зеркало из https://github.com/mozilla/gecko-dev.git
381 строка
14 KiB
C++
381 строка
14 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/AbstractThread.h"
|
|
|
|
#include "mozilla/ClearOnShutdown.h"
|
|
#include "mozilla/Maybe.h"
|
|
#include "mozilla/MozPromise.h" // We initialize the MozPromise logging in this file.
|
|
#include "mozilla/StateWatching.h" // We initialize the StateWatching logging in this file.
|
|
#include "mozilla/StaticPtr.h"
|
|
#include "mozilla/TaskDispatcher.h"
|
|
#include "mozilla/TaskQueue.h"
|
|
#include "mozilla/Unused.h"
|
|
#include "nsContentUtils.h"
|
|
#include "nsIDirectTaskDispatcher.h"
|
|
#include "nsIThreadInternal.h"
|
|
#include "nsServiceManagerUtils.h"
|
|
#include "nsThreadManager.h"
|
|
#include "nsThreadUtils.h"
|
|
namespace mozilla {
|
|
|
|
LazyLogModule gMozPromiseLog("MozPromise");
|
|
LazyLogModule gStateWatchingLog("StateWatching");
|
|
|
|
StaticRefPtr<AbstractThread> sMainThread;
|
|
MOZ_THREAD_LOCAL(AbstractThread*) AbstractThread::sCurrentThreadTLS;
|
|
|
|
class XPCOMThreadWrapper final : public AbstractThread,
|
|
public nsIThreadObserver,
|
|
public nsIDirectTaskDispatcher {
|
|
public:
|
|
XPCOMThreadWrapper(nsIThreadInternal* aThread, bool aRequireTailDispatch,
|
|
bool aOnThread)
|
|
: AbstractThread(aRequireTailDispatch),
|
|
mThread(aThread),
|
|
mDirectTaskDispatcher(do_QueryInterface(aThread)),
|
|
mOnThread(aOnThread) {
|
|
MOZ_DIAGNOSTIC_ASSERT(mThread && mDirectTaskDispatcher);
|
|
MOZ_DIAGNOSTIC_ASSERT(!aOnThread || IsCurrentThreadIn());
|
|
if (aOnThread) {
|
|
MOZ_ASSERT(!sCurrentThreadTLS.get(),
|
|
"There can only be a single XPCOMThreadWrapper available on a "
|
|
"thread");
|
|
// Set the default current thread so that GetCurrent() never returns
|
|
// nullptr.
|
|
sCurrentThreadTLS.set(this);
|
|
}
|
|
}
|
|
|
|
NS_DECL_ISUPPORTS_INHERITED
|
|
|
|
nsresult Dispatch(already_AddRefed<nsIRunnable> aRunnable,
|
|
DispatchReason aReason = NormalDispatch) override {
|
|
nsCOMPtr<nsIRunnable> r = aRunnable;
|
|
AbstractThread* currentThread;
|
|
if (aReason != TailDispatch && (currentThread = GetCurrent()) &&
|
|
RequiresTailDispatch(currentThread) &&
|
|
currentThread->IsTailDispatcherAvailable()) {
|
|
return currentThread->TailDispatcher().AddTask(this, r.forget());
|
|
}
|
|
|
|
// At a certain point during shutdown, we stop processing events from the
|
|
// main thread event queue (this happens long after all _other_ XPCOM
|
|
// threads have been shut down). However, various bits of subsequent
|
|
// teardown logic (the media shutdown blocker and the final shutdown cycle
|
|
// collection) can trigger state watching and state mirroring notifications
|
|
// that result in dispatch to the main thread. This causes shutdown leaks,
|
|
// because the |Runner| wrapper below creates a guaranteed cycle
|
|
// (Thread->EventQueue->Runnable->Thread) until the event is processed. So
|
|
// if we put the event into a queue that will never be processed, we'll wind
|
|
// up with a leak.
|
|
//
|
|
// We opt to just release the runnable in that case. Ordinarily, this
|
|
// approach could cause problems for runnables that are only safe to be
|
|
// released on the target thread (and not the dispatching thread). This is
|
|
// why XPCOM thread dispatch explicitly leaks the runnable when dispatch
|
|
// fails, rather than releasing it. But given that this condition only
|
|
// applies very late in shutdown when only one thread remains operational,
|
|
// that concern is unlikely to apply.
|
|
if (gXPCOMMainThreadEventsAreDoomed) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
RefPtr<nsIRunnable> runner = new Runner(this, r.forget());
|
|
return mThread->Dispatch(runner.forget(), NS_DISPATCH_NORMAL);
|
|
}
|
|
|
|
// Prevent a GCC warning about the other overload of Dispatch being hidden.
|
|
using AbstractThread::Dispatch;
|
|
|
|
bool IsCurrentThreadIn() const override {
|
|
return mThread->IsOnCurrentThread();
|
|
}
|
|
|
|
TaskDispatcher& TailDispatcher() override {
|
|
MOZ_ASSERT(IsCurrentThreadIn());
|
|
MOZ_ASSERT(IsTailDispatcherAvailable());
|
|
if (!mTailDispatcher.isSome()) {
|
|
mTailDispatcher.emplace(mDirectTaskDispatcher,
|
|
/* aIsTailDispatcher = */ true);
|
|
mThread->AddObserver(this);
|
|
}
|
|
|
|
return mTailDispatcher.ref();
|
|
}
|
|
|
|
bool IsTailDispatcherAvailable() override {
|
|
// Our tail dispatching implementation relies on nsIThreadObserver
|
|
// callbacks. If we're not doing event processing, it won't work.
|
|
bool inEventLoop =
|
|
static_cast<nsThread*>(mThread.get())->RecursionDepth() > 0;
|
|
return inEventLoop;
|
|
}
|
|
|
|
bool MightHaveTailTasks() override { return mTailDispatcher.isSome(); }
|
|
|
|
nsIEventTarget* AsEventTarget() override { return mThread; }
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsIThreadObserver
|
|
//-----------------------------------------------------------------------------
|
|
NS_IMETHOD OnDispatchedEvent() override { return NS_OK; }
|
|
|
|
NS_IMETHOD AfterProcessNextEvent(nsIThreadInternal* thread,
|
|
bool eventWasProcessed) override {
|
|
// This is the primary case.
|
|
MaybeFireTailDispatcher();
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHOD OnProcessNextEvent(nsIThreadInternal* thread,
|
|
bool mayWait) override {
|
|
// In general, the tail dispatcher is handled at the end of the current in
|
|
// AfterProcessNextEvent() above. However, if start spinning a nested event
|
|
// loop, it's generally better to fire the tail dispatcher before the first
|
|
// nested event, rather than after it. This check handles that case.
|
|
MaybeFireTailDispatcher();
|
|
return NS_OK;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// nsIDirectTaskDispatcher
|
|
//-----------------------------------------------------------------------------
|
|
// Forward calls to nsIDirectTaskDispatcher to the underlying nsThread object.
|
|
// We can't use the generated NS_FORWARD_NSIDIRECTTASKDISPATCHER macro
|
|
// as already_AddRefed type must be moved.
|
|
NS_IMETHOD DispatchDirectTask(already_AddRefed<nsIRunnable> aEvent) override {
|
|
return mDirectTaskDispatcher->DispatchDirectTask(std::move(aEvent));
|
|
}
|
|
NS_IMETHOD DrainDirectTasks() override {
|
|
return mDirectTaskDispatcher->DrainDirectTasks();
|
|
}
|
|
NS_IMETHOD HaveDirectTasks(bool* aResult) override {
|
|
return mDirectTaskDispatcher->HaveDirectTasks(aResult);
|
|
}
|
|
|
|
private:
|
|
const RefPtr<nsIThreadInternal> mThread;
|
|
const nsCOMPtr<nsIDirectTaskDispatcher> mDirectTaskDispatcher;
|
|
Maybe<AutoTaskDispatcher> mTailDispatcher;
|
|
const bool mOnThread;
|
|
|
|
~XPCOMThreadWrapper() {
|
|
if (mOnThread) {
|
|
MOZ_DIAGNOSTIC_ASSERT(IsCurrentThreadIn(),
|
|
"Must be destroyed on the thread it was created");
|
|
sCurrentThreadTLS.set(nullptr);
|
|
}
|
|
}
|
|
|
|
void MaybeFireTailDispatcher() {
|
|
if (mTailDispatcher.isSome()) {
|
|
mTailDispatcher.ref().DrainDirectTasks();
|
|
mThread->RemoveObserver(this);
|
|
mTailDispatcher.reset();
|
|
}
|
|
}
|
|
|
|
class Runner : public Runnable {
|
|
public:
|
|
explicit Runner(XPCOMThreadWrapper* aThread,
|
|
already_AddRefed<nsIRunnable> aRunnable)
|
|
: Runnable("XPCOMThreadWrapper::Runner"),
|
|
mThread(aThread),
|
|
mRunnable(aRunnable) {}
|
|
|
|
NS_IMETHOD Run() override {
|
|
MOZ_ASSERT(mThread == AbstractThread::GetCurrent());
|
|
MOZ_ASSERT(mThread->IsCurrentThreadIn());
|
|
SerialEventTargetGuard guard(mThread);
|
|
return mRunnable->Run();
|
|
}
|
|
|
|
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
|
|
NS_IMETHOD GetName(nsACString& aName) override {
|
|
aName.AssignLiteral("AbstractThread::Runner");
|
|
if (nsCOMPtr<nsINamed> named = do_QueryInterface(mRunnable)) {
|
|
nsAutoCString name;
|
|
named->GetName(name);
|
|
if (!name.IsEmpty()) {
|
|
aName.AppendLiteral(" for ");
|
|
aName.Append(name);
|
|
}
|
|
}
|
|
return NS_OK;
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
const RefPtr<XPCOMThreadWrapper> mThread;
|
|
const RefPtr<nsIRunnable> mRunnable;
|
|
};
|
|
};
|
|
NS_IMPL_ISUPPORTS_INHERITED(XPCOMThreadWrapper, AbstractThread,
|
|
nsIThreadObserver, nsIDirectTaskDispatcher);
|
|
|
|
NS_IMPL_ISUPPORTS(AbstractThread, nsIEventTarget, nsISerialEventTarget)
|
|
|
|
NS_IMETHODIMP_(bool)
|
|
AbstractThread::IsOnCurrentThreadInfallible() { return IsCurrentThreadIn(); }
|
|
|
|
NS_IMETHODIMP
|
|
AbstractThread::IsOnCurrentThread(bool* aResult) {
|
|
*aResult = IsCurrentThreadIn();
|
|
return NS_OK;
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
AbstractThread::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) {
|
|
nsCOMPtr<nsIRunnable> event(aEvent);
|
|
return Dispatch(event.forget(), aFlags);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
AbstractThread::Dispatch(already_AddRefed<nsIRunnable> aEvent,
|
|
uint32_t aFlags) {
|
|
return Dispatch(std::move(aEvent), NormalDispatch);
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
AbstractThread::DelayedDispatch(already_AddRefed<nsIRunnable> aEvent,
|
|
uint32_t aDelayMs) {
|
|
nsCOMPtr<nsIRunnable> event = aEvent;
|
|
NS_ENSURE_TRUE(!!aDelayMs, NS_ERROR_UNEXPECTED);
|
|
|
|
RefPtr<DelayedRunnable> r =
|
|
new DelayedRunnable(do_AddRef(this), event.forget(), aDelayMs);
|
|
nsresult rv = r->Init();
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
return Dispatch(r.forget(), NS_DISPATCH_NORMAL);
|
|
}
|
|
|
|
nsresult AbstractThread::TailDispatchTasksFor(AbstractThread* aThread) {
|
|
if (MightHaveTailTasks()) {
|
|
return TailDispatcher().DispatchTasksFor(aThread);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
bool AbstractThread::HasTailTasksFor(AbstractThread* aThread) {
|
|
if (!MightHaveTailTasks()) {
|
|
return false;
|
|
}
|
|
return TailDispatcher().HasTasksFor(aThread);
|
|
}
|
|
|
|
bool AbstractThread::RequiresTailDispatch(AbstractThread* aThread) const {
|
|
MOZ_ASSERT(aThread);
|
|
// We require tail dispatch if both the source and destination
|
|
// threads support it.
|
|
return SupportsTailDispatch() && aThread->SupportsTailDispatch();
|
|
}
|
|
|
|
bool AbstractThread::RequiresTailDispatchFromCurrentThread() const {
|
|
AbstractThread* current = GetCurrent();
|
|
return current && RequiresTailDispatch(current);
|
|
}
|
|
|
|
AbstractThread* AbstractThread::MainThread() {
|
|
MOZ_ASSERT(sMainThread);
|
|
return sMainThread;
|
|
}
|
|
|
|
void AbstractThread::InitTLS() {
|
|
if (!sCurrentThreadTLS.init()) {
|
|
MOZ_CRASH();
|
|
}
|
|
}
|
|
|
|
void AbstractThread::InitMainThread() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
MOZ_ASSERT(!sMainThread);
|
|
nsCOMPtr<nsIThreadInternal> mainThread =
|
|
do_QueryInterface(nsThreadManager::get().GetMainThreadWeak());
|
|
MOZ_DIAGNOSTIC_ASSERT(mainThread);
|
|
|
|
if (!sCurrentThreadTLS.init()) {
|
|
MOZ_CRASH();
|
|
}
|
|
sMainThread = new XPCOMThreadWrapper(mainThread.get(),
|
|
/* aRequireTailDispatch = */ true,
|
|
true /* onThread */);
|
|
}
|
|
|
|
void AbstractThread::ShutdownMainThread() {
|
|
MOZ_ASSERT(NS_IsMainThread());
|
|
sMainThread = nullptr;
|
|
}
|
|
|
|
void AbstractThread::DispatchStateChange(
|
|
already_AddRefed<nsIRunnable> aRunnable) {
|
|
AbstractThread* currentThread = GetCurrent();
|
|
MOZ_DIAGNOSTIC_ASSERT(currentThread, "An AbstractThread must exist");
|
|
if (currentThread->IsTailDispatcherAvailable()) {
|
|
currentThread->TailDispatcher().AddStateChangeTask(this,
|
|
std::move(aRunnable));
|
|
} else {
|
|
// If the tail dispatcher isn't available, we just avoid sending state
|
|
// updates.
|
|
//
|
|
// This happens, specifically (1) During async shutdown (via the media
|
|
// shutdown blocker), and (2) During the final shutdown cycle collection.
|
|
// Both of these trigger changes to various watched and mirrored state.
|
|
nsCOMPtr<nsIRunnable> neverDispatched = aRunnable;
|
|
}
|
|
}
|
|
|
|
/* static */
|
|
void AbstractThread::DispatchDirectTask(
|
|
already_AddRefed<nsIRunnable> aRunnable) {
|
|
AbstractThread* currentThread = GetCurrent();
|
|
MOZ_DIAGNOSTIC_ASSERT(currentThread, "An AbstractThread must exist");
|
|
if (currentThread->IsTailDispatcherAvailable()) {
|
|
currentThread->TailDispatcher().AddDirectTask(std::move(aRunnable));
|
|
} else {
|
|
// If the tail dispatcher isn't available, we post as a regular task.
|
|
currentThread->Dispatch(std::move(aRunnable));
|
|
}
|
|
}
|
|
|
|
/* static */
|
|
already_AddRefed<AbstractThread> AbstractThread::CreateXPCOMThreadWrapper(
|
|
nsIThread* aThread, bool aRequireTailDispatch, bool aOnThread) {
|
|
nsCOMPtr<nsIThreadInternal> internalThread = do_QueryInterface(aThread);
|
|
MOZ_ASSERT(internalThread, "Need an nsThread for AbstractThread");
|
|
RefPtr<XPCOMThreadWrapper> wrapper =
|
|
new XPCOMThreadWrapper(internalThread, aRequireTailDispatch, aOnThread);
|
|
|
|
bool onCurrentThread = false;
|
|
Unused << aThread->IsOnCurrentThread(&onCurrentThread);
|
|
|
|
if (onCurrentThread) {
|
|
if (!aOnThread) {
|
|
MOZ_ASSERT(!sCurrentThreadTLS.get(),
|
|
"There can only be a single XPCOMThreadWrapper available on a "
|
|
"thread");
|
|
sCurrentThreadTLS.set(wrapper);
|
|
}
|
|
return wrapper.forget();
|
|
}
|
|
|
|
// Set the thread-local sCurrentThreadTLS to point to the wrapper on the
|
|
// target thread. This ensures that sCurrentThreadTLS is as expected by
|
|
// AbstractThread::GetCurrent() on the target thread.
|
|
nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
|
|
"AbstractThread::CreateXPCOMThreadWrapper", [wrapper]() {
|
|
MOZ_ASSERT(!sCurrentThreadTLS.get(),
|
|
"There can only be a single XPCOMThreadWrapper available on "
|
|
"a thread");
|
|
sCurrentThreadTLS.set(wrapper);
|
|
});
|
|
aThread->Dispatch(r.forget(), NS_DISPATCH_NORMAL);
|
|
return wrapper.forget();
|
|
}
|
|
} // namespace mozilla
|