зеркало из https://github.com/mozilla/gecko-dev.git
451 строка
13 KiB
C
451 строка
13 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/*
|
|
* Diffie-Hellman parameter generation, key generation, and secret derivation.
|
|
* KEA secret generation and verification.
|
|
*/
|
|
#ifdef FREEBL_NO_DEPEND
|
|
#include "stubs.h"
|
|
#endif
|
|
|
|
#include "prerr.h"
|
|
#include "secerr.h"
|
|
|
|
#include "blapi.h"
|
|
#include "blapii.h"
|
|
#include "secitem.h"
|
|
#include "mpi.h"
|
|
#include "secmpi.h"
|
|
|
|
#define KEA_DERIVED_SECRET_LEN 128
|
|
|
|
/* Lengths are in bytes. */
|
|
static unsigned int
|
|
dh_GetSecretKeyLen(unsigned int primeLen)
|
|
{
|
|
/* Based on Table 2 in NIST SP 800-57. */
|
|
if (primeLen >= 1920) { /* 15360 bits */
|
|
return 64; /* 512 bits */
|
|
}
|
|
if (primeLen >= 960) { /* 7680 bits */
|
|
return 48; /* 384 bits */
|
|
}
|
|
if (primeLen >= 384) { /* 3072 bits */
|
|
return 32; /* 256 bits */
|
|
}
|
|
if (primeLen >= 256) { /* 2048 bits */
|
|
return 28; /* 224 bits */
|
|
}
|
|
return 20; /* 160 bits */
|
|
}
|
|
|
|
SECStatus
|
|
DH_GenParam(int primeLen, DHParams **params)
|
|
{
|
|
PLArenaPool *arena;
|
|
DHParams *dhparams;
|
|
unsigned char *ab = NULL;
|
|
mp_int p, q, a, h, psub1, test;
|
|
mp_err err = MP_OKAY;
|
|
SECStatus rv = SECSuccess;
|
|
if (!params || primeLen < 0) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
|
|
if (!arena) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
dhparams = (DHParams *)PORT_ArenaZAlloc(arena, sizeof(DHParams));
|
|
if (!dhparams) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
PORT_FreeArena(arena, PR_TRUE);
|
|
return SECFailure;
|
|
}
|
|
dhparams->arena = arena;
|
|
MP_DIGITS(&p) = 0;
|
|
MP_DIGITS(&q) = 0;
|
|
MP_DIGITS(&a) = 0;
|
|
MP_DIGITS(&h) = 0;
|
|
MP_DIGITS(&psub1) = 0;
|
|
MP_DIGITS(&test) = 0;
|
|
CHECK_MPI_OK(mp_init(&p));
|
|
CHECK_MPI_OK(mp_init(&q));
|
|
CHECK_MPI_OK(mp_init(&a));
|
|
CHECK_MPI_OK(mp_init(&h));
|
|
CHECK_MPI_OK(mp_init(&psub1));
|
|
CHECK_MPI_OK(mp_init(&test));
|
|
/* generate prime with MPI, uses Miller-Rabin to generate strong prime. */
|
|
CHECK_SEC_OK(generate_prime(&p, primeLen));
|
|
/* construct Sophie-Germain prime q = (p-1)/2. */
|
|
CHECK_MPI_OK(mp_sub_d(&p, 1, &psub1));
|
|
CHECK_MPI_OK(mp_div_2(&psub1, &q));
|
|
/* construct a generator from the prime. */
|
|
ab = PORT_Alloc(primeLen);
|
|
if (!ab) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
rv = SECFailure;
|
|
goto cleanup;
|
|
}
|
|
/* generate a candidate number a in p's field */
|
|
CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(ab, primeLen));
|
|
CHECK_MPI_OK(mp_read_unsigned_octets(&a, ab, primeLen));
|
|
/* force a < p (note that quot(a/p) <= 1) */
|
|
if (mp_cmp(&a, &p) > 0)
|
|
CHECK_MPI_OK(mp_sub(&a, &p, &a));
|
|
do {
|
|
/* check that a is in the range [2..p-1] */
|
|
if (mp_cmp_d(&a, 2) < 0 || mp_cmp(&a, &psub1) >= 0) {
|
|
/* a is outside of the allowed range. Set a=3 and keep going. */
|
|
mp_set(&a, 3);
|
|
}
|
|
/* if a**q mod p != 1 then a is a generator */
|
|
CHECK_MPI_OK(mp_exptmod(&a, &q, &p, &test));
|
|
if (mp_cmp_d(&test, 1) != 0)
|
|
break;
|
|
/* increment the candidate and try again. */
|
|
CHECK_MPI_OK(mp_add_d(&a, 1, &a));
|
|
} while (PR_TRUE);
|
|
MPINT_TO_SECITEM(&p, &dhparams->prime, arena);
|
|
MPINT_TO_SECITEM(&a, &dhparams->base, arena);
|
|
*params = dhparams;
|
|
cleanup:
|
|
mp_clear(&p);
|
|
mp_clear(&q);
|
|
mp_clear(&a);
|
|
mp_clear(&h);
|
|
mp_clear(&psub1);
|
|
mp_clear(&test);
|
|
if (ab) {
|
|
PORT_ZFree(ab, primeLen);
|
|
}
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
rv = SECFailure;
|
|
}
|
|
if (rv != SECSuccess) {
|
|
PORT_FreeArena(arena, PR_TRUE);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
DH_NewKey(DHParams *params, DHPrivateKey **privKey)
|
|
{
|
|
PLArenaPool *arena;
|
|
DHPrivateKey *key;
|
|
mp_int g, xa, p, Ya;
|
|
mp_err err = MP_OKAY;
|
|
SECStatus rv = SECSuccess;
|
|
if (!params || !privKey) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
|
|
if (!arena) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
key = (DHPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(DHPrivateKey));
|
|
if (!key) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
PORT_FreeArena(arena, PR_TRUE);
|
|
return SECFailure;
|
|
}
|
|
key->arena = arena;
|
|
MP_DIGITS(&g) = 0;
|
|
MP_DIGITS(&xa) = 0;
|
|
MP_DIGITS(&p) = 0;
|
|
MP_DIGITS(&Ya) = 0;
|
|
CHECK_MPI_OK(mp_init(&g));
|
|
CHECK_MPI_OK(mp_init(&xa));
|
|
CHECK_MPI_OK(mp_init(&p));
|
|
CHECK_MPI_OK(mp_init(&Ya));
|
|
/* Set private key's p */
|
|
CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->prime, ¶ms->prime));
|
|
SECITEM_TO_MPINT(key->prime, &p);
|
|
/* Set private key's g */
|
|
CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->base, ¶ms->base));
|
|
SECITEM_TO_MPINT(key->base, &g);
|
|
/* Generate private key xa */
|
|
SECITEM_AllocItem(arena, &key->privateValue,
|
|
dh_GetSecretKeyLen(params->prime.len));
|
|
CHECK_SEC_OK(RNG_GenerateGlobalRandomBytes(key->privateValue.data,
|
|
key->privateValue.len));
|
|
SECITEM_TO_MPINT(key->privateValue, &xa);
|
|
/* xa < p */
|
|
CHECK_MPI_OK(mp_mod(&xa, &p, &xa));
|
|
/* Compute public key Ya = g ** xa mod p */
|
|
CHECK_MPI_OK(mp_exptmod(&g, &xa, &p, &Ya));
|
|
MPINT_TO_SECITEM(&Ya, &key->publicValue, key->arena);
|
|
*privKey = key;
|
|
cleanup:
|
|
mp_clear(&g);
|
|
mp_clear(&xa);
|
|
mp_clear(&p);
|
|
mp_clear(&Ya);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
rv = SECFailure;
|
|
}
|
|
if (rv) {
|
|
*privKey = NULL;
|
|
PORT_FreeArena(arena, PR_TRUE);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
DH_Derive(SECItem *publicValue,
|
|
SECItem *prime,
|
|
SECItem *privateValue,
|
|
SECItem *derivedSecret,
|
|
unsigned int outBytes)
|
|
{
|
|
mp_int p, Xa, Yb, ZZ, psub1;
|
|
mp_err err = MP_OKAY;
|
|
unsigned int len = 0;
|
|
unsigned int nb;
|
|
unsigned char *secret = NULL;
|
|
if (!publicValue || !prime || !privateValue || !derivedSecret) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
memset(derivedSecret, 0, sizeof *derivedSecret);
|
|
MP_DIGITS(&p) = 0;
|
|
MP_DIGITS(&Xa) = 0;
|
|
MP_DIGITS(&Yb) = 0;
|
|
MP_DIGITS(&ZZ) = 0;
|
|
MP_DIGITS(&psub1) = 0;
|
|
CHECK_MPI_OK(mp_init(&p));
|
|
CHECK_MPI_OK(mp_init(&Xa));
|
|
CHECK_MPI_OK(mp_init(&Yb));
|
|
CHECK_MPI_OK(mp_init(&ZZ));
|
|
CHECK_MPI_OK(mp_init(&psub1));
|
|
SECITEM_TO_MPINT(*publicValue, &Yb);
|
|
SECITEM_TO_MPINT(*privateValue, &Xa);
|
|
SECITEM_TO_MPINT(*prime, &p);
|
|
CHECK_MPI_OK(mp_sub_d(&p, 1, &psub1));
|
|
|
|
/* We assume that the modulus, p, is a safe prime. That is, p = 2q+1 where
|
|
* q is also a prime. Thus the orders of the subgroups are factors of 2q:
|
|
* namely 1, 2, q and 2q.
|
|
*
|
|
* We check that the peer's public value isn't zero (which isn't in the
|
|
* group), one (subgroup of order one) or p-1 (subgroup of order 2). We
|
|
* also check that the public value is less than p, to avoid being fooled
|
|
* by values like p+1 or 2*p-1.
|
|
*
|
|
* Thus we must be operating in the subgroup of size q or 2q. */
|
|
if (mp_cmp_d(&Yb, 1) <= 0 ||
|
|
mp_cmp(&Yb, &psub1) >= 0) {
|
|
err = MP_BADARG;
|
|
goto cleanup;
|
|
}
|
|
|
|
/* ZZ = (Yb)**Xa mod p */
|
|
CHECK_MPI_OK(mp_exptmod(&Yb, &Xa, &p, &ZZ));
|
|
/* number of bytes in the derived secret */
|
|
len = mp_unsigned_octet_size(&ZZ);
|
|
if (len <= 0) {
|
|
err = MP_BADARG;
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* We check to make sure that ZZ is not equal to 1 or -1 mod p.
|
|
* This helps guard against small subgroup attacks, since an attacker
|
|
* using a subgroup of size N will produce 1 or -1 with probability 1/N.
|
|
* When the protocol is executed within a properly large subgroup, the
|
|
* probability of this result will be negligibly small. For example,
|
|
* with a strong prime of the form 2p+1, the probability will be 1/p.
|
|
*
|
|
* We return MP_BADARG because this is probably the result of a bad
|
|
* public value or a bad prime having been provided.
|
|
*/
|
|
if (mp_cmp_d(&ZZ, 1) == 0 ||
|
|
mp_cmp(&ZZ, &psub1) == 0) {
|
|
err = MP_BADARG;
|
|
goto cleanup;
|
|
}
|
|
|
|
/* allocate a buffer which can hold the entire derived secret. */
|
|
secret = PORT_Alloc(len);
|
|
if (secret == NULL) {
|
|
err = MP_MEM;
|
|
goto cleanup;
|
|
}
|
|
/* grab the derived secret */
|
|
err = mp_to_unsigned_octets(&ZZ, secret, len);
|
|
if (err >= 0)
|
|
err = MP_OKAY;
|
|
/*
|
|
** if outBytes is 0 take all of the bytes from the derived secret.
|
|
** if outBytes is not 0 take exactly outBytes from the derived secret, zero
|
|
** pad at the beginning if necessary, and truncate beginning bytes
|
|
** if necessary.
|
|
*/
|
|
if (outBytes > 0)
|
|
nb = outBytes;
|
|
else
|
|
nb = len;
|
|
if (SECITEM_AllocItem(NULL, derivedSecret, nb) == NULL) {
|
|
err = MP_MEM;
|
|
goto cleanup;
|
|
}
|
|
if (len < nb) {
|
|
unsigned int offset = nb - len;
|
|
memset(derivedSecret->data, 0, offset);
|
|
memcpy(derivedSecret->data + offset, secret, len);
|
|
} else {
|
|
memcpy(derivedSecret->data, secret + len - nb, nb);
|
|
}
|
|
cleanup:
|
|
mp_clear(&p);
|
|
mp_clear(&Xa);
|
|
mp_clear(&Yb);
|
|
mp_clear(&ZZ);
|
|
mp_clear(&psub1);
|
|
if (secret) {
|
|
/* free the buffer allocated for the full secret. */
|
|
PORT_ZFree(secret, len);
|
|
}
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
if (derivedSecret->data)
|
|
PORT_ZFree(derivedSecret->data, derivedSecret->len);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
KEA_Derive(SECItem *prime,
|
|
SECItem *public1,
|
|
SECItem *public2,
|
|
SECItem *private1,
|
|
SECItem *private2,
|
|
SECItem *derivedSecret)
|
|
{
|
|
mp_int p, Y, R, r, x, t, u, w;
|
|
mp_err err;
|
|
unsigned char *secret = NULL;
|
|
unsigned int len = 0, offset;
|
|
if (!prime || !public1 || !public2 || !private1 || !private2 ||
|
|
!derivedSecret) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
memset(derivedSecret, 0, sizeof *derivedSecret);
|
|
MP_DIGITS(&p) = 0;
|
|
MP_DIGITS(&Y) = 0;
|
|
MP_DIGITS(&R) = 0;
|
|
MP_DIGITS(&r) = 0;
|
|
MP_DIGITS(&x) = 0;
|
|
MP_DIGITS(&t) = 0;
|
|
MP_DIGITS(&u) = 0;
|
|
MP_DIGITS(&w) = 0;
|
|
CHECK_MPI_OK(mp_init(&p));
|
|
CHECK_MPI_OK(mp_init(&Y));
|
|
CHECK_MPI_OK(mp_init(&R));
|
|
CHECK_MPI_OK(mp_init(&r));
|
|
CHECK_MPI_OK(mp_init(&x));
|
|
CHECK_MPI_OK(mp_init(&t));
|
|
CHECK_MPI_OK(mp_init(&u));
|
|
CHECK_MPI_OK(mp_init(&w));
|
|
SECITEM_TO_MPINT(*prime, &p);
|
|
SECITEM_TO_MPINT(*public1, &Y);
|
|
SECITEM_TO_MPINT(*public2, &R);
|
|
SECITEM_TO_MPINT(*private1, &r);
|
|
SECITEM_TO_MPINT(*private2, &x);
|
|
/* t = DH(Y, r, p) = Y ** r mod p */
|
|
CHECK_MPI_OK(mp_exptmod(&Y, &r, &p, &t));
|
|
/* u = DH(R, x, p) = R ** x mod p */
|
|
CHECK_MPI_OK(mp_exptmod(&R, &x, &p, &u));
|
|
/* w = (t + u) mod p */
|
|
CHECK_MPI_OK(mp_addmod(&t, &u, &p, &w));
|
|
/* allocate a buffer for the full derived secret */
|
|
len = mp_unsigned_octet_size(&w);
|
|
secret = PORT_Alloc(len);
|
|
if (secret == NULL) {
|
|
err = MP_MEM;
|
|
goto cleanup;
|
|
}
|
|
/* grab the secret */
|
|
err = mp_to_unsigned_octets(&w, secret, len);
|
|
if (err > 0)
|
|
err = MP_OKAY;
|
|
/* allocate output buffer */
|
|
if (SECITEM_AllocItem(NULL, derivedSecret, KEA_DERIVED_SECRET_LEN) == NULL) {
|
|
err = MP_MEM;
|
|
goto cleanup;
|
|
}
|
|
memset(derivedSecret->data, 0, derivedSecret->len);
|
|
/* copy in the 128 lsb of the secret */
|
|
if (len >= KEA_DERIVED_SECRET_LEN) {
|
|
memcpy(derivedSecret->data, secret + (len - KEA_DERIVED_SECRET_LEN),
|
|
KEA_DERIVED_SECRET_LEN);
|
|
} else {
|
|
offset = KEA_DERIVED_SECRET_LEN - len;
|
|
memcpy(derivedSecret->data + offset, secret, len);
|
|
}
|
|
cleanup:
|
|
mp_clear(&p);
|
|
mp_clear(&Y);
|
|
mp_clear(&R);
|
|
mp_clear(&r);
|
|
mp_clear(&x);
|
|
mp_clear(&t);
|
|
mp_clear(&u);
|
|
mp_clear(&w);
|
|
if (secret)
|
|
PORT_ZFree(secret, len);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
if (derivedSecret->data)
|
|
PORT_ZFree(derivedSecret->data, derivedSecret->len);
|
|
return SECFailure;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
PRBool
|
|
KEA_Verify(SECItem *Y, SECItem *prime, SECItem *subPrime)
|
|
{
|
|
mp_int p, q, y, r;
|
|
mp_err err;
|
|
int cmp = 1; /* default is false */
|
|
if (!Y || !prime || !subPrime) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
MP_DIGITS(&p) = 0;
|
|
MP_DIGITS(&q) = 0;
|
|
MP_DIGITS(&y) = 0;
|
|
MP_DIGITS(&r) = 0;
|
|
CHECK_MPI_OK(mp_init(&p));
|
|
CHECK_MPI_OK(mp_init(&q));
|
|
CHECK_MPI_OK(mp_init(&y));
|
|
CHECK_MPI_OK(mp_init(&r));
|
|
SECITEM_TO_MPINT(*prime, &p);
|
|
SECITEM_TO_MPINT(*subPrime, &q);
|
|
SECITEM_TO_MPINT(*Y, &y);
|
|
/* compute r = y**q mod p */
|
|
CHECK_MPI_OK(mp_exptmod(&y, &q, &p, &r));
|
|
/* compare to 1 */
|
|
cmp = mp_cmp_d(&r, 1);
|
|
cleanup:
|
|
mp_clear(&p);
|
|
mp_clear(&q);
|
|
mp_clear(&y);
|
|
mp_clear(&r);
|
|
if (err) {
|
|
MP_TO_SEC_ERROR(err);
|
|
return PR_FALSE;
|
|
}
|
|
return (cmp == 0) ? PR_TRUE : PR_FALSE;
|
|
}
|