зеркало из https://github.com/mozilla/gecko-dev.git
944 строки
40 KiB
C++
944 строки
40 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* base class #1 for rendering objects that have child lists */
|
|
|
|
#ifndef nsContainerFrame_h___
|
|
#define nsContainerFrame_h___
|
|
|
|
#include "mozilla/Attributes.h"
|
|
#include "nsSplittableFrame.h"
|
|
#include "nsFrameList.h"
|
|
#include "nsLayoutUtils.h"
|
|
|
|
// Option flags for ReflowChild() and FinishReflowChild()
|
|
// member functions
|
|
#define NS_FRAME_NO_MOVE_VIEW 0x0001
|
|
#define NS_FRAME_NO_MOVE_FRAME (0x0002 | NS_FRAME_NO_MOVE_VIEW)
|
|
#define NS_FRAME_NO_SIZE_VIEW 0x0004
|
|
#define NS_FRAME_NO_VISIBILITY 0x0008
|
|
// Only applies to ReflowChild; if true, don't delete the next-in-flow, even
|
|
// if the reflow is fully complete.
|
|
#define NS_FRAME_NO_DELETE_NEXT_IN_FLOW_CHILD 0x0010
|
|
|
|
class nsOverflowContinuationTracker;
|
|
|
|
// Some macros for container classes to do sanity checking on
|
|
// width/height/x/y values computed during reflow.
|
|
// NOTE: AppUnitsPerCSSPixel value hardwired here to remove the
|
|
// dependency on nsDeviceContext.h. It doesn't matter if it's a
|
|
// little off.
|
|
#ifdef DEBUG
|
|
// 10 million pixels, converted to app units. Note that this a bit larger
|
|
// than 1/4 of nscoord_MAX. So, if any content gets to be this large, we're
|
|
// definitely in danger of grazing up against nscoord_MAX; hence, it's CRAZY.
|
|
#define CRAZY_COORD (10000000*60)
|
|
#define CRAZY_SIZE(_x) (((_x) < -CRAZY_COORD) || ((_x) > CRAZY_COORD))
|
|
#endif
|
|
|
|
/**
|
|
* Implementation of a container frame.
|
|
*/
|
|
class nsContainerFrame : public nsSplittableFrame
|
|
{
|
|
public:
|
|
NS_DECL_ABSTRACT_FRAME(nsContainerFrame)
|
|
NS_DECL_QUERYFRAME_TARGET(nsContainerFrame)
|
|
NS_DECL_QUERYFRAME
|
|
|
|
// nsIFrame overrides
|
|
virtual void Init(nsIContent* aContent,
|
|
nsContainerFrame* aParent,
|
|
nsIFrame* aPrevInFlow) override;
|
|
virtual nsContainerFrame* GetContentInsertionFrame() override
|
|
{
|
|
return this;
|
|
}
|
|
|
|
virtual const nsFrameList& GetChildList(ChildListID aList) const override;
|
|
virtual void GetChildLists(nsTArray<ChildList>* aLists) const override;
|
|
virtual void DestroyFrom(nsIFrame* aDestructRoot, PostDestroyData& aPostDestroyData) override;
|
|
virtual void ChildIsDirty(nsIFrame* aChild) override;
|
|
|
|
virtual FrameSearchResult PeekOffsetNoAmount(bool aForward, int32_t* aOffset) override;
|
|
virtual FrameSearchResult
|
|
PeekOffsetCharacter(bool aForward, int32_t* aOffset,
|
|
PeekOffsetCharacterOptions aOptions =
|
|
PeekOffsetCharacterOptions()) override;
|
|
|
|
virtual nsresult AttributeChanged(int32_t aNameSpaceID,
|
|
nsAtom* aAttribute,
|
|
int32_t aModType) override;
|
|
|
|
#ifdef DEBUG_FRAME_DUMP
|
|
void List(FILE* out = stderr, const char* aPrefix = "", uint32_t aFlags = 0) const override;
|
|
#endif
|
|
|
|
// nsContainerFrame methods
|
|
|
|
/**
|
|
* Called to set the initial list of frames. This happens after the frame
|
|
* has been initialized.
|
|
*
|
|
* This is only called once for a given child list, and won't be called
|
|
* at all for child lists with no initial list of frames.
|
|
*
|
|
* @param aListID the child list identifier.
|
|
* @param aChildList list of child frames. Each of the frames has its
|
|
* NS_FRAME_IS_DIRTY bit set. Must not be empty.
|
|
* This method cannot handle the child list returned by
|
|
* GetAbsoluteListID().
|
|
* @see #Init()
|
|
*/
|
|
virtual void SetInitialChildList(ChildListID aListID,
|
|
nsFrameList& aChildList);
|
|
|
|
/**
|
|
* This method is responsible for appending frames to the frame
|
|
* list. The implementation should append the frames to the specified
|
|
* child list and then generate a reflow command.
|
|
*
|
|
* @param aListID the child list identifier.
|
|
* @param aFrameList list of child frames to append. Each of the frames has
|
|
* its NS_FRAME_IS_DIRTY bit set. Must not be empty.
|
|
*/
|
|
virtual void AppendFrames(ChildListID aListID, nsFrameList& aFrameList);
|
|
|
|
/**
|
|
* This method is responsible for inserting frames into the frame
|
|
* list. The implementation should insert the new frames into the specified
|
|
* child list and then generate a reflow command.
|
|
*
|
|
* @param aListID the child list identifier.
|
|
* @param aPrevFrame the frame to insert frames <b>after</b>
|
|
* @param aFrameList list of child frames to insert <b>after</b> aPrevFrame.
|
|
* Each of the frames has its NS_FRAME_IS_DIRTY bit set
|
|
*/
|
|
virtual void InsertFrames(ChildListID aListID,
|
|
nsIFrame* aPrevFrame,
|
|
nsFrameList& aFrameList);
|
|
|
|
/**
|
|
* This method is responsible for removing a frame in the frame
|
|
* list. The implementation should do something with the removed frame
|
|
* and then generate a reflow command. The implementation is responsible
|
|
* for destroying aOldFrame (the caller mustn't destroy aOldFrame).
|
|
*
|
|
* @param aListID the child list identifier.
|
|
* @param aOldFrame the frame to remove
|
|
*/
|
|
virtual void RemoveFrame(ChildListID aListID, nsIFrame* aOldFrame);
|
|
|
|
/**
|
|
* Helper method to create next-in-flows if necessary. If aFrame
|
|
* already has a next-in-flow then this method does
|
|
* nothing. Otherwise, a new continuation frame is created and
|
|
* linked into the flow. In addition, the new frame is inserted
|
|
* into the principal child list after aFrame.
|
|
* @note calling this method on a block frame is illegal. Use
|
|
* nsBlockFrame::CreateContinuationFor() instead.
|
|
* @return the next-in-flow <b>if and only if</b> one is created. If
|
|
* a next-in-flow already exists, nullptr will be returned.
|
|
*/
|
|
nsIFrame* CreateNextInFlow(nsIFrame* aFrame);
|
|
|
|
/**
|
|
* Delete aNextInFlow and its next-in-flows.
|
|
* @param aDeletingEmptyFrames if set, then the reflow for aNextInFlow's
|
|
* content was complete before aNextInFlow, so aNextInFlow and its
|
|
* next-in-flows no longer map any real content.
|
|
*/
|
|
virtual void DeleteNextInFlowChild(nsIFrame* aNextInFlow,
|
|
bool aDeletingEmptyFrames);
|
|
|
|
// Positions the frame's view based on the frame's origin
|
|
static void PositionFrameView(nsIFrame* aKidFrame);
|
|
|
|
static nsresult ReparentFrameView(nsIFrame* aChildFrame,
|
|
nsIFrame* aOldParentFrame,
|
|
nsIFrame* aNewParentFrame);
|
|
|
|
static nsresult ReparentFrameViewList(const nsFrameList& aChildFrameList,
|
|
nsIFrame* aOldParentFrame,
|
|
nsIFrame* aNewParentFrame);
|
|
|
|
// Set the view's size and position after its frame has been reflowed.
|
|
//
|
|
// Flags:
|
|
// NS_FRAME_NO_MOVE_VIEW - don't position the frame's view. Set this if you
|
|
// don't want to automatically sync the frame and view
|
|
// NS_FRAME_NO_SIZE_VIEW - don't size the view
|
|
static void SyncFrameViewAfterReflow(nsPresContext* aPresContext,
|
|
nsIFrame* aFrame,
|
|
nsView* aView,
|
|
const nsRect& aVisualOverflowArea,
|
|
uint32_t aFlags = 0);
|
|
|
|
// Syncs properties to the top level view and window, like transparency and
|
|
// shadow.
|
|
// The SET_ASYNC indicates that the actual nsIWidget calls to sync the window
|
|
// properties should be done async.
|
|
enum {
|
|
SET_ASYNC = 0x01,
|
|
};
|
|
static void SyncWindowProperties(nsPresContext* aPresContext,
|
|
nsIFrame* aFrame,
|
|
nsView* aView,
|
|
gfxContext* aRC,
|
|
uint32_t aFlags);
|
|
|
|
/**
|
|
* Converts the minimum and maximum sizes given in inner window app units to
|
|
* outer window device pixel sizes and assigns these constraints to the widget.
|
|
*
|
|
* @param aPresContext pres context
|
|
* @param aWidget widget for this frame
|
|
* @param minimum size of the window in app units
|
|
* @param maxmimum size of the window in app units
|
|
*/
|
|
static void SetSizeConstraints(nsPresContext* aPresContext,
|
|
nsIWidget* aWidget,
|
|
const nsSize& aMinSize,
|
|
const nsSize& aMaxSize);
|
|
|
|
// Used by both nsInlineFrame and nsFirstLetterFrame.
|
|
void DoInlineIntrinsicISize(gfxContext *aRenderingContext,
|
|
InlineIntrinsicISizeData *aData,
|
|
nsLayoutUtils::IntrinsicISizeType aType);
|
|
|
|
/**
|
|
* This is the CSS block concept of computing 'auto' widths, which most
|
|
* classes derived from nsContainerFrame want.
|
|
*/
|
|
virtual mozilla::LogicalSize
|
|
ComputeAutoSize(gfxContext* aRenderingContext,
|
|
mozilla::WritingMode aWM,
|
|
const mozilla::LogicalSize& aCBSize,
|
|
nscoord aAvailableISize,
|
|
const mozilla::LogicalSize& aMargin,
|
|
const mozilla::LogicalSize& aBorder,
|
|
const mozilla::LogicalSize& aPadding,
|
|
ComputeSizeFlags aFlags) override;
|
|
|
|
/**
|
|
* Positions aChildFrame and its view (if requested), and then calls Reflow().
|
|
* If the reflow status after reflowing the child is FULLY_COMPLETE then any
|
|
* next-in-flows are deleted using DeleteNextInFlowChild().
|
|
*
|
|
* @param aContainerSize size of the border-box of the containing frame
|
|
*
|
|
* Flags:
|
|
* NS_FRAME_NO_MOVE_VIEW - don't position the frame's view. Set this if you
|
|
* don't want to automatically sync the frame and view
|
|
* NS_FRAME_NO_MOVE_FRAME - don't move the frame. aPos is ignored in this
|
|
* case. Also implies NS_FRAME_NO_MOVE_VIEW
|
|
*/
|
|
void ReflowChild(nsIFrame* aChildFrame,
|
|
nsPresContext* aPresContext,
|
|
ReflowOutput& aDesiredSize,
|
|
const ReflowInput& aReflowInput,
|
|
const mozilla::WritingMode& aWM,
|
|
const mozilla::LogicalPoint& aPos,
|
|
const nsSize& aContainerSize,
|
|
uint32_t aFlags,
|
|
nsReflowStatus& aStatus,
|
|
nsOverflowContinuationTracker* aTracker = nullptr);
|
|
|
|
/**
|
|
* The second half of frame reflow. Does the following:
|
|
* - sets the frame's bounds
|
|
* - sizes and positions (if requested) the frame's view. If the frame's final
|
|
* position differs from the current position and the frame itself does not
|
|
* have a view, then any child frames with views are positioned so they stay
|
|
* in sync
|
|
* - sets the view's visibility, opacity, content transparency, and clip
|
|
* - invoked the DidReflow() function
|
|
*
|
|
* @param aContainerSize size of the border-box of the containing frame
|
|
*
|
|
* Flags:
|
|
* NS_FRAME_NO_MOVE_FRAME - don't move the frame. aPos is ignored in this
|
|
* case. Also implies NS_FRAME_NO_MOVE_VIEW
|
|
* NS_FRAME_NO_MOVE_VIEW - don't position the frame's view. Set this if you
|
|
* don't want to automatically sync the frame and view
|
|
* NS_FRAME_NO_SIZE_VIEW - don't size the frame's view
|
|
*/
|
|
static void FinishReflowChild(nsIFrame* aKidFrame,
|
|
nsPresContext* aPresContext,
|
|
const ReflowOutput& aDesiredSize,
|
|
const ReflowInput* aReflowInput,
|
|
const mozilla::WritingMode& aWM,
|
|
const mozilla::LogicalPoint& aPos,
|
|
const nsSize& aContainerSize,
|
|
uint32_t aFlags);
|
|
|
|
//XXX temporary: hold on to a copy of the old physical versions of
|
|
// ReflowChild and FinishReflowChild so that we can convert callers
|
|
// incrementally.
|
|
void ReflowChild(nsIFrame* aKidFrame,
|
|
nsPresContext* aPresContext,
|
|
ReflowOutput& aDesiredSize,
|
|
const ReflowInput& aReflowInput,
|
|
nscoord aX,
|
|
nscoord aY,
|
|
uint32_t aFlags,
|
|
nsReflowStatus& aStatus,
|
|
nsOverflowContinuationTracker* aTracker = nullptr);
|
|
|
|
static void FinishReflowChild(nsIFrame* aKidFrame,
|
|
nsPresContext* aPresContext,
|
|
const ReflowOutput& aDesiredSize,
|
|
const ReflowInput* aReflowInput,
|
|
nscoord aX,
|
|
nscoord aY,
|
|
uint32_t aFlags);
|
|
|
|
static void PositionChildViews(nsIFrame* aFrame);
|
|
|
|
// ==========================================================================
|
|
/* Overflow containers are continuation frames that hold overflow. They
|
|
* are created when the frame runs out of computed height, but still has
|
|
* too much content to fit in the availableHeight. The parent creates a
|
|
* continuation as usual, but marks it as NS_FRAME_IS_OVERFLOW_CONTAINER
|
|
* and adds it to its next-in-flow's overflow container list, either by
|
|
* adding it directly or by putting it in its own excess overflow containers
|
|
* list (to be drained by the next-in-flow when it calls
|
|
* ReflowOverflowContainerChildren). The parent continues reflow as if
|
|
* the frame was complete once it ran out of computed height, but returns a
|
|
* reflow status with either IsIncomplete() or IsOverflowIncomplete() equal
|
|
* to true to request a next-in-flow. The parent's next-in-flow is then
|
|
* responsible for calling ReflowOverflowContainerChildren to (drain and)
|
|
* reflow these overflow continuations. Overflow containers do not affect
|
|
* other frames' size or position during reflow (but do affect their
|
|
* parent's overflow area).
|
|
*
|
|
* Overflow container continuations are different from normal continuations
|
|
* in that
|
|
* - more than one child of the frame can have its next-in-flow broken
|
|
* off and pushed into the frame's next-in-flow
|
|
* - new continuations may need to be spliced into the middle of the list
|
|
* or deleted continuations slipped out
|
|
* e.g. A, B, C are all fixed-size containers on one page, all have
|
|
* overflow beyond availableHeight, and content is dynamically added
|
|
* and removed from B
|
|
* As a result, it is not possible to simply prepend the new continuations
|
|
* to the old list as with the overflowProperty mechanism. To avoid
|
|
* complicated list splicing, the code assumes only one overflow containers
|
|
* list exists for a given frame: either its own overflowContainersProperty
|
|
* or its prev-in-flow's excessOverflowContainersProperty, not both.
|
|
*
|
|
* The nsOverflowContinuationTracker helper class should be used for tracking
|
|
* overflow containers and adding them to the appropriate list.
|
|
* See nsBlockFrame::Reflow for a sample implementation.
|
|
*/
|
|
|
|
friend class nsOverflowContinuationTracker;
|
|
|
|
typedef void (*ChildFrameMerger)(nsFrameList& aDest, nsFrameList& aSrc,
|
|
nsContainerFrame* aParent);
|
|
static inline void DefaultChildFrameMerge(nsFrameList& aDest,
|
|
nsFrameList& aSrc,
|
|
nsContainerFrame* aParent)
|
|
{
|
|
aDest.AppendFrames(nullptr, aSrc);
|
|
}
|
|
|
|
/**
|
|
* Reflow overflow container children. They are invisible to normal reflow
|
|
* (i.e. don't affect sizing or placement of other children) and inherit
|
|
* width and horizontal position from their prev-in-flow.
|
|
*
|
|
* This method
|
|
* 1. Pulls excess overflow containers from the prev-in-flow and adds
|
|
* them to our overflow container list
|
|
* 2. Reflows all our overflow container kids
|
|
* 3. Expands aOverflowRect as necessary to accomodate these children.
|
|
* 4. Sets aStatus's mOverflowIncomplete flag (along with
|
|
* mNextInFlowNeedsReflow as necessary) if any overflow children
|
|
* are incomplete and
|
|
* 5. Prepends a list of their continuations to our excess overflow
|
|
* container list, to be drained into our next-in-flow when it is
|
|
* reflowed.
|
|
*
|
|
* The caller is responsible for tracking any new overflow container
|
|
* continuations it makes, removing them from its child list, and
|
|
* making sure they are stored properly in the overflow container lists.
|
|
* The nsOverflowContinuationTracker helper class should be used for this.
|
|
*
|
|
* @param aFlags is passed through to ReflowChild
|
|
* @param aMergeFunc is passed to DrainExcessOverflowContainersList
|
|
*/
|
|
void ReflowOverflowContainerChildren(nsPresContext* aPresContext,
|
|
const ReflowInput& aReflowInput,
|
|
nsOverflowAreas& aOverflowRects,
|
|
uint32_t aFlags,
|
|
nsReflowStatus& aStatus,
|
|
ChildFrameMerger aMergeFunc =
|
|
DefaultChildFrameMerge);
|
|
|
|
/**
|
|
* Move any frames on our overflow list to the end of our principal list.
|
|
* @return true if there were any overflow frames
|
|
*/
|
|
virtual bool DrainSelfOverflowList() override;
|
|
|
|
|
|
/**
|
|
* Move all frames on our prev-in-flow's and our own ExcessOverflowContainers
|
|
* lists to our OverflowContainers list. If there are frames on multiple
|
|
* lists they are merged using aMergeFunc.
|
|
* @return a pointer to our OverflowContainers list, if any
|
|
*/
|
|
nsFrameList* DrainExcessOverflowContainersList(ChildFrameMerger aMergeFunc =
|
|
DefaultChildFrameMerge);
|
|
|
|
/**
|
|
* Removes aChild without destroying it and without requesting reflow.
|
|
* Continuations are not affected. Checks the principal and overflow lists,
|
|
* and also the [excess] overflow containers lists if the frame bit
|
|
* NS_FRAME_IS_OVERFLOW_CONTAINER is set. It does not check any other lists.
|
|
* Returns NS_ERROR_UNEXPECTED if aChild wasn't found on any of the lists
|
|
* mentioned above.
|
|
*/
|
|
virtual nsresult StealFrame(nsIFrame* aChild);
|
|
|
|
/**
|
|
* Removes the next-siblings of aChild without destroying them and without
|
|
* requesting reflow. Checks the principal and overflow lists (not
|
|
* overflow containers / excess overflow containers). Does not check any
|
|
* other auxiliary lists.
|
|
* @param aChild a child frame or nullptr
|
|
* @return If aChild is non-null, the next-siblings of aChild, if any.
|
|
* If aChild is null, all child frames on the principal list, if any.
|
|
*/
|
|
nsFrameList StealFramesAfter(nsIFrame* aChild);
|
|
|
|
/**
|
|
* Add overflow containers to the display list
|
|
*/
|
|
void DisplayOverflowContainers(nsDisplayListBuilder* aBuilder,
|
|
const nsDisplayListSet& aLists);
|
|
|
|
/**
|
|
* Builds display lists for the children. The background
|
|
* of each child is placed in the Content() list (suitable for inline
|
|
* children and other elements that behave like inlines,
|
|
* but not for in-flow block children of blocks). DOES NOT
|
|
* paint the background/borders/outline of this frame. This should
|
|
* probably be avoided and eventually removed. It's currently here
|
|
* to emulate what nsContainerFrame::Paint did.
|
|
*/
|
|
virtual void BuildDisplayList(nsDisplayListBuilder* aBuilder,
|
|
const nsDisplayListSet& aLists) override;
|
|
|
|
static void PlaceFrameView(nsIFrame* aFrame)
|
|
{
|
|
if (aFrame->HasView())
|
|
nsContainerFrame::PositionFrameView(aFrame);
|
|
else
|
|
nsContainerFrame::PositionChildViews(aFrame);
|
|
}
|
|
|
|
static bool FrameStartsCounterScope(nsIFrame* aFrame);
|
|
|
|
/**
|
|
* Renumber the list of the counter scope started by this frame, if any.
|
|
* If this returns true, the frame it's called on should get the
|
|
* NS_FRAME_HAS_DIRTY_CHILDREN bit set on it by the caller; either directly
|
|
* if it's already in reflow, or via calling FrameNeedsReflow() to schedule
|
|
* a reflow.
|
|
*/
|
|
bool RenumberList();
|
|
|
|
/**
|
|
* Renumber this frame if it's a list-item, then call RenumberChildFrames.
|
|
* @param aOrdinal Ordinal number to start counting at.
|
|
* Modifies this number for each associated list
|
|
* item. Changes in the numbering due to setting
|
|
* the |value| attribute are included if |aForCounting|
|
|
* is false. This value is both an input and output
|
|
* of this function, with the output value being the
|
|
* next ordinal number to be used.
|
|
* @param aDepth Current depth in frame tree from root list element.
|
|
* @param aIncrement Amount to increase by after visiting each associated
|
|
* list item, unless overridden by |value|.
|
|
* @param aForCounting Whether we are counting the elements or actually
|
|
* restyling them. When true, this simply visits all children,
|
|
* ignoring |<li value="..">| changes, effectively counting them
|
|
* and storing the result in |aOrdinal|. This is useful for
|
|
* |<ol reversed>|, where we need to count the number of
|
|
* applicable child list elements before numbering. When false,
|
|
* this will restyle all applicable descendants, and the next
|
|
* ordinal value will be stored in |aOrdinal|, taking into account
|
|
* any changes from |<li value="..">|.
|
|
*/
|
|
bool RenumberFrameAndDescendants(int32_t* aOrdinal,
|
|
int32_t aDepth,
|
|
int32_t aIncrement,
|
|
bool aForCounting) override;
|
|
/**
|
|
* Renumber the child frames using RenumberFrameAndDescendants.
|
|
* See RenumberFrameAndDescendants for description of parameters.
|
|
*/
|
|
virtual bool RenumberChildFrames(int32_t* aOrdinal,
|
|
int32_t aDepth,
|
|
int32_t aIncrement,
|
|
bool aForCounting);
|
|
|
|
/**
|
|
* Returns a CSS Box Alignment constant which the caller can use to align
|
|
* the absolutely-positioned child (whose ReflowInput is aChildRI) within
|
|
* a CSS Box Alignment area associated with this container.
|
|
*
|
|
* The lower 8 bits of the returned value are guaranteed to form a valid
|
|
* argument for CSSAlignUtils::AlignJustifySelf(). (The upper 8 bits may
|
|
* encode an <overflow-position>.)
|
|
*
|
|
* NOTE: This default nsContainerFrame implementation is a stub, and isn't
|
|
* meant to be called. Subclasses must provide their own implementations, if
|
|
* they use CSS Box Alignment to determine the static position of their
|
|
* absolutely-positioned children. (Though: if subclasses share enough code,
|
|
* maybe this nsContainerFrame impl should include some shared code.)
|
|
*
|
|
* @param aChildRI A ReflowInput for the positioned child frame that's being
|
|
* aligned.
|
|
* @param aLogicalAxis The axis (of this container frame) in which the caller
|
|
* would like to align the child frame.
|
|
*/
|
|
virtual uint16_t CSSAlignmentForAbsPosChild(
|
|
const ReflowInput& aChildRI,
|
|
mozilla::LogicalAxis aLogicalAxis) const;
|
|
|
|
#define NS_DECLARE_FRAME_PROPERTY_FRAMELIST(prop) \
|
|
NS_DECLARE_FRAME_PROPERTY_WITH_DTOR_NEVER_CALLED(prop, nsFrameList)
|
|
|
|
typedef PropertyDescriptor<nsFrameList> FrameListPropertyDescriptor;
|
|
|
|
NS_DECLARE_FRAME_PROPERTY_FRAMELIST(OverflowProperty)
|
|
NS_DECLARE_FRAME_PROPERTY_FRAMELIST(OverflowContainersProperty)
|
|
NS_DECLARE_FRAME_PROPERTY_FRAMELIST(ExcessOverflowContainersProperty)
|
|
NS_DECLARE_FRAME_PROPERTY_FRAMELIST(BackdropProperty)
|
|
|
|
// Only really used on nsBlockFrame instances, but the caller thinks it could
|
|
// have arbitrary nsContainerFrames.
|
|
NS_DECLARE_FRAME_PROPERTY_WITHOUT_DTOR(FirstLetterProperty, nsIFrame)
|
|
|
|
void SetHasFirstLetterChild()
|
|
{
|
|
mHasFirstLetterChild = true;
|
|
}
|
|
|
|
void ClearHasFirstLetterChild()
|
|
{
|
|
mHasFirstLetterChild = false;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
// Use this to suppress the CRAZY_SIZE assertions.
|
|
NS_DECLARE_FRAME_PROPERTY_SMALL_VALUE(DebugReflowingWithInfiniteISize, bool)
|
|
bool IsCrazySizeAssertSuppressed() const {
|
|
return GetProperty(DebugReflowingWithInfiniteISize());
|
|
}
|
|
#endif
|
|
|
|
protected:
|
|
nsContainerFrame(nsStyleContext* aContext, ClassID aID)
|
|
: nsSplittableFrame(aContext, aID)
|
|
{}
|
|
|
|
~nsContainerFrame();
|
|
|
|
/**
|
|
* Helper for DestroyFrom. DestroyAbsoluteFrames is called before
|
|
* destroying frames on lists that can contain placeholders.
|
|
* Derived classes must do that too, if they destroy such frame lists.
|
|
* See nsBlockFrame::DestroyFrom for an example.
|
|
*/
|
|
void DestroyAbsoluteFrames(nsIFrame* aDestructRoot,
|
|
PostDestroyData& aPostDestroyData);
|
|
|
|
/**
|
|
* Helper for StealFrame. Returns true if aChild was removed from its list.
|
|
*/
|
|
bool MaybeStealOverflowContainerFrame(nsIFrame* aChild);
|
|
|
|
/**
|
|
* Builds a display list for non-block children that behave like
|
|
* inlines. This puts the background of each child into the
|
|
* Content() list (suitable for inline children but not for
|
|
* in-flow block children of blocks).
|
|
* @param aForcePseudoStack forces each child into a pseudo-stacking-context
|
|
* so its background and all other display items (except for positioned
|
|
* display items) go into the Content() list.
|
|
*/
|
|
void BuildDisplayListForNonBlockChildren(nsDisplayListBuilder* aBuilder,
|
|
const nsDisplayListSet& aLists,
|
|
uint32_t aFlags = 0);
|
|
|
|
/**
|
|
* A version of BuildDisplayList that use DISPLAY_CHILD_INLINE.
|
|
* Intended as a convenience for derived classes.
|
|
*/
|
|
void BuildDisplayListForInline(nsDisplayListBuilder* aBuilder,
|
|
const nsDisplayListSet& aLists) {
|
|
DisplayBorderBackgroundOutline(aBuilder, aLists);
|
|
BuildDisplayListForNonBlockChildren(aBuilder, aLists, DISPLAY_CHILD_INLINE);
|
|
}
|
|
|
|
|
|
// ==========================================================================
|
|
/* Overflow Frames are frames that did not fit and must be pulled by
|
|
* our next-in-flow during its reflow. (The same concept for overflow
|
|
* containers is called "excess frames". We should probably make the
|
|
* names match.)
|
|
*/
|
|
|
|
/**
|
|
* Get the frames on the overflow list. Can return null if there are no
|
|
* overflow frames. The caller does NOT take ownership of the list; it's
|
|
* still owned by this frame. A non-null return value indicates that the
|
|
* list is nonempty.
|
|
*/
|
|
inline nsFrameList* GetOverflowFrames() const;
|
|
|
|
/**
|
|
* As GetOverflowFrames, but removes the overflow frames property. The
|
|
* caller is responsible for deleting nsFrameList and either passing
|
|
* ownership of the frames to someone else or destroying the frames.
|
|
* A non-null return value indicates that the list is nonempty. The
|
|
* recommended way to use this function it to assign its return value
|
|
* into an AutoFrameListPtr.
|
|
*/
|
|
inline nsFrameList* StealOverflowFrames();
|
|
|
|
/**
|
|
* Set the overflow list. aOverflowFrames must not be an empty list.
|
|
*/
|
|
void SetOverflowFrames(const nsFrameList& aOverflowFrames);
|
|
|
|
/**
|
|
* Destroy the overflow list, which must be empty.
|
|
*/
|
|
inline void DestroyOverflowList();
|
|
|
|
/**
|
|
* Moves any frames on both the prev-in-flow's overflow list and the
|
|
* receiver's overflow to the receiver's child list.
|
|
*
|
|
* Resets the overlist pointers to nullptr, and updates the receiver's child
|
|
* count and content mapping.
|
|
*
|
|
* @return true if any frames were moved and false otherwise
|
|
*/
|
|
bool MoveOverflowToChildList();
|
|
|
|
/**
|
|
* Basically same as MoveOverflowToChildList, except that this is for
|
|
* handling inline children where children of prev-in-flow can be
|
|
* pushed to overflow list even if a next-in-flow exists.
|
|
*
|
|
* @param aLineContainer the line container of the current frame.
|
|
*
|
|
* @return true if any frames were moved and false otherwise
|
|
*/
|
|
bool MoveInlineOverflowToChildList(nsIFrame* aLineContainer);
|
|
|
|
/**
|
|
* Push aFromChild and its next siblings to the overflow list.
|
|
*
|
|
* @param aFromChild the first child frame to push. It is disconnected
|
|
* from aPrevSibling
|
|
* @param aPrevSibling aFrameChild's previous sibling. Must not be null.
|
|
* It's an error to push a parent's first child frame.
|
|
*/
|
|
void PushChildrenToOverflow(nsIFrame* aFromChild, nsIFrame* aPrevSibling);
|
|
|
|
/**
|
|
* Same as above, except that this pushes frames to the next-in-flow
|
|
* frame and changes the geometric parent of the pushed frames when
|
|
* there is a next-in-flow frame.
|
|
*
|
|
* Updates the next-in-flow's child count. Does <b>not</b> update the
|
|
* pusher's child count.
|
|
*/
|
|
void PushChildren(nsIFrame* aFromChild, nsIFrame* aPrevSibling);
|
|
|
|
/**
|
|
* Reparent floats whose placeholders are inline descendants of aFrame from
|
|
* whatever block they're currently parented by to aOurBlock.
|
|
* @param aReparentSiblings if this is true, we follow aFrame's
|
|
* GetNextSibling chain reparenting them all
|
|
*/
|
|
static void ReparentFloatsForInlineChild(nsIFrame* aOurBlock,
|
|
nsIFrame* aFrame,
|
|
bool aReparentSiblings);
|
|
|
|
// ==========================================================================
|
|
/*
|
|
* Convenience methods for traversing continuations
|
|
*/
|
|
|
|
struct ContinuationTraversingState
|
|
{
|
|
nsContainerFrame* mNextInFlow;
|
|
explicit ContinuationTraversingState(nsContainerFrame* aFrame)
|
|
: mNextInFlow(static_cast<nsContainerFrame*>(aFrame->GetNextInFlow()))
|
|
{ }
|
|
};
|
|
|
|
/**
|
|
* Find the first frame that is a child of this frame's next-in-flows,
|
|
* considering both their principal child lists and overflow lists.
|
|
*/
|
|
nsIFrame* GetNextInFlowChild(ContinuationTraversingState& aState,
|
|
bool* aIsInOverflow = nullptr);
|
|
|
|
/**
|
|
* Remove the result of GetNextInFlowChild from its current parent and
|
|
* append it to this frame's principal child list.
|
|
*/
|
|
nsIFrame* PullNextInFlowChild(ContinuationTraversingState& aState);
|
|
|
|
// ==========================================================================
|
|
/*
|
|
* Convenience methods for nsFrameLists stored in the
|
|
* PresContext's proptable
|
|
*/
|
|
|
|
/**
|
|
* Get the PresContext-stored nsFrameList named aPropID for this frame.
|
|
* May return null.
|
|
*/
|
|
nsFrameList* GetPropTableFrames(FrameListPropertyDescriptor aProperty) const;
|
|
|
|
/**
|
|
* Remove and return the PresContext-stored nsFrameList named aPropID for
|
|
* this frame. May return null.
|
|
*/
|
|
nsFrameList* RemovePropTableFrames(FrameListPropertyDescriptor aProperty);
|
|
|
|
/**
|
|
* Set the PresContext-stored nsFrameList named aPropID for this frame
|
|
* to the given aFrameList, which must not be null.
|
|
*/
|
|
void SetPropTableFrames(nsFrameList* aFrameList,
|
|
FrameListPropertyDescriptor aProperty);
|
|
|
|
/**
|
|
* Safely destroy the frames on the nsFrameList stored on aProp for this
|
|
* frame then remove the property and delete the frame list.
|
|
* Nothing happens if the property doesn't exist.
|
|
*/
|
|
void SafelyDestroyFrameListProp(nsIFrame* aDestructRoot,
|
|
PostDestroyData& aPostDestroyData,
|
|
nsIPresShell* aPresShell,
|
|
FrameListPropertyDescriptor aProp);
|
|
|
|
// ==========================================================================
|
|
|
|
// Helper used by Progress and Meter frames. Returns true if the bar should
|
|
// be rendered vertically, based on writing-mode and -moz-orient properties.
|
|
bool ResolvedOrientationIsVertical();
|
|
|
|
// ==========================================================================
|
|
|
|
nsFrameList mFrames;
|
|
};
|
|
|
|
// ==========================================================================
|
|
/* The out-of-flow-related code below is for a hacky way of splitting
|
|
* absolutely-positioned frames. Basically what we do is split the frame
|
|
* in nsAbsoluteContainingBlock and pretend the continuation is an overflow
|
|
* container. This isn't an ideal solution, but it lets us print the content
|
|
* at least. See bug 154892.
|
|
*/
|
|
|
|
#define IS_TRUE_OVERFLOW_CONTAINER(frame) \
|
|
( (frame->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) \
|
|
&& !( (frame->GetStateBits() & NS_FRAME_OUT_OF_FLOW) && \
|
|
frame->IsAbsolutelyPositioned() ) )
|
|
//XXXfr This check isn't quite correct, because it doesn't handle cases
|
|
// where the out-of-flow has overflow.. but that's rare.
|
|
// We'll need to revisit the way abspos continuations are handled later
|
|
// for various reasons, this detail is one of them. See bug 154892
|
|
|
|
/**
|
|
* Helper class for tracking overflow container continuations during reflow.
|
|
*
|
|
* A frame is related to two sets of overflow containers: those that /are/
|
|
* its own children, and those that are /continuations/ of its children.
|
|
* This tracker walks through those continuations (the frame's NIF's children)
|
|
* and their prev-in-flows (a subset of the frame's normal and overflow
|
|
* container children) in parallel. It allows the reflower to synchronously
|
|
* walk its overflow continuations while it loops through and reflows its
|
|
* children. This makes it possible to insert new continuations at the correct
|
|
* place in the overflow containers list.
|
|
*
|
|
* The reflower is expected to loop through its children in the same order it
|
|
* looped through them the last time (if there was a last time).
|
|
* For each child, the reflower should either
|
|
* - call Skip for the child if was not reflowed in this pass
|
|
* - call Insert for the overflow continuation if the child was reflowed
|
|
* but has incomplete overflow
|
|
* - call Finished for the child if it was reflowed in this pass but
|
|
* is either complete or has a normal next-in-flow. This call can
|
|
* be skipped if the child did not previously have an overflow
|
|
* continuation.
|
|
*/
|
|
class nsOverflowContinuationTracker {
|
|
public:
|
|
/**
|
|
* Initializes an nsOverflowContinuationTracker to help track overflow
|
|
* continuations of aFrame's children. Typically invoked on 'this'.
|
|
*
|
|
* aWalkOOFFrames determines whether the walker skips out-of-flow frames
|
|
* or skips non-out-of-flow frames.
|
|
*
|
|
* Don't set aSkipOverflowContainerChildren to false unless you plan
|
|
* to walk your own overflow container children. (Usually they are handled
|
|
* by calling ReflowOverflowContainerChildren.) aWalkOOFFrames is ignored
|
|
* if aSkipOverflowContainerChildren is false.
|
|
*/
|
|
nsOverflowContinuationTracker(nsContainerFrame* aFrame,
|
|
bool aWalkOOFFrames,
|
|
bool aSkipOverflowContainerChildren = true);
|
|
/**
|
|
* This function adds an overflow continuation to our running list and
|
|
* sets its NS_FRAME_IS_OVERFLOW_CONTAINER flag.
|
|
*
|
|
* aReflowStatus should preferably be specific to the recently-reflowed
|
|
* child and not influenced by any of its siblings' statuses. This
|
|
* function sets the NS_FRAME_IS_DIRTY bit on aOverflowCont if it needs
|
|
* to be reflowed. (Its need for reflow depends on changes to its
|
|
* prev-in-flow, not to its parent--for whom it is invisible, reflow-wise.)
|
|
*
|
|
* The caller MUST disconnect the frame from its parent's child list
|
|
* if it was not previously an NS_FRAME_IS_OVERFLOW_CONTAINER (because
|
|
* StealFrame is much more inefficient than disconnecting in place
|
|
* during Reflow, which the caller is able to do but we are not).
|
|
*
|
|
* The caller MUST NOT disconnect the frame from its parent's
|
|
* child list if it is already an NS_FRAME_IS_OVERFLOW_CONTAINER.
|
|
* (In this case we will disconnect and reconnect it ourselves.)
|
|
*/
|
|
nsresult Insert(nsIFrame* aOverflowCont,
|
|
nsReflowStatus& aReflowStatus);
|
|
/**
|
|
* Begin/EndFinish() must be called for each child that is reflowed
|
|
* but no longer has an overflow continuation. (It may be called for
|
|
* other children, but in that case has no effect.) It increments our
|
|
* walker and makes sure we drop any dangling pointers to its
|
|
* next-in-flow. This function MUST be called before stealing or
|
|
* deleting aChild's next-in-flow.
|
|
* The AutoFinish helper object does that for you. Use it like so:
|
|
* if (kidNextInFlow) {
|
|
* nsOverflowContinuationTracker::AutoFinish fini(tracker, kid);
|
|
* ... DeleteNextInFlowChild/StealFrame(kidNextInFlow) here ...
|
|
* }
|
|
*/
|
|
class MOZ_RAII AutoFinish {
|
|
public:
|
|
AutoFinish(nsOverflowContinuationTracker* aTracker, nsIFrame* aChild)
|
|
: mTracker(aTracker), mChild(aChild)
|
|
{
|
|
if (mTracker) mTracker->BeginFinish(mChild);
|
|
}
|
|
~AutoFinish()
|
|
{
|
|
if (mTracker) mTracker->EndFinish(mChild);
|
|
}
|
|
private:
|
|
nsOverflowContinuationTracker* mTracker;
|
|
nsIFrame* mChild;
|
|
};
|
|
|
|
/**
|
|
* This function should be called for each child that isn't reflowed.
|
|
* It increments our walker and sets the mOverflowIncomplete
|
|
* reflow flag if it encounters an overflow continuation so that our
|
|
* next-in-flow doesn't get prematurely deleted. It MUST be called on
|
|
* each unreflowed child that has an overflow container continuation;
|
|
* it MAY be called on other children, but it isn't necessary (doesn't
|
|
* do anything).
|
|
*/
|
|
void Skip(nsIFrame* aChild, nsReflowStatus& aReflowStatus)
|
|
{
|
|
NS_PRECONDITION(aChild, "null ptr");
|
|
if (aChild == mSentry) {
|
|
StepForward();
|
|
if (aReflowStatus.IsComplete()) {
|
|
aReflowStatus.SetOverflowIncomplete();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
|
|
/**
|
|
* @see class AutoFinish
|
|
*/
|
|
void BeginFinish(nsIFrame* aChild);
|
|
void EndFinish(nsIFrame* aChild);
|
|
|
|
void SetupOverflowContList();
|
|
void SetUpListWalker();
|
|
void StepForward();
|
|
|
|
/* We hold a pointer to either the next-in-flow's overflow containers list
|
|
or, if that doesn't exist, our frame's excess overflow containers list.
|
|
We need to make sure that we drop that pointer if the list becomes
|
|
empty and is deleted elsewhere. */
|
|
nsFrameList* mOverflowContList;
|
|
/* We hold a pointer to the most recently-reflowed child that has an
|
|
overflow container next-in-flow. We do this because it's a known
|
|
good point; this pointer won't be deleted on us. We can use it to
|
|
recover our place in the list. */
|
|
nsIFrame* mPrevOverflowCont;
|
|
/* This is a pointer to the next overflow container's prev-in-flow, which
|
|
is (or should be) a child of our frame. When we hit this, we will need
|
|
to increment this walker to the next overflow container. */
|
|
nsIFrame* mSentry;
|
|
/* Parent of all frames in mOverflowContList. If our mOverflowContList
|
|
is an excessOverflowContainersProperty, or null, then this is our frame
|
|
(the frame that was passed in to our constructor). Otherwise this is
|
|
that frame's next-in-flow, and our mOverflowContList is mParent's
|
|
overflowContainersProperty */
|
|
nsContainerFrame* mParent;
|
|
/* Tells SetUpListWalker whether or not to walk us past any continuations
|
|
of overflow containers. aWalkOOFFrames is ignored when this is false. */
|
|
bool mSkipOverflowContainerChildren;
|
|
/* Tells us whether to pay attention to OOF frames or non-OOF frames */
|
|
bool mWalkOOFFrames;
|
|
};
|
|
|
|
inline
|
|
nsFrameList*
|
|
nsContainerFrame::GetOverflowFrames() const
|
|
{
|
|
nsFrameList* list = GetProperty(OverflowProperty());
|
|
NS_ASSERTION(!list || !list->IsEmpty(), "Unexpected empty overflow list");
|
|
return list;
|
|
}
|
|
|
|
inline
|
|
nsFrameList*
|
|
nsContainerFrame::StealOverflowFrames()
|
|
{
|
|
nsFrameList* list = RemoveProperty(OverflowProperty());
|
|
NS_ASSERTION(!list || !list->IsEmpty(), "Unexpected empty overflow list");
|
|
return list;
|
|
}
|
|
|
|
inline void
|
|
nsContainerFrame::DestroyOverflowList()
|
|
{
|
|
nsFrameList* list = RemovePropTableFrames(OverflowProperty());
|
|
MOZ_ASSERT(list && list->IsEmpty());
|
|
list->Delete(PresShell());
|
|
}
|
|
|
|
#endif /* nsContainerFrame_h___ */
|