gecko-dev/gfx/layers/Compositor.cpp

656 строки
21 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/layers/Compositor.h"
#include "base/message_loop.h" // for MessageLoop
#include "mozilla/layers/CompositorBridgeParent.h" // for CompositorBridgeParent
#include "mozilla/layers/Diagnostics.h"
#include "mozilla/layers/Effects.h" // for Effect, EffectChain, etc
#include "mozilla/layers/TextureClient.h"
#include "mozilla/layers/TextureHost.h"
#include "mozilla/layers/CompositorThread.h"
#include "mozilla/mozalloc.h" // for operator delete, etc
#include "gfx2DGlue.h"
#include "nsAppRunner.h"
#include "LayersHelpers.h"
namespace mozilla {
namespace layers {
Compositor::Compositor(widget::CompositorWidget* aWidget,
CompositorBridgeParent* aParent)
: mDiagnosticTypes(DiagnosticTypes::NO_DIAGNOSTIC)
, mParent(aParent)
, mPixelsPerFrame(0)
, mPixelsFilled(0)
, mScreenRotation(ROTATION_0)
, mWidget(aWidget)
, mIsDestroyed(false)
#if defined(MOZ_WIDGET_ANDROID)
// If the default color isn't white for Fennec, there is a black
// flash before the first page of a tab is loaded.
, mClearColor(1.0, 1.0, 1.0, 1.0)
, mDefaultClearColor(1.0, 1.0, 1.0, 1.0)
#else
, mClearColor(0.0, 0.0, 0.0, 0.0)
, mDefaultClearColor(0.0, 0.0, 0.0, 0.0)
#endif
{
}
Compositor::~Compositor()
{
ReadUnlockTextures();
}
void
Compositor::Destroy()
{
TextureSourceProvider::Destroy();
mIsDestroyed = true;
}
void
Compositor::EndFrame()
{
ReadUnlockTextures();
mLastCompositionEndTime = TimeStamp::Now();
}
/* static */ void
Compositor::AssertOnCompositorThread()
{
MOZ_ASSERT(!CompositorThreadHolder::Loop() ||
CompositorThreadHolder::Loop() == MessageLoop::current(),
"Can only call this from the compositor thread!");
}
bool
Compositor::ShouldDrawDiagnostics(DiagnosticFlags aFlags)
{
if ((aFlags & DiagnosticFlags::TILE) && !(mDiagnosticTypes & DiagnosticTypes::TILE_BORDERS)) {
return false;
}
if ((aFlags & DiagnosticFlags::BIGIMAGE) &&
!(mDiagnosticTypes & DiagnosticTypes::BIGIMAGE_BORDERS)) {
return false;
}
if (mDiagnosticTypes == DiagnosticTypes::NO_DIAGNOSTIC) {
return false;
}
return true;
}
void
Compositor::DrawDiagnostics(DiagnosticFlags aFlags,
const nsIntRegion& aVisibleRegion,
const gfx::IntRect& aClipRect,
const gfx::Matrix4x4& aTransform,
uint32_t aFlashCounter)
{
if (!ShouldDrawDiagnostics(aFlags)) {
return;
}
if (aVisibleRegion.GetNumRects() > 1) {
for (auto iter = aVisibleRegion.RectIter(); !iter.Done(); iter.Next()) {
DrawDiagnostics(aFlags | DiagnosticFlags::REGION_RECT,
IntRectToRect(iter.Get()), aClipRect, aTransform,
aFlashCounter);
}
}
DrawDiagnostics(aFlags, IntRectToRect(aVisibleRegion.GetBounds()),
aClipRect, aTransform, aFlashCounter);
}
void
Compositor::DrawDiagnostics(DiagnosticFlags aFlags,
const gfx::Rect& aVisibleRect,
const gfx::IntRect& aClipRect,
const gfx::Matrix4x4& aTransform,
uint32_t aFlashCounter)
{
if (!ShouldDrawDiagnostics(aFlags)) {
return;
}
DrawDiagnosticsInternal(aFlags, aVisibleRect, aClipRect, aTransform,
aFlashCounter);
}
void
Compositor::DrawDiagnosticsInternal(DiagnosticFlags aFlags,
const gfx::Rect& aVisibleRect,
const gfx::IntRect& aClipRect,
const gfx::Matrix4x4& aTransform,
uint32_t aFlashCounter)
{
#ifdef ANDROID
int lWidth = 10;
#else
int lWidth = 2;
#endif
gfx::Color color;
if (aFlags & DiagnosticFlags::CONTENT) {
color = gfx::Color(0.0f, 1.0f, 0.0f, 1.0f); // green
if (aFlags & DiagnosticFlags::COMPONENT_ALPHA) {
color = gfx::Color(0.0f, 1.0f, 1.0f, 1.0f); // greenish blue
}
} else if (aFlags & DiagnosticFlags::IMAGE) {
if (aFlags & DiagnosticFlags::NV12) {
color = gfx::Color(1.0f, 1.0f, 0.0f, 1.0f); // yellow
} else if (aFlags & DiagnosticFlags::YCBCR) {
color = gfx::Color(1.0f, 0.55f, 0.0f, 1.0f); // orange
} else {
color = gfx::Color(1.0f, 0.0f, 0.0f, 1.0f); // red
}
} else if (aFlags & DiagnosticFlags::COLOR) {
color = gfx::Color(0.0f, 0.0f, 1.0f, 1.0f); // blue
} else if (aFlags & DiagnosticFlags::CONTAINER) {
color = gfx::Color(0.8f, 0.0f, 0.8f, 1.0f); // purple
}
// make tile borders a bit more transparent to keep layer borders readable.
if (aFlags & DiagnosticFlags::TILE ||
aFlags & DiagnosticFlags::BIGIMAGE ||
aFlags & DiagnosticFlags::REGION_RECT) {
lWidth = 1;
color.r *= 0.7f;
color.g *= 0.7f;
color.b *= 0.7f;
color.a = color.a * 0.5f;
} else {
color.a = color.a * 0.7f;
}
if (mDiagnosticTypes & DiagnosticTypes::FLASH_BORDERS) {
float flash = (float)aFlashCounter / (float)DIAGNOSTIC_FLASH_COUNTER_MAX;
color.r *= flash;
color.g *= flash;
color.b *= flash;
}
SlowDrawRect(aVisibleRect, color, aClipRect, aTransform, lWidth);
}
static void
UpdateTextureCoordinates(gfx::TexturedTriangle& aTriangle,
const gfx::Rect& aRect,
const gfx::Rect& aIntersection,
const gfx::Rect& aTextureCoords)
{
// Calculate the relative offset of the intersection within the layer.
float dx = (aIntersection.X() - aRect.X()) / aRect.Width();
float dy = (aIntersection.Y() - aRect.Y()) / aRect.Height();
// Update the texture offset.
float x = aTextureCoords.X() + dx * aTextureCoords.Width();
float y = aTextureCoords.Y() + dy * aTextureCoords.Height();
// Scale the texture width and height.
float w = aTextureCoords.Width() * aIntersection.Width() / aRect.Width();
float h = aTextureCoords.Height() * aIntersection.Height() / aRect.Height();
static const auto Clamp = [](float& f)
{
if (f >= 1.0f) f = 1.0f;
if (f <= 0.0f) f = 0.0f;
};
auto UpdatePoint = [&](const gfx::Point& p, gfx::Point& t)
{
t.x = x + (p.x - aIntersection.X()) / aIntersection.Width() * w;
t.y = y + (p.y - aIntersection.Y()) / aIntersection.Height() * h;
Clamp(t.x);
Clamp(t.y);
};
UpdatePoint(aTriangle.p1, aTriangle.textureCoords.p1);
UpdatePoint(aTriangle.p2, aTriangle.textureCoords.p2);
UpdatePoint(aTriangle.p3, aTriangle.textureCoords.p3);
}
void
Compositor::DrawGeometry(const gfx::Rect& aRect,
const gfx::IntRect& aClipRect,
const EffectChain& aEffectChain,
gfx::Float aOpacity,
const gfx::Matrix4x4& aTransform,
const gfx::Rect& aVisibleRect,
const Maybe<gfx::Polygon>& aGeometry)
{
if (aRect.IsEmpty()) {
return;
}
if (!aGeometry || !SupportsLayerGeometry()) {
DrawQuad(aRect, aClipRect, aEffectChain,
aOpacity, aTransform, aVisibleRect);
return;
}
// Cull completely invisible polygons.
if (aRect.Intersect(aGeometry->BoundingBox()).IsEmpty()) {
return;
}
const gfx::Polygon clipped = aGeometry->ClipPolygon(aRect);
// Cull polygons with no area.
if (clipped.IsEmpty()) {
return;
}
DrawPolygon(clipped, aRect, aClipRect, aEffectChain,
aOpacity, aTransform, aVisibleRect);
}
void
Compositor::DrawTriangles(const nsTArray<gfx::TexturedTriangle>& aTriangles,
const gfx::Rect& aRect,
const gfx::IntRect& aClipRect,
const EffectChain& aEffectChain,
gfx::Float aOpacity,
const gfx::Matrix4x4& aTransform,
const gfx::Rect& aVisibleRect)
{
for (const gfx::TexturedTriangle& triangle : aTriangles) {
DrawTriangle(triangle, aClipRect, aEffectChain,
aOpacity, aTransform, aVisibleRect);
}
}
nsTArray<gfx::TexturedTriangle>
GenerateTexturedTriangles(const gfx::Polygon& aPolygon,
const gfx::Rect& aRect,
const gfx::Rect& aTexRect)
{
nsTArray<gfx::TexturedTriangle> texturedTriangles;
gfx::Rect layerRects[4];
gfx::Rect textureRects[4];
size_t rects = DecomposeIntoNoRepeatRects(aRect, aTexRect,
&layerRects, &textureRects);
for (size_t i = 0; i < rects; ++i) {
const gfx::Rect& rect = layerRects[i];
const gfx::Rect& texRect = textureRects[i];
const gfx::Polygon clipped = aPolygon.ClipPolygon(rect);
if (clipped.IsEmpty()) {
continue;
}
for (const gfx::Triangle& triangle : clipped.ToTriangles()) {
const gfx::Rect intersection = rect.Intersect(triangle.BoundingBox());
// Cull completely invisible triangles.
if (intersection.IsEmpty()) {
continue;
}
MOZ_ASSERT(rect.Width() > 0.0f && rect.Height() > 0.0f);
MOZ_ASSERT(intersection.Width() > 0.0f && intersection.Height() > 0.0f);
// Since the texture was created for non-split geometry, we need to
// update the texture coordinates to account for the split.
gfx::TexturedTriangle t(triangle);
UpdateTextureCoordinates(t, rect, intersection, texRect);
texturedTriangles.AppendElement(Move(t));
}
}
return texturedTriangles;
}
nsTArray<TexturedVertex>
TexturedTrianglesToVertexArray(const nsTArray<gfx::TexturedTriangle>& aTriangles)
{
const auto VertexFromPoints = [](const gfx::Point& p, const gfx::Point& t) {
return TexturedVertex { { p.x, p.y }, { t.x, t.y } };
};
nsTArray<TexturedVertex> vertices;
for (const gfx::TexturedTriangle& t : aTriangles) {
vertices.AppendElement(VertexFromPoints(t.p1, t.textureCoords.p1));
vertices.AppendElement(VertexFromPoints(t.p2, t.textureCoords.p2));
vertices.AppendElement(VertexFromPoints(t.p3, t.textureCoords.p3));
}
return vertices;
}
void
Compositor::DrawPolygon(const gfx::Polygon& aPolygon,
const gfx::Rect& aRect,
const gfx::IntRect& aClipRect,
const EffectChain& aEffectChain,
gfx::Float aOpacity,
const gfx::Matrix4x4& aTransform,
const gfx::Rect& aVisibleRect)
{
nsTArray<gfx::TexturedTriangle> texturedTriangles;
TexturedEffect* texturedEffect =
aEffectChain.mPrimaryEffect->AsTexturedEffect();
if (texturedEffect) {
texturedTriangles =
GenerateTexturedTriangles(aPolygon, aRect, texturedEffect->mTextureCoords);
} else {
for (const gfx::Triangle& triangle : aPolygon.ToTriangles()) {
texturedTriangles.AppendElement(gfx::TexturedTriangle(triangle));
}
}
if (texturedTriangles.IsEmpty()) {
// Nothing to render.
return;
}
DrawTriangles(texturedTriangles, aRect, aClipRect, aEffectChain,
aOpacity, aTransform, aVisibleRect);
}
void
Compositor::SlowDrawRect(const gfx::Rect& aRect, const gfx::Color& aColor,
const gfx::IntRect& aClipRect,
const gfx::Matrix4x4& aTransform, int aStrokeWidth)
{
// TODO This should draw a rect using a single draw call but since
// this is only used for debugging overlays it's not worth optimizing ATM.
float opacity = 1.0f;
EffectChain effects;
effects.mPrimaryEffect = new EffectSolidColor(aColor);
// left
this->DrawQuad(gfx::Rect(aRect.X(), aRect.Y(),
aStrokeWidth, aRect.Height()),
aClipRect, effects, opacity,
aTransform);
// top
this->DrawQuad(gfx::Rect(aRect.X() + aStrokeWidth, aRect.Y(),
aRect.Width() - 2 * aStrokeWidth, aStrokeWidth),
aClipRect, effects, opacity,
aTransform);
// right
this->DrawQuad(gfx::Rect(aRect.XMost() - aStrokeWidth, aRect.Y(),
aStrokeWidth, aRect.Height()),
aClipRect, effects, opacity,
aTransform);
// bottom
this->DrawQuad(gfx::Rect(aRect.X() + aStrokeWidth, aRect.YMost() - aStrokeWidth,
aRect.Width() - 2 * aStrokeWidth, aStrokeWidth),
aClipRect, effects, opacity,
aTransform);
}
void
Compositor::FillRect(const gfx::Rect& aRect, const gfx::Color& aColor,
const gfx::IntRect& aClipRect,
const gfx::Matrix4x4& aTransform)
{
float opacity = 1.0f;
EffectChain effects;
effects.mPrimaryEffect = new EffectSolidColor(aColor);
this->DrawQuad(aRect,
aClipRect, effects, opacity,
aTransform);
}
static float
WrapTexCoord(float v)
{
// This should return values in range [0, 1.0)
return v - floorf(v);
}
static void
SetRects(size_t n,
decomposedRectArrayT* aLayerRects,
decomposedRectArrayT* aTextureRects,
float x0, float y0, float x1, float y1,
float tx0, float ty0, float tx1, float ty1,
bool flip_y)
{
if (flip_y) {
std::swap(ty0, ty1);
}
(*aLayerRects)[n] = gfx::Rect(x0, y0, x1 - x0, y1 - y0);
(*aTextureRects)[n] = gfx::Rect(tx0, ty0, tx1 - tx0, ty1 - ty0);
}
#ifdef DEBUG
static inline bool
FuzzyEqual(float a, float b)
{
return fabs(a - b) < 0.0001f;
}
static inline bool
FuzzyLTE(float a, float b)
{
return a <= b + 0.0001f;
}
#endif
size_t
DecomposeIntoNoRepeatRects(const gfx::Rect& aRect,
const gfx::Rect& aTexCoordRect,
decomposedRectArrayT* aLayerRects,
decomposedRectArrayT* aTextureRects)
{
gfx::Rect texCoordRect = aTexCoordRect;
// If the texture should be flipped, it will have negative height. Detect that
// here and compensate for it. We will flip each rect as we emit it.
bool flipped = false;
if (texCoordRect.Height() < 0) {
flipped = true;
texCoordRect.MoveByY(texCoordRect.Height());
texCoordRect.SetHeight(-texCoordRect.Height());
}
// Wrap the texture coordinates so they are within [0,1] and cap width/height
// at 1. We rely on this below.
texCoordRect = gfx::Rect(gfx::Point(WrapTexCoord(texCoordRect.X()),
WrapTexCoord(texCoordRect.Y())),
gfx::Size(std::min(texCoordRect.Width(), 1.0f),
std::min(texCoordRect.Height(), 1.0f)));
NS_ASSERTION(texCoordRect.X() >= 0.0f && texCoordRect.X() <= 1.0f &&
texCoordRect.Y() >= 0.0f && texCoordRect.Y() <= 1.0f &&
texCoordRect.Width() >= 0.0f && texCoordRect.Width() <= 1.0f &&
texCoordRect.Height() >= 0.0f && texCoordRect.Height() <= 1.0f &&
texCoordRect.XMost() >= 0.0f && texCoordRect.XMost() <= 2.0f &&
texCoordRect.YMost() >= 0.0f && texCoordRect.YMost() <= 2.0f,
"We just wrapped the texture coordinates, didn't we?");
// Get the top left and bottom right points of the rectangle. Note that
// tl.x/tl.y are within [0,1] but br.x/br.y are within [0,2].
gfx::Point tl = texCoordRect.TopLeft();
gfx::Point br = texCoordRect.BottomRight();
NS_ASSERTION(tl.x >= 0.0f && tl.x <= 1.0f &&
tl.y >= 0.0f && tl.y <= 1.0f &&
br.x >= tl.x && br.x <= 2.0f &&
br.y >= tl.y && br.y <= 2.0f &&
FuzzyLTE(br.x - tl.x, 1.0f) &&
FuzzyLTE(br.y - tl.y, 1.0f),
"Somehow generated invalid texture coordinates");
// Then check if we wrap in either the x or y axis.
bool xwrap = br.x > 1.0f;
bool ywrap = br.y > 1.0f;
// If xwrap is false, the texture will be sampled from tl.x .. br.x.
// If xwrap is true, then it will be split into tl.x .. 1.0, and
// 0.0 .. WrapTexCoord(br.x). Same for the Y axis. The destination
// rectangle is also split appropriately, according to the calculated
// xmid/ymid values.
if (!xwrap && !ywrap) {
SetRects(0, aLayerRects, aTextureRects,
aRect.X(), aRect.Y(), aRect.XMost(), aRect.YMost(),
tl.x, tl.y, br.x, br.y,
flipped);
return 1;
}
// If we are dealing with wrapping br.x and br.y are greater than 1.0 so
// wrap them here as well.
br = gfx::Point(xwrap ? WrapTexCoord(br.x) : br.x,
ywrap ? WrapTexCoord(br.y) : br.y);
// If we wrap around along the x axis, we will draw first from
// tl.x .. 1.0 and then from 0.0 .. br.x (which we just wrapped above).
// The same applies for the Y axis. The midpoints we calculate here are
// only valid if we actually wrap around.
GLfloat xmid = aRect.X() + (1.0f - tl.x) / texCoordRect.Width() * aRect.Width();
GLfloat ymid = aRect.Y() + (1.0f - tl.y) / texCoordRect.Height() * aRect.Height();
// Due to floating-point inaccuracy, we have to use XMost()-x and YMost()-y
// to calculate width and height, respectively, to ensure that size will
// remain consistent going from absolute to relative and back again.
NS_ASSERTION(!xwrap ||
(xmid >= aRect.X() &&
xmid <= aRect.XMost() &&
FuzzyEqual((xmid - aRect.X()) + (aRect.XMost() - xmid), aRect.XMost() - aRect.X())),
"xmid should be within [x,XMost()] and the wrapped rect should have the same width");
NS_ASSERTION(!ywrap ||
(ymid >= aRect.Y() &&
ymid <= aRect.YMost() &&
FuzzyEqual((ymid - aRect.Y()) + (aRect.YMost() - ymid), aRect.YMost() - aRect.Y())),
"ymid should be within [y,YMost()] and the wrapped rect should have the same height");
if (!xwrap && ywrap) {
SetRects(0, aLayerRects, aTextureRects,
aRect.X(), aRect.Y(), aRect.XMost(), ymid,
tl.x, tl.y, br.x, 1.0f,
flipped);
SetRects(1, aLayerRects, aTextureRects,
aRect.X(), ymid, aRect.XMost(), aRect.YMost(),
tl.x, 0.0f, br.x, br.y,
flipped);
return 2;
}
if (xwrap && !ywrap) {
SetRects(0, aLayerRects, aTextureRects,
aRect.X(), aRect.Y(), xmid, aRect.YMost(),
tl.x, tl.y, 1.0f, br.y,
flipped);
SetRects(1, aLayerRects, aTextureRects,
xmid, aRect.Y(), aRect.XMost(), aRect.YMost(),
0.0f, tl.y, br.x, br.y,
flipped);
return 2;
}
SetRects(0, aLayerRects, aTextureRects,
aRect.X(), aRect.Y(), xmid, ymid,
tl.x, tl.y, 1.0f, 1.0f,
flipped);
SetRects(1, aLayerRects, aTextureRects,
xmid, aRect.Y(), aRect.XMost(), ymid,
0.0f, tl.y, br.x, 1.0f,
flipped);
SetRects(2, aLayerRects, aTextureRects,
aRect.X(), ymid, xmid, aRect.YMost(),
tl.x, 0.0f, 1.0f, br.y,
flipped);
SetRects(3, aLayerRects, aTextureRects,
xmid, ymid, aRect.XMost(), aRect.YMost(),
0.0f, 0.0f, br.x, br.y,
flipped);
return 4;
}
gfx::IntRect
Compositor::ComputeBackdropCopyRect(const gfx::Rect& aRect,
const gfx::IntRect& aClipRect,
const gfx::Matrix4x4& aTransform,
gfx::Matrix4x4* aOutTransform,
gfx::Rect* aOutLayerQuad)
{
// Compute the clip.
gfx::IntPoint rtOffset = GetCurrentRenderTarget()->GetOrigin();
gfx::IntSize rtSize = GetCurrentRenderTarget()->GetSize();
return layers::ComputeBackdropCopyRect(
aRect,
aClipRect,
aTransform,
gfx::IntRect(rtOffset, rtSize),
aOutTransform,
aOutLayerQuad);
}
gfx::IntRect
Compositor::ComputeBackdropCopyRect(const gfx::Triangle& aTriangle,
const gfx::IntRect& aClipRect,
const gfx::Matrix4x4& aTransform,
gfx::Matrix4x4* aOutTransform,
gfx::Rect* aOutLayerQuad)
{
gfx::Rect boundingBox = aTriangle.BoundingBox();
return ComputeBackdropCopyRect(boundingBox, aClipRect, aTransform,
aOutTransform, aOutLayerQuad);
}
void
Compositor::SetInvalid()
{
mParent = nullptr;
}
bool
Compositor::IsValid() const
{
return !!mParent;
}
void
Compositor::SetDispAcquireFence(Layer* aLayer)
{
}
void
Compositor::UnlockAfterComposition(TextureHost* aTexture)
{
TextureSourceProvider::UnlockAfterComposition(aTexture);
// If this is being called after we shutdown the compositor, we must finish
// read unlocking now to prevent a cycle.
if (IsDestroyed()) {
ReadUnlockTextures();
}
}
bool
Compositor::NotifyNotUsedAfterComposition(TextureHost* aTextureHost)
{
if (IsDestroyed() || AsBasicCompositor()) {
return false;
}
return TextureSourceProvider::NotifyNotUsedAfterComposition(aTextureHost);
}
void
Compositor::GetFrameStats(GPUStats* aStats)
{
aStats->mInvalidPixels = mPixelsPerFrame;
aStats->mPixelsFilled = mPixelsFilled;
}
} // namespace layers
} // namespace mozilla