gecko-dev/gfx/layers/opengl/OGLShaderProgram.cpp

1017 строки
36 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "OGLShaderProgram.h"
#include <stdint.h> // for uint32_t
#include <sstream> // for ostringstream
#include "gfxEnv.h"
#include "gfxRect.h" // for gfxRect
#include "gfxUtils.h"
#include "mozilla/DebugOnly.h" // for DebugOnly
#include "mozilla/layers/Compositor.h" // for BlendOpIsMixBlendMode
#include "nsAString.h"
#include "nsString.h" // for nsAutoCString
#include "Layers.h"
#include "GLContext.h"
namespace mozilla {
namespace layers {
using namespace std;
#define GAUSSIAN_KERNEL_HALF_WIDTH 11
#define GAUSSIAN_KERNEL_STEP 0.2
void
AddUniforms(ProgramProfileOGL& aProfile)
{
// This needs to be kept in sync with the KnownUniformName enum
static const char *sKnownUniformNames[] = {
"uLayerTransform",
"uLayerTransformInverse",
"uMaskTransform",
"uBackdropTransform",
"uLayerRects",
"uMatrixProj",
"uTextureTransform",
"uTextureRects",
"uRenderTargetOffset",
"uLayerOpacity",
"uTexture",
"uYTexture",
"uCbTexture",
"uCrTexture",
"uBlackTexture",
"uWhiteTexture",
"uMaskTexture",
"uBackdropTexture",
"uRenderColor",
"uTexCoordMultiplier",
"uCbCrTexCoordMultiplier",
"uMaskCoordMultiplier",
"uTexturePass2",
"uColorMatrix",
"uColorMatrixVector",
"uBlurRadius",
"uBlurOffset",
"uBlurAlpha",
"uBlurGaussianKernel",
"uSSEdges",
"uViewportSize",
"uVisibleCenter",
"uYuvColorMatrix",
nullptr
};
for (int i = 0; sKnownUniformNames[i] != nullptr; ++i) {
aProfile.mUniforms[i].mNameString = sKnownUniformNames[i];
aProfile.mUniforms[i].mName = (KnownUniform::KnownUniformName) i;
}
}
void
ShaderConfigOGL::SetRenderColor(bool aEnabled)
{
SetFeature(ENABLE_RENDER_COLOR, aEnabled);
}
void
ShaderConfigOGL::SetTextureTarget(GLenum aTarget)
{
SetFeature(ENABLE_TEXTURE_EXTERNAL | ENABLE_TEXTURE_RECT, false);
switch (aTarget) {
case LOCAL_GL_TEXTURE_EXTERNAL:
SetFeature(ENABLE_TEXTURE_EXTERNAL, true);
break;
case LOCAL_GL_TEXTURE_RECTANGLE_ARB:
SetFeature(ENABLE_TEXTURE_RECT, true);
break;
}
}
void
ShaderConfigOGL::SetMaskTextureTarget(GLenum aTarget)
{
if (aTarget == LOCAL_GL_TEXTURE_RECTANGLE_ARB) {
SetFeature(ENABLE_MASK_TEXTURE_RECT, true);
} else {
MOZ_ASSERT(aTarget == LOCAL_GL_TEXTURE_2D);
SetFeature(ENABLE_MASK_TEXTURE_RECT, false);
}
}
void
ShaderConfigOGL::SetRBSwap(bool aEnabled)
{
SetFeature(ENABLE_TEXTURE_RB_SWAP, aEnabled);
}
void
ShaderConfigOGL::SetNoAlpha(bool aEnabled)
{
SetFeature(ENABLE_TEXTURE_NO_ALPHA, aEnabled);
}
void
ShaderConfigOGL::SetOpacity(bool aEnabled)
{
SetFeature(ENABLE_OPACITY, aEnabled);
}
void
ShaderConfigOGL::SetYCbCr(bool aEnabled)
{
SetFeature(ENABLE_TEXTURE_YCBCR, aEnabled);
MOZ_ASSERT(!(mFeatures & ENABLE_TEXTURE_NV12));
}
void
ShaderConfigOGL::SetColorMultiplier(uint32_t aMultiplier)
{
MOZ_ASSERT(mFeatures & ENABLE_TEXTURE_YCBCR, "Multiplier only supported with YCbCr!");
mMultiplier = aMultiplier;
}
void
ShaderConfigOGL::SetNV12(bool aEnabled)
{
SetFeature(ENABLE_TEXTURE_NV12, aEnabled);
MOZ_ASSERT(!(mFeatures & ENABLE_TEXTURE_YCBCR));
}
void
ShaderConfigOGL::SetComponentAlpha(bool aEnabled)
{
SetFeature(ENABLE_TEXTURE_COMPONENT_ALPHA, aEnabled);
}
void
ShaderConfigOGL::SetColorMatrix(bool aEnabled)
{
SetFeature(ENABLE_COLOR_MATRIX, aEnabled);
}
void
ShaderConfigOGL::SetBlur(bool aEnabled)
{
SetFeature(ENABLE_BLUR, aEnabled);
}
void
ShaderConfigOGL::SetMask(bool aEnabled)
{
SetFeature(ENABLE_MASK, aEnabled);
}
void
ShaderConfigOGL::SetNoPremultipliedAlpha()
{
SetFeature(ENABLE_NO_PREMUL_ALPHA, true);
}
void
ShaderConfigOGL::SetDEAA(bool aEnabled)
{
SetFeature(ENABLE_DEAA, aEnabled);
}
void
ShaderConfigOGL::SetCompositionOp(gfx::CompositionOp aOp)
{
mCompositionOp = aOp;
}
void
ShaderConfigOGL::SetDynamicGeometry(bool aEnabled)
{
SetFeature(ENABLE_DYNAMIC_GEOMETRY, aEnabled);
}
/* static */ ProgramProfileOGL
ProgramProfileOGL::GetProfileFor(ShaderConfigOGL aConfig)
{
ProgramProfileOGL result;
ostringstream fs, vs;
AddUniforms(result);
gfx::CompositionOp blendOp = aConfig.mCompositionOp;
vs << "#ifdef GL_ES" << endl;
vs << "#define EDGE_PRECISION mediump" << endl;
vs << "#else" << endl;
vs << "#define EDGE_PRECISION" << endl;
vs << "#endif" << endl;
vs << "uniform mat4 uMatrixProj;" << endl;
vs << "uniform vec4 uLayerRects[4];" << endl;
vs << "uniform mat4 uLayerTransform;" << endl;
if (aConfig.mFeatures & ENABLE_DEAA) {
vs << "uniform mat4 uLayerTransformInverse;" << endl;
vs << "uniform EDGE_PRECISION vec3 uSSEdges[4];" << endl;
vs << "uniform vec2 uVisibleCenter;" << endl;
vs << "uniform vec2 uViewportSize;" << endl;
}
vs << "uniform vec2 uRenderTargetOffset;" << endl;
if (!(aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY)) {
vs << "attribute vec4 aCoord;" << endl;
} else {
vs << "attribute vec2 aCoord;" << endl;
}
result.mAttributes.AppendElement(Pair<nsCString, GLuint> {"aCoord", 0});
if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
vs << "uniform mat4 uTextureTransform;" << endl;
vs << "uniform vec4 uTextureRects[4];" << endl;
vs << "varying vec2 vTexCoord;" << endl;
if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) {
vs << "attribute vec2 aTexCoord;" << endl;
result.mAttributes.AppendElement(Pair<nsCString, GLuint> {"aTexCoord", 1});
}
}
if (BlendOpIsMixBlendMode(blendOp)) {
vs << "uniform mat4 uBackdropTransform;" << endl;
vs << "varying vec2 vBackdropCoord;" << endl;
}
if (aConfig.mFeatures & ENABLE_MASK) {
vs << "uniform mat4 uMaskTransform;" << endl;
vs << "varying vec3 vMaskCoord;" << endl;
}
vs << "void main() {" << endl;
if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) {
vs << " vec4 finalPosition = vec4(aCoord.xy, 0.0, 1.0);" << endl;
} else {
vs << " int vertexID = int(aCoord.w);" << endl;
vs << " vec4 layerRect = uLayerRects[vertexID];" << endl;
vs << " vec4 finalPosition = vec4(aCoord.xy * layerRect.zw + layerRect.xy, 0.0, 1.0);" << endl;
}
vs << " finalPosition = uLayerTransform * finalPosition;" << endl;
if (aConfig.mFeatures & ENABLE_DEAA) {
// XXX kip - The DEAA shader could be made simpler if we switch to
// using dynamic vertex buffers instead of sending everything
// in through uniforms. This would enable passing information
// about how to dilate each vertex explicitly and eliminate the
// need to extrapolate this with the sub-pixel coverage
// calculation in the vertex shader.
// Calculate the screen space position of this vertex, in screen pixels
vs << " vec4 ssPos = finalPosition;" << endl;
vs << " ssPos.xy -= uRenderTargetOffset * finalPosition.w;" << endl;
vs << " ssPos = uMatrixProj * ssPos;" << endl;
vs << " ssPos.xy = ((ssPos.xy/ssPos.w)*0.5+0.5)*uViewportSize;" << endl;
if (aConfig.mFeatures & ENABLE_MASK ||
!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
vs << " vec4 coordAdjusted;" << endl;
vs << " coordAdjusted.xy = aCoord.xy;" << endl;
}
// It is necessary to dilate edges away from uVisibleCenter to ensure that
// fragments with less than 50% sub-pixel coverage will be shaded.
// This offset is applied when the sub-pixel coverage of the vertex is
// less than 100%. Expanding by 0.5 pixels in screen space is sufficient
// to include these pixels.
vs << " if (dot(uSSEdges[0], vec3(ssPos.xy, 1.0)) < 1.5 ||" << endl;
vs << " dot(uSSEdges[1], vec3(ssPos.xy, 1.0)) < 1.5 ||" << endl;
vs << " dot(uSSEdges[2], vec3(ssPos.xy, 1.0)) < 1.5 ||" << endl;
vs << " dot(uSSEdges[3], vec3(ssPos.xy, 1.0)) < 1.5) {" << endl;
// If the shader reaches this branch, then this vertex is on the edge of
// the layer's visible rect and should be dilated away from the center of
// the visible rect. We don't want to hit this for inner facing
// edges between tiles, as the pixels may be covered twice without clipping
// against uSSEdges. If all edges were dilated, it would result in
// artifacts visible within semi-transparent layers with multiple tiles.
vs << " vec4 visibleCenter = uLayerTransform * vec4(uVisibleCenter, 0.0, 1.0);" << endl;
vs << " vec2 dilateDir = finalPosition.xy / finalPosition.w - visibleCenter.xy / visibleCenter.w;" << endl;
vs << " vec2 offset = sign(dilateDir) * 0.5;" << endl;
vs << " finalPosition.xy += offset * finalPosition.w;" << endl;
if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
// We must adjust the texture coordinates to compensate for the dilation
vs << " coordAdjusted = uLayerTransformInverse * finalPosition;" << endl;
vs << " coordAdjusted /= coordAdjusted.w;" << endl;
if (!(aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY)) {
vs << " coordAdjusted.xy -= layerRect.xy;" << endl;
vs << " coordAdjusted.xy /= layerRect.zw;" << endl;
}
}
vs << " }" << endl;
if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) {
vs << " vTexCoord = (uTextureTransform * vec4(aTexCoord, 0.0, 1.0)).xy;" << endl;
} else {
vs << " vec4 textureRect = uTextureRects[vertexID];" << endl;
vs << " vec2 texCoord = coordAdjusted.xy * textureRect.zw + textureRect.xy;" << endl;
vs << " vTexCoord = (uTextureTransform * vec4(texCoord, 0.0, 1.0)).xy;" << endl;
}
}
} else if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) {
vs << " vTexCoord = (uTextureTransform * vec4(aTexCoord, 0.0, 1.0)).xy;" << endl;
} else {
vs << " vec4 textureRect = uTextureRects[vertexID];" << endl;
vs << " vec2 texCoord = aCoord.xy * textureRect.zw + textureRect.xy;" << endl;
vs << " vTexCoord = (uTextureTransform * vec4(texCoord, 0.0, 1.0)).xy;" << endl;
}
}
if (aConfig.mFeatures & ENABLE_MASK) {
vs << " vMaskCoord.xy = (uMaskTransform * (finalPosition / finalPosition.w)).xy;" << endl;
// correct for perspective correct interpolation, see comment in D3D11 shader
vs << " vMaskCoord.z = 1.0;" << endl;
vs << " vMaskCoord *= finalPosition.w;" << endl;
}
vs << " finalPosition.xy -= uRenderTargetOffset * finalPosition.w;" << endl;
vs << " finalPosition = uMatrixProj * finalPosition;" << endl;
if (BlendOpIsMixBlendMode(blendOp)) {
// Translate from clip space (-1, 1) to (0..1), apply the backdrop
// transform, then invert the y-axis.
vs << " vBackdropCoord.x = (finalPosition.x + 1.0) / 2.0;" << endl;
vs << " vBackdropCoord.y = 1.0 - (finalPosition.y + 1.0) / 2.0;" << endl;
vs << " vBackdropCoord = (uBackdropTransform * vec4(vBackdropCoord.xy, 0.0, 1.0)).xy;" << endl;
vs << " vBackdropCoord.y = 1.0 - vBackdropCoord.y;" << endl;
}
vs << " gl_Position = finalPosition;" << endl;
vs << "}" << endl;
if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
fs << "#extension GL_ARB_texture_rectangle : require" << endl;
}
if (aConfig.mFeatures & ENABLE_TEXTURE_EXTERNAL) {
fs << "#extension GL_OES_EGL_image_external : require" << endl;
}
fs << "#ifdef GL_ES" << endl;
fs << "precision mediump float;" << endl;
fs << "#define COLOR_PRECISION lowp" << endl;
fs << "#define EDGE_PRECISION mediump" << endl;
fs << "#else" << endl;
fs << "#define COLOR_PRECISION" << endl;
fs << "#define EDGE_PRECISION" << endl;
fs << "#endif" << endl;
if (aConfig.mFeatures & ENABLE_RENDER_COLOR) {
fs << "uniform COLOR_PRECISION vec4 uRenderColor;" << endl;
} else {
// for tiling, texcoord can be greater than the lowfp range
fs << "varying vec2 vTexCoord;" << endl;
if (aConfig.mFeatures & ENABLE_BLUR) {
fs << "uniform bool uBlurAlpha;" << endl;
fs << "uniform vec2 uBlurRadius;" << endl;
fs << "uniform vec2 uBlurOffset;" << endl;
fs << "uniform float uBlurGaussianKernel[" << GAUSSIAN_KERNEL_HALF_WIDTH << "];" << endl;
}
if (aConfig.mFeatures & ENABLE_COLOR_MATRIX) {
fs << "uniform mat4 uColorMatrix;" << endl;
fs << "uniform vec4 uColorMatrixVector;" << endl;
}
if (aConfig.mFeatures & ENABLE_OPACITY) {
fs << "uniform COLOR_PRECISION float uLayerOpacity;" << endl;
}
}
if (BlendOpIsMixBlendMode(blendOp)) {
fs << "varying vec2 vBackdropCoord;" << endl;
}
const char *sampler2D = "sampler2D";
const char *texture2D = "texture2D";
if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
fs << "uniform vec2 uTexCoordMultiplier;" << endl;
if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR ||
aConfig.mFeatures & ENABLE_TEXTURE_NV12) {
fs << "uniform vec2 uCbCrTexCoordMultiplier;" << endl;
}
sampler2D = "sampler2DRect";
texture2D = "texture2DRect";
}
const char *maskSampler2D = "sampler2D";
const char *maskTexture2D = "texture2D";
if (aConfig.mFeatures & ENABLE_MASK &&
aConfig.mFeatures & ENABLE_MASK_TEXTURE_RECT) {
fs << "uniform vec2 uMaskCoordMultiplier;" << endl;
maskSampler2D = "sampler2DRect";
maskTexture2D = "texture2DRect";
}
if (aConfig.mFeatures & ENABLE_TEXTURE_EXTERNAL) {
sampler2D = "samplerExternalOES";
}
if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR) {
fs << "uniform " << sampler2D << " uYTexture;" << endl;
fs << "uniform " << sampler2D << " uCbTexture;" << endl;
fs << "uniform " << sampler2D << " uCrTexture;" << endl;
fs << "uniform mat3 uYuvColorMatrix;" << endl;
} else if (aConfig.mFeatures & ENABLE_TEXTURE_NV12) {
fs << "uniform " << sampler2D << " uYTexture;" << endl;
fs << "uniform " << sampler2D << " uCbTexture;" << endl;
} else if (aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA) {
fs << "uniform " << sampler2D << " uBlackTexture;" << endl;
fs << "uniform " << sampler2D << " uWhiteTexture;" << endl;
fs << "uniform bool uTexturePass2;" << endl;
} else {
fs << "uniform " << sampler2D << " uTexture;" << endl;
}
if (BlendOpIsMixBlendMode(blendOp)) {
// Component alpha should be flattened away inside blend containers.
MOZ_ASSERT(!(aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA));
fs << "uniform sampler2D uBackdropTexture;" << endl;
}
if (aConfig.mFeatures & ENABLE_MASK) {
fs << "varying vec3 vMaskCoord;" << endl;
fs << "uniform " << maskSampler2D << " uMaskTexture;" << endl;
}
if (aConfig.mFeatures & ENABLE_DEAA) {
fs << "uniform EDGE_PRECISION vec3 uSSEdges[4];" << endl;
}
if (BlendOpIsMixBlendMode(blendOp)) {
BuildMixBlender(aConfig, fs);
}
if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
fs << "vec4 sample(vec2 coord) {" << endl;
fs << " vec4 color;" << endl;
if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR ||
aConfig.mFeatures & ENABLE_TEXTURE_NV12) {
if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR) {
if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
fs << " COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord * uTexCoordMultiplier).r;" << endl;
fs << " COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).r;" << endl;
fs << " COLOR_PRECISION float cr = " << texture2D << "(uCrTexture, coord * uCbCrTexCoordMultiplier).r;" << endl;
} else {
fs << " COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord).r;" << endl;
fs << " COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord).r;" << endl;
fs << " COLOR_PRECISION float cr = " << texture2D << "(uCrTexture, coord).r;" << endl;
}
} else {
if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
fs << " COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord * uTexCoordMultiplier).r;" << endl;
fs << " COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).r;" << endl;
fs << " COLOR_PRECISION float cr = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).a;" << endl;
} else {
fs << " COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord).r;" << endl;
fs << " COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord).r;" << endl;
fs << " COLOR_PRECISION float cr = " << texture2D << "(uCbTexture, coord).a;" << endl;
}
}
fs << " vec3 yuv = vec3(y, cb, cr);" << endl;
if (aConfig.mMultiplier != 1) {
fs << " yuv *= " << aConfig.mMultiplier << ".0;" << endl;
}
fs << " vec3 coeff = vec3(0.06275, 0.50196, 0.50196 );" << endl;
fs << " yuv -= coeff;" << endl;
fs << " color.rgb = uYuvColorMatrix * yuv;" << endl;
fs << " color.a = 1.0;" << endl;
} else if (aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA) {
if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
fs << " COLOR_PRECISION vec3 onBlack = " << texture2D << "(uBlackTexture, coord * uTexCoordMultiplier).rgb;" << endl;
fs << " COLOR_PRECISION vec3 onWhite = " << texture2D << "(uWhiteTexture, coord * uTexCoordMultiplier).rgb;" << endl;
} else {
fs << " COLOR_PRECISION vec3 onBlack = " << texture2D << "(uBlackTexture, coord).rgb;" << endl;
fs << " COLOR_PRECISION vec3 onWhite = " << texture2D << "(uWhiteTexture, coord).rgb;" << endl;
}
fs << " COLOR_PRECISION vec4 alphas = (1.0 - onWhite + onBlack).rgbg;" << endl;
fs << " if (uTexturePass2)" << endl;
fs << " color = vec4(onBlack, alphas.a);" << endl;
fs << " else" << endl;
fs << " color = alphas;" << endl;
} else {
if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
fs << " color = " << texture2D << "(uTexture, coord * uTexCoordMultiplier);" << endl;
} else {
fs << " color = " << texture2D << "(uTexture, coord);" << endl;
}
}
if (aConfig.mFeatures & ENABLE_TEXTURE_RB_SWAP) {
fs << " color = color.bgra;" << endl;
}
if (aConfig.mFeatures & ENABLE_TEXTURE_NO_ALPHA) {
fs << " color = vec4(color.rgb, 1.0);" << endl;
}
fs << " return color;" << endl;
fs << "}" << endl;
if (aConfig.mFeatures & ENABLE_BLUR) {
fs << "vec4 sampleAtRadius(vec2 coord, float radius) {" << endl;
fs << " coord += uBlurOffset;" << endl;
fs << " coord += radius * uBlurRadius;" << endl;
fs << " if (coord.x < 0. || coord.y < 0. || coord.x > 1. || coord.y > 1.)" << endl;
fs << " return vec4(0, 0, 0, 0);" << endl;
fs << " return sample(coord);" << endl;
fs << "}" << endl;
fs << "vec4 blur(vec4 color, vec2 coord) {" << endl;
fs << " vec4 total = color * uBlurGaussianKernel[0];" << endl;
fs << " for (int i = 1; i < " << GAUSSIAN_KERNEL_HALF_WIDTH << "; ++i) {" << endl;
fs << " float r = float(i) * " << GAUSSIAN_KERNEL_STEP << ";" << endl;
fs << " float k = uBlurGaussianKernel[i];" << endl;
fs << " total += sampleAtRadius(coord, r) * k;" << endl;
fs << " total += sampleAtRadius(coord, -r) * k;" << endl;
fs << " }" << endl;
fs << " if (uBlurAlpha) {" << endl;
fs << " color *= total.a;" << endl;
fs << " } else {" << endl;
fs << " color = total;" << endl;
fs << " }" << endl;
fs << " return color;" << endl;
fs << "}" << endl;
}
}
fs << "void main() {" << endl;
if (aConfig.mFeatures & ENABLE_RENDER_COLOR) {
fs << " vec4 color = uRenderColor;" << endl;
} else {
fs << " vec4 color = sample(vTexCoord);" << endl;
if (aConfig.mFeatures & ENABLE_BLUR) {
fs << " color = blur(color, vTexCoord);" << endl;
}
if (aConfig.mFeatures & ENABLE_COLOR_MATRIX) {
fs << " color = uColorMatrix * vec4(color.rgb / color.a, color.a) + uColorMatrixVector;" << endl;
fs << " color.rgb *= color.a;" << endl;
}
if (aConfig.mFeatures & ENABLE_OPACITY) {
fs << " color *= uLayerOpacity;" << endl;
}
}
if (aConfig.mFeatures & ENABLE_DEAA) {
// Calculate the sub-pixel coverage of the pixel and modulate its opacity
// by that amount to perform DEAA.
fs << " vec3 ssPos = vec3(gl_FragCoord.xy, 1.0);" << endl;
fs << " float deaaCoverage = clamp(dot(uSSEdges[0], ssPos), 0.0, 1.0);" << endl;
fs << " deaaCoverage *= clamp(dot(uSSEdges[1], ssPos), 0.0, 1.0);" << endl;
fs << " deaaCoverage *= clamp(dot(uSSEdges[2], ssPos), 0.0, 1.0);" << endl;
fs << " deaaCoverage *= clamp(dot(uSSEdges[3], ssPos), 0.0, 1.0);" << endl;
fs << " color *= deaaCoverage;" << endl;
}
if (BlendOpIsMixBlendMode(blendOp)) {
fs << " vec4 backdrop = texture2D(uBackdropTexture, vBackdropCoord);" << endl;
fs << " color = mixAndBlend(backdrop, color);" << endl;
}
if (aConfig.mFeatures & ENABLE_MASK) {
fs << " vec2 maskCoords = vMaskCoord.xy / vMaskCoord.z;" << endl;
if (aConfig.mFeatures & ENABLE_MASK_TEXTURE_RECT) {
fs << " COLOR_PRECISION float mask = " << maskTexture2D << "(uMaskTexture, maskCoords * uMaskCoordMultiplier).r;" << endl;
} else {
fs << " COLOR_PRECISION float mask = " << maskTexture2D << "(uMaskTexture, maskCoords).r;" << endl;
}
fs << " color *= mask;" << endl;
} else {
fs << " COLOR_PRECISION float mask = 1.0;" << endl;
fs << " color *= mask;" << endl;
}
fs << " gl_FragColor = color;" << endl;
fs << "}" << endl;
result.mVertexShaderString = vs.str();
result.mFragmentShaderString = fs.str();
if (aConfig.mFeatures & ENABLE_RENDER_COLOR) {
result.mTextureCount = 0;
} else {
if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR) {
result.mTextureCount = 3;
} else if (aConfig.mFeatures & ENABLE_TEXTURE_NV12) {
result.mTextureCount = 2;
} else if (aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA) {
result.mTextureCount = 2;
} else {
result.mTextureCount = 1;
}
}
if (aConfig.mFeatures & ENABLE_MASK) {
result.mTextureCount = 1;
}
if (BlendOpIsMixBlendMode(blendOp)) {
result.mTextureCount += 1;
}
return result;
}
void
ProgramProfileOGL::BuildMixBlender(const ShaderConfigOGL& aConfig, std::ostringstream& fs)
{
// From the "Compositing and Blending Level 1" spec.
// Generate helper functions first.
switch (aConfig.mCompositionOp) {
case gfx::CompositionOp::OP_OVERLAY:
case gfx::CompositionOp::OP_HARD_LIGHT:
// Note: we substitute (2*src-1) into the screen formula below.
fs << "float hardlight(float dest, float src) {" << endl;
fs << " if (src <= 0.5) {" << endl;
fs << " return dest * (2.0 * src);" << endl;
fs << " } else {" << endl;
fs << " return 2.0*dest + 2.0*src - 1.0 - 2.0*dest*src;" << endl;
fs << " }" << endl;
fs << "}" << endl;
break;
case gfx::CompositionOp::OP_COLOR_DODGE:
fs << "float dodge(float dest, float src) {" << endl;
fs << " if (dest == 0.0) {" << endl;
fs << " return 0.0;" << endl;
fs << " } else if (src == 1.0) {" << endl;
fs << " return 1.0;" << endl;
fs << " } else {" << endl;
fs << " return min(1.0, dest / (1.0 - src));" << endl;
fs << " }" << endl;
fs << "}" << endl;
break;
case gfx::CompositionOp::OP_COLOR_BURN:
fs << "float burn(float dest, float src) {" << endl;
fs << " if (dest == 1.0) {" << endl;
fs << " return 1.0;" << endl;
fs << " } else if (src == 0.0) {" << endl;
fs << " return 0.0;" << endl;
fs << " } else {" << endl;
fs << " return 1.0 - min(1.0, (1.0 - dest) / src);" << endl;
fs << " }" << endl;
fs << "}" << endl;
break;
case gfx::CompositionOp::OP_SOFT_LIGHT:
fs << "float darken(float dest) {" << endl;
fs << " if (dest <= 0.25) {" << endl;
fs << " return ((16.0 * dest - 12.0) * dest + 4.0) * dest;" << endl;
fs << " } else {" << endl;
fs << " return sqrt(dest);" << endl;
fs << " }" << endl;
fs << "}" << endl;
fs << "float softlight(float dest, float src) {" << endl;
fs << " if (src <= 0.5) {" << endl;
fs << " return dest - (1.0 - 2.0 * src) * dest * (1.0 - dest);" << endl;
fs << " } else {" << endl;
fs << " return dest + (2.0 * src - 1.0) * (darken(dest) - dest);" << endl;
fs << " }" << endl;
fs << "}" << endl;
break;
case gfx::CompositionOp::OP_HUE:
case gfx::CompositionOp::OP_SATURATION:
case gfx::CompositionOp::OP_COLOR:
case gfx::CompositionOp::OP_LUMINOSITY:
fs << "float Lum(vec3 c) {" << endl;
fs << " return dot(vec3(0.3, 0.59, 0.11), c);" << endl;
fs << "}" << endl;
fs << "vec3 ClipColor(vec3 c) {" << endl;
fs << " float L = Lum(c);" << endl;
fs << " float n = min(min(c.r, c.g), c.b);" << endl;
fs << " float x = max(max(c.r, c.g), c.b);" << endl;
fs << " if (n < 0.0) {" << endl;
fs << " c = L + (((c - L) * L) / (L - n));" << endl;
fs << " }" << endl;
fs << " if (x > 1.0) {" << endl;
fs << " c = L + (((c - L) * (1.0 - L)) / (x - L));" << endl;
fs << " }" << endl;
fs << " return c;" << endl;
fs << "}" << endl;
fs << "vec3 SetLum(vec3 c, float L) {" << endl;
fs << " float d = L - Lum(c);" << endl;
fs << " return ClipColor(vec3(" << endl;
fs << " c.r + d," << endl;
fs << " c.g + d," << endl;
fs << " c.b + d));" << endl;
fs << "}" << endl;
fs << "float Sat(vec3 c) {" << endl;
fs << " return max(max(c.r, c.g), c.b) - min(min(c.r, c.g), c.b);" << endl;
fs << "}" << endl;
// To use this helper, re-arrange rgb such that r=min, g=mid, and b=max.
fs << "vec3 SetSatInner(vec3 c, float s) {" << endl;
fs << " if (c.b > c.r) {" << endl;
fs << " c.g = (((c.g - c.r) * s) / (c.b - c.r));" << endl;
fs << " c.b = s;" << endl;
fs << " } else {" << endl;
fs << " c.gb = vec2(0.0, 0.0);" << endl;
fs << " }" << endl;
fs << " return vec3(0.0, c.gb);" << endl;
fs << "}" << endl;
fs << "vec3 SetSat(vec3 c, float s) {" << endl;
fs << " if (c.r <= c.g) {" << endl;
fs << " if (c.g <= c.b) {" << endl;
fs << " c.rgb = SetSatInner(c.rgb, s);" << endl;
fs << " } else if (c.r <= c.b) {" << endl;
fs << " c.rbg = SetSatInner(c.rbg, s);" << endl;
fs << " } else {" << endl;
fs << " c.brg = SetSatInner(c.brg, s);" << endl;
fs << " }" << endl;
fs << " } else if (c.r <= c.b) {" << endl;
fs << " c.grb = SetSatInner(c.grb, s);" << endl;
fs << " } else if (c.g <= c.b) {" << endl;
fs << " c.gbr = SetSatInner(c.gbr, s);" << endl;
fs << " } else {" << endl;
fs << " c.bgr = SetSatInner(c.bgr, s);" << endl;
fs << " }" << endl;
fs << " return c;" << endl;
fs << "}" << endl;
break;
default:
break;
}
// Generate the main blending helper.
fs << "vec3 blend(vec3 dest, vec3 src) {" << endl;
switch (aConfig.mCompositionOp) {
case gfx::CompositionOp::OP_MULTIPLY:
fs << " return dest * src;" << endl;
break;
case gfx::CompositionOp::OP_SCREEN:
fs << " return dest + src - (dest * src);" << endl;
break;
case gfx::CompositionOp::OP_OVERLAY:
fs << " return vec3(" << endl;
fs << " hardlight(src.r, dest.r)," << endl;
fs << " hardlight(src.g, dest.g)," << endl;
fs << " hardlight(src.b, dest.b));" << endl;
break;
case gfx::CompositionOp::OP_DARKEN:
fs << " return min(dest, src);" << endl;
break;
case gfx::CompositionOp::OP_LIGHTEN:
fs << " return max(dest, src);" << endl;
break;
case gfx::CompositionOp::OP_COLOR_DODGE:
fs << " return vec3(" << endl;
fs << " dodge(dest.r, src.r)," << endl;
fs << " dodge(dest.g, src.g)," << endl;
fs << " dodge(dest.b, src.b));" << endl;
break;
case gfx::CompositionOp::OP_COLOR_BURN:
fs << " return vec3(" << endl;
fs << " burn(dest.r, src.r)," << endl;
fs << " burn(dest.g, src.g)," << endl;
fs << " burn(dest.b, src.b));" << endl;
break;
case gfx::CompositionOp::OP_HARD_LIGHT:
fs << " return vec3(" << endl;
fs << " hardlight(dest.r, src.r)," << endl;
fs << " hardlight(dest.g, src.g)," << endl;
fs << " hardlight(dest.b, src.b));" << endl;
break;
case gfx::CompositionOp::OP_SOFT_LIGHT:
fs << " return vec3(" << endl;
fs << " softlight(dest.r, src.r)," << endl;
fs << " softlight(dest.g, src.g)," << endl;
fs << " softlight(dest.b, src.b));" << endl;
break;
case gfx::CompositionOp::OP_DIFFERENCE:
fs << " return abs(dest - src);" << endl;
break;
case gfx::CompositionOp::OP_EXCLUSION:
fs << " return dest + src - 2.0*dest*src;" << endl;
break;
case gfx::CompositionOp::OP_HUE:
fs << " return SetLum(SetSat(src, Sat(dest)), Lum(dest));" << endl;
break;
case gfx::CompositionOp::OP_SATURATION:
fs << " return SetLum(SetSat(dest, Sat(src)), Lum(dest));" << endl;
break;
case gfx::CompositionOp::OP_COLOR:
fs << " return SetLum(src, Lum(dest));" << endl;
break;
case gfx::CompositionOp::OP_LUMINOSITY:
fs << " return SetLum(dest, Lum(src));" << endl;
break;
default:
MOZ_ASSERT_UNREACHABLE("unknown blend mode");
}
fs << "}" << endl;
// Generate the mix-blend function the fragment shader will call.
fs << "vec4 mixAndBlend(vec4 backdrop, vec4 color) {" << endl;
// Shortcut when the backdrop or source alpha is 0, otherwise we may leak
// Infinity into the blend function and return incorrect results.
fs << " if (backdrop.a == 0.0) {" << endl;
fs << " return color;" << endl;
fs << " }" << endl;
fs << " if (color.a == 0.0) {" << endl;
fs << " return vec4(0.0, 0.0, 0.0, 0.0);" << endl;
fs << " }" << endl;
// The spec assumes there is no premultiplied alpha. The backdrop is always
// premultiplied, so undo the premultiply. If the source is premultiplied we
// must fix that as well.
fs << " backdrop.rgb /= backdrop.a;" << endl;
if (!(aConfig.mFeatures & ENABLE_NO_PREMUL_ALPHA)) {
fs << " color.rgb /= color.a;" << endl;
}
fs << " vec3 blended = blend(backdrop.rgb, color.rgb);" << endl;
fs << " color.rgb = (1.0 - backdrop.a) * color.rgb + backdrop.a * blended.rgb;" << endl;
fs << " color.rgb *= color.a;" << endl;
fs << " return color;" << endl;
fs << "}" << endl;
}
ShaderProgramOGL::ShaderProgramOGL(GLContext* aGL, const ProgramProfileOGL& aProfile)
: mGL(aGL)
, mProgram(0)
, mProfile(aProfile)
, mProgramState(STATE_NEW)
{
}
ShaderProgramOGL::~ShaderProgramOGL()
{
if (mProgram <= 0) {
return;
}
RefPtr<GLContext> ctx = mGL->GetSharedContext();
if (!ctx) {
ctx = mGL;
}
ctx->MakeCurrent();
ctx->fDeleteProgram(mProgram);
}
bool
ShaderProgramOGL::Initialize()
{
NS_ASSERTION(mProgramState == STATE_NEW, "Shader program has already been initialised");
ostringstream vs, fs;
for (uint32_t i = 0; i < mProfile.mDefines.Length(); ++i) {
vs << mProfile.mDefines[i] << endl;
fs << mProfile.mDefines[i] << endl;
}
vs << mProfile.mVertexShaderString << endl;
fs << mProfile.mFragmentShaderString << endl;
if (!CreateProgram(vs.str().c_str(), fs.str().c_str())) {
mProgramState = STATE_ERROR;
return false;
}
mProgramState = STATE_OK;
for (uint32_t i = 0; i < KnownUniform::KnownUniformCount; ++i) {
mProfile.mUniforms[i].mLocation =
mGL->fGetUniformLocation(mProgram, mProfile.mUniforms[i].mNameString);
}
return true;
}
GLint
ShaderProgramOGL::CreateShader(GLenum aShaderType, const char *aShaderSource)
{
GLint success, len = 0;
GLint sh = mGL->fCreateShader(aShaderType);
mGL->fShaderSource(sh, 1, (const GLchar**)&aShaderSource, nullptr);
mGL->fCompileShader(sh);
mGL->fGetShaderiv(sh, LOCAL_GL_COMPILE_STATUS, &success);
mGL->fGetShaderiv(sh, LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len);
/* Even if compiling is successful, there may still be warnings. Print them
* in a debug build. The > 10 is to catch silly compilers that might put
* some whitespace in the log but otherwise leave it empty.
*/
if (!success
#ifdef DEBUG
|| (len > 10 && gfxEnv::DebugShaders())
#endif
)
{
nsAutoCString log;
log.SetCapacity(len);
mGL->fGetShaderInfoLog(sh, len, (GLint*) &len, (char*) log.BeginWriting());
log.SetLength(len);
if (!success) {
printf_stderr("=== SHADER COMPILATION FAILED ===\n");
} else {
printf_stderr("=== SHADER COMPILATION WARNINGS ===\n");
}
printf_stderr("=== Source:\n%s\n", aShaderSource);
printf_stderr("=== Log:\n%s\n", log.get());
printf_stderr("============\n");
if (!success) {
mGL->fDeleteShader(sh);
return 0;
}
}
return sh;
}
bool
ShaderProgramOGL::CreateProgram(const char *aVertexShaderString,
const char *aFragmentShaderString)
{
GLuint vertexShader = CreateShader(LOCAL_GL_VERTEX_SHADER, aVertexShaderString);
GLuint fragmentShader = CreateShader(LOCAL_GL_FRAGMENT_SHADER, aFragmentShaderString);
if (!vertexShader || !fragmentShader)
return false;
GLint result = mGL->fCreateProgram();
mGL->fAttachShader(result, vertexShader);
mGL->fAttachShader(result, fragmentShader);
for (Pair<nsCString, GLuint>& attribute : mProfile.mAttributes) {
mGL->fBindAttribLocation(result, attribute.second(),
attribute.first().get());
}
mGL->fLinkProgram(result);
GLint success, len;
mGL->fGetProgramiv(result, LOCAL_GL_LINK_STATUS, &success);
mGL->fGetProgramiv(result, LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len);
/* Even if linking is successful, there may still be warnings. Print them
* in a debug build. The > 10 is to catch silly compilers that might put
* some whitespace in the log but otherwise leave it empty.
*/
if (!success
#ifdef DEBUG
|| (len > 10 && gfxEnv::DebugShaders())
#endif
)
{
nsAutoCString log;
log.SetCapacity(len);
mGL->fGetProgramInfoLog(result, len, (GLint*) &len, (char*) log.BeginWriting());
log.SetLength(len);
if (!success) {
printf_stderr("=== PROGRAM LINKING FAILED ===\n");
} else {
printf_stderr("=== PROGRAM LINKING WARNINGS ===\n");
}
printf_stderr("=== Log:\n%s\n", log.get());
printf_stderr("============\n");
}
// We can mark the shaders for deletion; they're attached to the program
// and will remain attached.
mGL->fDeleteShader(vertexShader);
mGL->fDeleteShader(fragmentShader);
if (!success) {
mGL->fDeleteProgram(result);
return false;
}
mProgram = result;
return true;
}
GLuint
ShaderProgramOGL::GetProgram()
{
if (mProgramState == STATE_NEW) {
if (!Initialize()) {
NS_WARNING("Shader could not be initialised");
}
}
MOZ_ASSERT(HasInitialized(), "Attempting to get a program that's not been initialized!");
return mProgram;
}
void
ShaderProgramOGL::SetBlurRadius(float aRX, float aRY)
{
float f[] = {aRX, aRY};
SetUniform(KnownUniform::BlurRadius, 2, f);
float gaussianKernel[GAUSSIAN_KERNEL_HALF_WIDTH];
float sum = 0.0f;
for (int i = 0; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) {
float x = i * GAUSSIAN_KERNEL_STEP;
float sigma = 1.0f;
gaussianKernel[i] = exp(-x * x / (2 * sigma * sigma)) / sqrt(2 * M_PI * sigma * sigma);
sum += gaussianKernel[i] * (i == 0 ? 1 : 2);
}
for (int i = 0; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) {
gaussianKernel[i] /= sum;
}
SetArrayUniform(KnownUniform::BlurGaussianKernel, GAUSSIAN_KERNEL_HALF_WIDTH, gaussianKernel);
}
void
ShaderProgramOGL::SetYUVColorSpace(YUVColorSpace aYUVColorSpace)
{
const float* yuvToRgb = gfxUtils::YuvToRgbMatrix3x3ColumnMajor(aYUVColorSpace);
SetMatrix3fvUniform(KnownUniform::YuvColorMatrix, yuvToRgb);
}
} // namespace layers
} // namespace mozilla