gecko-dev/gfx/webrender_bindings/RenderThread.h

166 строки
5.5 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set sw=2 sts=2 ts=8 et tw=99 : */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_LAYERS_RENDERTHREAD_H
#define MOZILLA_LAYERS_RENDERTHREAD_H
#include "base/basictypes.h" // for DISALLOW_EVIL_CONSTRUCTORS
#include "base/platform_thread.h" // for PlatformThreadId
#include "base/thread.h" // for Thread
#include "base/message_loop.h"
#include "nsISupportsImpl.h"
#include "nsRefPtrHashtable.h"
#include "ThreadSafeRefcountingWithMainThreadDestruction.h"
#include "mozilla/Mutex.h"
#include "mozilla/webrender/webrender_ffi.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/webrender/WebRenderTypes.h"
namespace mozilla {
namespace wr {
class RendererOGL;
class RenderTextureHost;
class RenderThread;
/// A rayon thread pool that is shared by all WebRender instances within a process.
class WebRenderThreadPool {
public:
WebRenderThreadPool();
~WebRenderThreadPool();
WrThreadPool* Raw() { return mThreadPool; }
protected:
WrThreadPool* mThreadPool;
};
/// Base class for an event that can be scheduled to run on the render thread.
///
/// The event can be passed through the same channels as regular WebRender messages
/// to preserve ordering.
class RendererEvent
{
public:
virtual ~RendererEvent() {}
virtual void Run(RenderThread& aRenderThread, wr::WindowId aWindow) = 0;
};
/// The render thread is where WebRender issues all of its GPU work, and as much
/// as possible this thread should only serve this purpose.
///
/// The render thread owns the different RendererOGLs (one per window) and implements
/// the RenderNotifier api exposed by the WebRender bindings.
///
/// We should generally avoid posting tasks to the render thread's event loop directly
/// and instead use the RendererEvent mechanism which avoids races between the events
/// and WebRender's own messages.
///
/// The GL context(s) should be created and used on this thread only.
/// XXX - I've tried to organize code so that we can potentially avoid making
/// this a singleton since this bad habit has a tendency to bite us later, but
/// I haven't gotten all the way there either, in order to focus on the more
/// important pieces first. So we are a bit in-between (this is totally a singleton
/// but in some places we pretend it's not). Hopefully we can evolve this in a way
/// that keeps the door open to removing the singleton bits.
class RenderThread final
{
NS_INLINE_DECL_THREADSAFE_REFCOUNTING_WITH_MAIN_THREAD_DESTRUCTION(RenderThread)
public:
/// Can be called from any thread.
static RenderThread* Get();
/// Can only be called from the main thread.
static void Start();
/// Can only be called from the main thread.
static void ShutDown();
/// Can be called from any thread.
/// In most cases it is best to post RendererEvents through WebRenderAPI instead
/// of scheduling directly to this message loop (so as to preserve the ordering
/// of the messages).
static MessageLoop* Loop();
/// Can be called from any thread.
static bool IsInRenderThread();
/// Can only be called from the render thread.
void AddRenderer(wr::WindowId aWindowId, UniquePtr<RendererOGL> aRenderer);
/// Can only be called from the render thread.
void RemoveRenderer(wr::WindowId aWindowId);
/// Can only be called from the render thread.
RendererOGL* GetRenderer(wr::WindowId aWindowId);
// RenderNotifier implementation
/// Automatically forwarded to the render thread.
void NewFrameReady(wr::WindowId aWindowId);
/// Automatically forwarded to the render thread.
void NewScrollFrameReady(wr::WindowId aWindowId, bool aCompositeNeeded);
/// Automatically forwarded to the render thread.
void PipelineSizeChanged(wr::WindowId aWindowId, uint64_t aPipelineId, float aWidth, float aHeight);
/// Automatically forwarded to the render thread.
void RunEvent(wr::WindowId aWindowId, UniquePtr<RendererEvent> aCallBack);
/// Can only be called from the render thread.
void UpdateAndRender(wr::WindowId aWindowId);
void Pause(wr::WindowId aWindowId);
bool Resume(wr::WindowId aWindowId);
/// Can be called from any thread.
void RegisterExternalImage(uint64_t aExternalImageId, already_AddRefed<RenderTextureHost> aTexture);
/// Can be called from any thread.
void UnregisterExternalImage(uint64_t aExternalImageId);
/// Can only be called from the render thread.
RenderTextureHost* GetRenderTexture(WrExternalImageId aExternalImageId);
/// Can be called from any thread.
uint32_t GetPendingFrameCount(wr::WindowId aWindowId);
/// Can be called from any thread.
void IncPendingFrameCount(wr::WindowId aWindowId);
/// Can be called from any thread.
void DecPendingFrameCount(wr::WindowId aWindowId);
/// Can be called from any thread.
WebRenderThreadPool& ThreadPool() { return mThreadPool; }
private:
explicit RenderThread(base::Thread* aThread);
void DeferredRenderTextureHostDestroy(RefPtr<RenderTextureHost> aTexture);
~RenderThread();
base::Thread* const mThread;
WebRenderThreadPool mThreadPool;
std::map<wr::WindowId, UniquePtr<RendererOGL>> mRenderers;
Mutex mPendingFrameCountMapLock;
nsDataHashtable<nsUint64HashKey, uint32_t> mPendingFrameCounts;
Mutex mRenderTextureMapLock;
nsRefPtrHashtable<nsUint64HashKey, RenderTextureHost> mRenderTextures;
};
} // namespace wr
} // namespace mozilla
#endif