(self)
}
/// Returns the inline-size of this fragment's margin box.
pub fn margin_box_inline_size(&self) -> Au {
self.border_box.size.inline + self.margin.inline_start_end()
}
/// Returns true if this node *or any of the nodes within its inline fragment context* have
/// non-`static` `position`.
pub fn is_positioned(&self) -> bool {
if self.style.get_box().position != position::T::static_ {
return true
}
if let Some(ref inline_context) = self.inline_context {
for node in inline_context.nodes.iter() {
if node.style.get_box().position != position::T::static_ {
return true
}
}
}
false
}
/// Returns true if this node is absolutely positioned.
pub fn is_absolutely_positioned(&self) -> bool {
self.style.get_box().position == position::T::absolute
}
pub fn is_inline_absolute(&self) -> bool {
match self.specific {
SpecificFragmentInfo::InlineAbsolute(..) => true,
_ => false,
}
}
pub fn meld_with_next_inline_fragment(&mut self, next_fragment: &Fragment) {
if let Some(ref mut inline_context_of_this_fragment) = self.inline_context {
if let Some(ref inline_context_of_next_fragment) = next_fragment.inline_context {
for (inline_context_node_from_this_fragment,
inline_context_node_from_next_fragment)
in inline_context_of_this_fragment.nodes.iter_mut().rev()
.zip(inline_context_of_next_fragment.nodes.iter().rev())
{
if !inline_context_node_from_next_fragment.flags.contains(
LAST_FRAGMENT_OF_ELEMENT) {
continue
}
if inline_context_node_from_next_fragment.address !=
inline_context_node_from_this_fragment.address {
continue
}
inline_context_node_from_this_fragment.flags.insert(LAST_FRAGMENT_OF_ELEMENT);
}
}
}
}
pub fn meld_with_prev_inline_fragment(&mut self, prev_fragment: &Fragment) {
if let Some(ref mut inline_context_of_this_fragment) = self.inline_context {
if let Some(ref inline_context_of_prev_fragment) = prev_fragment.inline_context {
for (inline_context_node_from_prev_fragment,
inline_context_node_from_this_fragment)
in inline_context_of_prev_fragment.nodes.iter().rev().zip(
inline_context_of_this_fragment.nodes.iter_mut().rev())
{
if !inline_context_node_from_prev_fragment.flags.contains(
FIRST_FRAGMENT_OF_ELEMENT) {
continue
}
if inline_context_node_from_prev_fragment.address !=
inline_context_node_from_this_fragment.address {
continue
}
inline_context_node_from_this_fragment.flags.insert(
FIRST_FRAGMENT_OF_ELEMENT);
}
}
}
}
pub fn fragment_id(&self) -> usize {
return self as *const Fragment as usize;
}
pub fn fragment_type(&self) -> FragmentType {
match self.pseudo {
PseudoElementType::Normal => FragmentType::FragmentBody,
PseudoElementType::Before(_) => FragmentType::BeforePseudoContent,
PseudoElementType::After(_) => FragmentType::AfterPseudoContent,
PseudoElementType::DetailsSummary(_) => FragmentType::FragmentBody,
PseudoElementType::DetailsContent(_) => FragmentType::FragmentBody,
}
}
/// Returns true if any of the inline styles associated with this fragment have
/// `vertical-align` set to `top` or `bottom`.
pub fn is_vertically_aligned_to_top_or_bottom(&self) -> bool {
match self.style.get_box().vertical_align {
vertical_align::T::top | vertical_align::T::bottom => return true,
_ => {}
}
if let Some(ref inline_context) = self.inline_context {
for node in &inline_context.nodes {
match node.style.get_box().vertical_align {
vertical_align::T::top | vertical_align::T::bottom => return true,
_ => {}
}
}
}
false
}
pub fn is_text_or_replaced(&self) -> bool {
match self.specific {
SpecificFragmentInfo::Generic |
SpecificFragmentInfo::InlineAbsolute(_) |
SpecificFragmentInfo::InlineAbsoluteHypothetical(_) |
SpecificFragmentInfo::InlineBlock(_) |
SpecificFragmentInfo::Multicol |
SpecificFragmentInfo::MulticolColumn |
SpecificFragmentInfo::Table |
SpecificFragmentInfo::TableCell |
SpecificFragmentInfo::TableColumn(_) |
SpecificFragmentInfo::TableRow |
SpecificFragmentInfo::TableWrapper => false,
SpecificFragmentInfo::Canvas(_) |
SpecificFragmentInfo::GeneratedContent(_) |
SpecificFragmentInfo::Iframe(_) |
SpecificFragmentInfo::Image(_) |
SpecificFragmentInfo::ScannedText(_) |
SpecificFragmentInfo::Svg(_) |
SpecificFragmentInfo::UnscannedText(_) => true
}
}
}
impl fmt::Debug for Fragment {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let border_padding_string = if !self.border_padding.is_zero() {
format!(" border_padding={:?}", self.border_padding)
} else {
"".to_owned()
};
let margin_string = if !self.margin.is_zero() {
format!(" margin={:?}", self.margin)
} else {
"".to_owned()
};
let damage_string = if self.restyle_damage != RestyleDamage::empty() {
format!(" damage={:?}", self.restyle_damage)
} else {
"".to_owned()
};
write!(f, "{}({}) [{:?}] border_box={:?}{}{}{}",
self.specific.get_type(),
self.debug_id,
self.specific,
self.border_box,
border_padding_string,
margin_string,
damage_string)
}
}
bitflags! {
flags QuantitiesIncludedInIntrinsicInlineSizes: u8 {
const INTRINSIC_INLINE_SIZE_INCLUDES_MARGINS = 0x01,
const INTRINSIC_INLINE_SIZE_INCLUDES_PADDING = 0x02,
const INTRINSIC_INLINE_SIZE_INCLUDES_BORDER = 0x04,
const INTRINSIC_INLINE_SIZE_INCLUDES_SPECIFIED = 0x08,
}
}
bitflags! {
// Various flags we can use when splitting fragments. See
// `calculate_split_position_using_breaking_strategy()`.
flags SplitOptions: u8 {
#[doc = "True if this is the first fragment on the line."]
const STARTS_LINE = 0x01,
#[doc = "True if we should attempt to split at character boundaries if this split fails. \
This is used to implement `overflow-wrap: break-word`."]
const RETRY_AT_CHARACTER_BOUNDARIES = 0x02,
}
}
/// A top-down fragment border box iteration handler.
pub trait FragmentBorderBoxIterator {
/// The operation to perform.
fn process(&mut self, fragment: &Fragment, level: i32, overflow: &Rect<Au>);
/// Returns true if this fragment must be processed in-order. If this returns false,
/// we skip the operation for this fragment, but continue processing siblings.
fn should_process(&mut self, fragment: &Fragment) -> bool;
}
/// The coordinate system used in `stacking_relative_border_box()`. See the documentation of that
/// method for details.
#[derive(Clone, PartialEq, Debug)]
pub enum CoordinateSystem {
/// The border box returned is relative to the fragment's parent stacking context.
Parent,
/// The border box returned is relative to the fragment's own stacking context, if applicable.
Own,
}
pub struct InlineStyleIterator<'a> {
fragment: &'a Fragment,
inline_style_index: usize,
primary_style_yielded: bool,
}
impl<'a> Iterator for InlineStyleIterator<'a> {
type Item = &'a ServoComputedValues;
fn next(&mut self) -> Option<&'a ServoComputedValues> {
if !self.primary_style_yielded {
self.primary_style_yielded = true;
return Some(&*self.fragment.style)
}
let inline_context = match self.fragment.inline_context {
None => return None,
Some(ref inline_context) => inline_context,
};
let inline_style_index = self.inline_style_index;
if inline_style_index == inline_context.nodes.len() {
return None
}
self.inline_style_index += 1;
Some(&*inline_context.nodes[inline_style_index].style)
}
}
impl<'a> InlineStyleIterator<'a> {
fn new(fragment: &Fragment) -> InlineStyleIterator {
InlineStyleIterator {
fragment: fragment,
inline_style_index: 0,
primary_style_yielded: false,
}
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum WhitespaceStrippingResult {
RetainFragment,
FragmentContainedOnlyBidiControlCharacters,
FragmentContainedOnlyWhitespace,
}
impl WhitespaceStrippingResult {
fn from_unscanned_text_fragment_info(info: &UnscannedTextFragmentInfo)
-> WhitespaceStrippingResult {
if info.text.is_empty() {
WhitespaceStrippingResult::FragmentContainedOnlyWhitespace
} else if info.text.chars().all(gfx::text::util::is_bidi_control) {
WhitespaceStrippingResult::FragmentContainedOnlyBidiControlCharacters
} else {
WhitespaceStrippingResult::RetainFragment
}
}
}
/// The overflow area. We need two different notions of overflow: paint overflow and scrollable
/// overflow.
#[derive(Copy, Clone, Debug)]
pub struct Overflow {
pub scroll: Rect<Au>,
pub paint: Rect<Au>,
}
impl Overflow {
pub fn new() -> Overflow {
Overflow {
scroll: Rect::zero(),
paint: Rect::zero(),
}
}
pub fn from_rect(border_box: &Rect<Au>) -> Overflow {
Overflow {
scroll: *border_box,
paint: *border_box,
}
}
pub fn union(&mut self, other: &Overflow) {
self.scroll = self.scroll.union(&other.scroll);
self.paint = self.paint.union(&other.paint);
}
pub fn translate(&mut self, point: &Point2D<Au>) {
self.scroll = self.scroll.translate(point);
self.paint = self.paint.translate(point);
}
}
bitflags! {
pub flags FragmentFlags: u8 {
// TODO(stshine): find a better name since these flags can also be used for grid item.
/// Whether this fragment represents a child in a row flex container.
const IS_INLINE_FLEX_ITEM = 0b0000_0001,
/// Whether this fragment represents a child in a column flex container.
const IS_BLOCK_FLEX_ITEM = 0b0000_0010,
}
}
/// Specified distances from the margin edge of a block to its content in the inline direction.
/// These are returned by `guess_inline_content_edge_offsets()` and are used in the float placement
/// speculation logic.
#[derive(Copy, Clone, Debug)]
pub struct SpeculatedInlineContentEdgeOffsets {
pub start: Au,
pub end: Au,
}
#[cfg(not(debug_assertions))]
#[derive(Clone)]
struct DebugId;
#[cfg(debug_assertions)]
#[derive(Clone)]
struct DebugId(u16);
#[cfg(not(debug_assertions))]
impl DebugId {
pub fn new() -> DebugId {
DebugId
}
}
#[cfg(debug_assertions)]
impl DebugId {
pub fn new() -> DebugId {
DebugId(layout_debug::generate_unique_debug_id())
}
}
#[cfg(not(debug_assertions))]
impl fmt::Display for DebugId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:p}", &self)
}
}
#[cfg(debug_assertions)]
impl fmt::Display for DebugId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[cfg(not(debug_assertions))]
impl Serialize for DebugId {
fn serialize<S: Serializer>(&self, serializer: &mut S) -> Result<(), S::Error> {
serializer.serialize_str(&format!("{:p}", &self))
}
}
#[cfg(debug_assertions)]
impl Serialize for DebugId {
fn serialize<S: Serializer>(&self, serializer: &mut S) -> Result<(), S::Error> {
serializer.serialize_u16(self.0)
}
}