gecko-dev/taskcluster/taskgraph/optimize.py

245 строки
8.8 KiB
Python

# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
from __future__ import absolute_import, print_function, unicode_literals
import logging
import re
import os
import requests
from .graph import Graph
from . import files_changed
from .taskgraph import TaskGraph
from .util.seta import is_low_value_task
from .util.taskcluster import find_task_id
from slugid import nice as slugid
logger = logging.getLogger(__name__)
TASK_REFERENCE_PATTERN = re.compile('<([^>]+)>')
_optimizations = {}
def optimize_task_graph(target_task_graph, params, do_not_optimize, existing_tasks=None):
"""
Perform task optimization, without optimizing tasks named in
do_not_optimize.
"""
named_links_dict = target_task_graph.graph.named_links_dict()
label_to_taskid = {}
# This proceeds in two phases. First, mark all optimized tasks (those
# which will be removed from the graph) as such, including a replacement
# taskId where applicable. Second, generate a new task graph containing
# only the non-optimized tasks, with all task labels resolved to taskIds
# and with task['dependencies'] populated.
annotate_task_graph(target_task_graph=target_task_graph,
params=params,
do_not_optimize=do_not_optimize,
named_links_dict=named_links_dict,
label_to_taskid=label_to_taskid,
existing_tasks=existing_tasks)
return get_subgraph(target_task_graph, named_links_dict, label_to_taskid), label_to_taskid
def resolve_task_references(label, task_def, taskid_for_edge_name):
def repl(match):
key = match.group(1)
try:
return taskid_for_edge_name[key]
except KeyError:
# handle escaping '<'
if key == '<':
return key
raise KeyError("task '{}' has no dependency named '{}'".format(label, key))
def recurse(val):
if isinstance(val, list):
return [recurse(v) for v in val]
elif isinstance(val, dict):
if val.keys() == ['task-reference']:
return TASK_REFERENCE_PATTERN.sub(repl, val['task-reference'])
else:
return {k: recurse(v) for k, v in val.iteritems()}
else:
return val
return recurse(task_def)
def optimize_task(task, params):
"""
Optimize a single task by running its optimizations in order until one
succeeds.
"""
for opt in task.optimizations:
opt_type, args = opt[0], opt[1:]
opt_fn = _optimizations[opt_type]
opt_result = opt_fn(task, params, *args)
if opt_result:
return opt_result
return False
def annotate_task_graph(target_task_graph, params, do_not_optimize,
named_links_dict, label_to_taskid, existing_tasks):
"""
Annotate each task in the graph with .optimized (boolean) and .task_id
(possibly None), following the rules for optimization and calling the task
kinds' `optimize_task` method.
As a side effect, label_to_taskid is updated with labels for all optimized
tasks that are replaced with existing tasks.
"""
# set .optimized for all tasks, and .task_id for optimized tasks
# with replacements
for label in target_task_graph.graph.visit_postorder():
task = target_task_graph.tasks[label]
named_task_dependencies = named_links_dict.get(label, {})
# check whether any dependencies have been optimized away
dependencies = [target_task_graph.tasks[l] for l in named_task_dependencies.itervalues()]
for t in dependencies:
if t.optimized and not t.task_id:
raise Exception(
"task {} was optimized away, but {} depends on it".format(
t.label, label))
# if this task is blacklisted, don't even consider optimizing
replacement_task_id = None
if label in do_not_optimize:
optimized = False
# Let's check whether this task has been created before
elif existing_tasks is not None and label in existing_tasks:
optimized = True
replacement_task_id = existing_tasks[label]
# otherwise, examine the task itself (which may be an expensive operation)
else:
opt_result = optimize_task(task, params)
# use opt_result to determine values for optimized, replacement_task_id
optimized = bool(opt_result)
replacement_task_id = opt_result if opt_result and opt_result is not True else None
task.optimized = optimized
task.task_id = replacement_task_id
if replacement_task_id:
label_to_taskid[label] = replacement_task_id
if optimized:
if replacement_task_id:
logger.debug("optimizing `{}`, replacing with task `{}`"
.format(label, replacement_task_id))
else:
logger.debug("optimizing `{}` away".format(label))
# note: any dependent tasks will fail when they see this
else:
if replacement_task_id:
raise Exception("{}: optimize_task returned False with a taskId".format(label))
def get_subgraph(annotated_task_graph, named_links_dict, label_to_taskid):
"""
Return the subgraph of annotated_task_graph consisting only of
non-optimized tasks and edges between them.
To avoid losing track of taskIds for tasks optimized away, this method
simultaneously substitutes real taskIds for task labels in the graph, and
populates each task definition's `dependencies` key with the appropriate
taskIds. Task references are resolved in the process.
"""
# resolve labels to taskIds and populate task['dependencies']
tasks_by_taskid = {}
for label in annotated_task_graph.graph.visit_postorder():
task = annotated_task_graph.tasks[label]
if task.optimized:
continue
task.task_id = label_to_taskid[label] = slugid()
named_task_dependencies = {
name: label_to_taskid[label]
for name, label in named_links_dict.get(label, {}).iteritems()}
task.task = resolve_task_references(task.label, task.task, named_task_dependencies)
task.task.setdefault('dependencies', []).extend(named_task_dependencies.itervalues())
tasks_by_taskid[task.task_id] = task
# resolve edges to taskIds
edges_by_taskid = (
(label_to_taskid.get(left), label_to_taskid.get(right), name)
for (left, right, name) in annotated_task_graph.graph.edges
)
# ..and drop edges that are no longer in the task graph
edges_by_taskid = set(
(left, right, name)
for (left, right, name) in edges_by_taskid
if left in tasks_by_taskid and right in tasks_by_taskid
)
return TaskGraph(
tasks_by_taskid,
Graph(set(tasks_by_taskid), edges_by_taskid))
def optimization(name):
def wrap(func):
if name in _optimizations:
raise Exception("multiple optimizations with name {}".format(name))
_optimizations[name] = func
return func
return wrap
@optimization('index-search')
def opt_index_search(task, params, index_path):
try:
task_id = find_task_id(
index_path,
use_proxy=bool(os.environ.get('TASK_ID')))
return task_id or True
except requests.exceptions.HTTPError:
pass
return False
@optimization('seta')
def opt_seta(task, params):
bbb_task = False
# for bbb tasks we need to send in the buildbot buildername
if task.task.get('provisionerId', '') == 'buildbot-bridge':
label = task.task.get('payload').get('buildername')
bbb_task = True
else:
label = task.label
# we would like to return 'False, None' while it's high_value_task
# and we wouldn't optimize it. Otherwise, it will return 'True, None'
if is_low_value_task(label,
params.get('project'),
params.get('pushlog_id'),
params.get('pushdate'),
bbb_task):
# Always optimize away low-value tasks
return True
else:
return False
@optimization('skip-unless-changed')
def opt_files_changed(task, params, file_patterns):
# pushlog_id == -1 - this is the case when run from a cron.yml job
if params.get('pushlog_id') == -1:
return True
changed = files_changed.check(params, file_patterns)
if not changed:
logger.debug('no files found matching a pattern in `skip-unless-changed` for ' +
task.label)
return True
return False