gecko-dev/dom/media/webaudio/ScriptProcessorNode.cpp

543 строки
18 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ScriptProcessorNode.h"
#include "mozilla/dom/ScriptProcessorNodeBinding.h"
#include "AudioBuffer.h"
#include "AudioDestinationNode.h"
#include "AudioNodeEngine.h"
#include "AudioNodeStream.h"
#include "AudioProcessingEvent.h"
#include "WebAudioUtils.h"
#include "mozilla/dom/ScriptSettings.h"
#include "mozilla/Mutex.h"
#include "mozilla/PodOperations.h"
#include "nsAutoPtr.h"
#include <deque>
namespace mozilla {
namespace dom {
// The maximum latency, in seconds, that we can live with before dropping
// buffers.
static const float MAX_LATENCY_S = 0.5;
// This class manages a queue of output buffers shared between
// the main thread and the Media Stream Graph thread.
class SharedBuffers final {
private:
class OutputQueue final {
public:
explicit OutputQueue(const char* aName) : mMutex(aName) {}
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
mMutex.AssertCurrentThreadOwns();
size_t amount = 0;
for (size_t i = 0; i < mBufferList.size(); i++) {
amount += mBufferList[i].SizeOfExcludingThis(aMallocSizeOf, false);
}
return amount;
}
Mutex& Lock() const { return const_cast<OutputQueue*>(this)->mMutex; }
size_t ReadyToConsume() const {
// Accessed on both main thread and media graph thread.
mMutex.AssertCurrentThreadOwns();
return mBufferList.size();
}
// Produce one buffer
AudioChunk& Produce() {
mMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(NS_IsMainThread());
mBufferList.push_back(AudioChunk());
return mBufferList.back();
}
// Consumes one buffer.
AudioChunk Consume() {
mMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(!NS_IsMainThread());
MOZ_ASSERT(ReadyToConsume() > 0);
AudioChunk front = mBufferList.front();
mBufferList.pop_front();
return front;
}
// Empties the buffer queue.
void Clear() {
mMutex.AssertCurrentThreadOwns();
mBufferList.clear();
}
private:
typedef std::deque<AudioChunk> BufferList;
// Synchronizes access to mBufferList. Note that it's the responsibility
// of the callers to perform the required locking, and we assert that every
// time we access mBufferList.
Mutex mMutex;
// The list representing the queue.
BufferList mBufferList;
};
public:
explicit SharedBuffers(float aSampleRate)
: mOutputQueue("SharedBuffers::outputQueue"),
mDelaySoFar(STREAM_TIME_MAX),
mSampleRate(aSampleRate),
mLatency(0.0),
mDroppingBuffers(false) {}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
size_t amount = aMallocSizeOf(this);
{
MutexAutoLock lock(mOutputQueue.Lock());
amount += mOutputQueue.SizeOfExcludingThis(aMallocSizeOf);
}
return amount;
}
// main thread
// NotifyNodeIsConnected() may be called even when the state has not
// changed.
void NotifyNodeIsConnected(bool aIsConnected) {
MOZ_ASSERT(NS_IsMainThread());
if (!aIsConnected) {
// Reset main thread state for FinishProducingOutputBuffer().
mLatency = 0.0f;
mLastEventTime = TimeStamp();
mDroppingBuffers = false;
// Don't flush the output buffer here because the graph thread may be
// using it now. The graph thread will flush when it knows it is
// disconnected.
}
mNodeIsConnected = aIsConnected;
}
void FinishProducingOutputBuffer(const AudioChunk& aBuffer) {
MOZ_ASSERT(NS_IsMainThread());
if (!mNodeIsConnected) {
// The output buffer is not used, and mLastEventTime will not be
// initialized until the node is re-connected.
return;
}
TimeStamp now = TimeStamp::Now();
if (mLastEventTime.IsNull()) {
mLastEventTime = now;
} else {
// When main thread blocking has built up enough so
// |mLatency > MAX_LATENCY_S|, frame dropping starts. It continues until
// the output buffer is completely empty, at which point the accumulated
// latency is also reset to 0.
// It could happen that the output queue becomes empty before the input
// node has fully caught up. In this case there will be events where
// |(now - mLastEventTime)| is very short, making mLatency negative.
// As this happens and the size of |mLatency| becomes greater than
// MAX_LATENCY_S, frame dropping starts again to maintain an as short
// output queue as possible.
float latency = (now - mLastEventTime).ToSeconds();
float bufferDuration = aBuffer.mDuration / mSampleRate;
mLatency += latency - bufferDuration;
mLastEventTime = now;
if (fabs(mLatency) > MAX_LATENCY_S) {
mDroppingBuffers = true;
}
}
MutexAutoLock lock(mOutputQueue.Lock());
if (mDroppingBuffers) {
if (mOutputQueue.ReadyToConsume()) {
return;
}
mDroppingBuffers = false;
mLatency = 0;
}
for (uint32_t offset = 0; offset < aBuffer.mDuration;
offset += WEBAUDIO_BLOCK_SIZE) {
AudioChunk& chunk = mOutputQueue.Produce();
chunk = aBuffer;
chunk.SliceTo(offset, offset + WEBAUDIO_BLOCK_SIZE);
}
}
// graph thread
AudioChunk GetOutputBuffer() {
MOZ_ASSERT(!NS_IsMainThread());
AudioChunk buffer;
{
MutexAutoLock lock(mOutputQueue.Lock());
if (mOutputQueue.ReadyToConsume() > 0) {
if (mDelaySoFar == STREAM_TIME_MAX) {
mDelaySoFar = 0;
}
buffer = mOutputQueue.Consume();
} else {
// If we're out of buffers to consume, just output silence
buffer.SetNull(WEBAUDIO_BLOCK_SIZE);
if (mDelaySoFar != STREAM_TIME_MAX) {
// Remember the delay that we just hit
mDelaySoFar += WEBAUDIO_BLOCK_SIZE;
}
}
}
return buffer;
}
StreamTime DelaySoFar() const {
MOZ_ASSERT(!NS_IsMainThread());
return mDelaySoFar == STREAM_TIME_MAX ? 0 : mDelaySoFar;
}
void Flush() {
MOZ_ASSERT(!NS_IsMainThread());
mDelaySoFar = STREAM_TIME_MAX;
{
MutexAutoLock lock(mOutputQueue.Lock());
mOutputQueue.Clear();
}
}
private:
OutputQueue mOutputQueue;
// How much delay we've seen so far. This measures the amount of delay
// caused by the main thread lagging behind in producing output buffers.
// STREAM_TIME_MAX means that we have not received our first buffer yet.
// Graph thread only.
StreamTime mDelaySoFar;
// The samplerate of the context.
const float mSampleRate;
// The remaining members are main thread only.
// This is the latency caused by the buffering. If this grows too high, we
// will drop buffers until it is acceptable.
float mLatency;
// This is the time at which we last produced a buffer, to detect if the main
// thread has been blocked.
TimeStamp mLastEventTime;
// True if we should be dropping buffers.
bool mDroppingBuffers;
// True iff the AudioNode has at least one input or output connected.
bool mNodeIsConnected;
};
class ScriptProcessorNodeEngine final : public AudioNodeEngine {
public:
ScriptProcessorNodeEngine(ScriptProcessorNode* aNode,
AudioDestinationNode* aDestination,
uint32_t aBufferSize,
uint32_t aNumberOfInputChannels)
: AudioNodeEngine(aNode),
mDestination(aDestination->Stream()),
mSharedBuffers(new SharedBuffers(mDestination->SampleRate())),
mBufferSize(aBufferSize),
mInputChannelCount(aNumberOfInputChannels),
mInputWriteIndex(0) {}
SharedBuffers* GetSharedBuffers() const { return mSharedBuffers; }
enum {
IS_CONNECTED,
};
void SetInt32Parameter(uint32_t aIndex, int32_t aParam) override {
switch (aIndex) {
case IS_CONNECTED:
mIsConnected = aParam;
break;
default:
NS_ERROR("Bad Int32Parameter");
} // End index switch.
}
void ProcessBlock(AudioNodeStream* aStream, GraphTime aFrom,
const AudioBlock& aInput, AudioBlock* aOutput,
bool* aFinished) override {
// This node is not connected to anything. Per spec, we don't fire the
// onaudioprocess event. We also want to clear out the input and output
// buffer queue, and output a null buffer.
if (!mIsConnected) {
aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
mSharedBuffers->Flush();
mInputWriteIndex = 0;
return;
}
// The input buffer is allocated lazily when non-null input is received.
if (!aInput.IsNull() && !mInputBuffer) {
mInputBuffer = ThreadSharedFloatArrayBufferList::Create(
mInputChannelCount, mBufferSize, fallible);
if (mInputBuffer && mInputWriteIndex) {
// Zero leading for null chunks that were skipped.
for (uint32_t i = 0; i < mInputChannelCount; ++i) {
float* channelData = mInputBuffer->GetDataForWrite(i);
PodZero(channelData, mInputWriteIndex);
}
}
}
// First, record our input buffer, if its allocation succeeded.
uint32_t inputChannelCount = mInputBuffer ? mInputBuffer->GetChannels() : 0;
for (uint32_t i = 0; i < inputChannelCount; ++i) {
float* writeData = mInputBuffer->GetDataForWrite(i) + mInputWriteIndex;
if (aInput.IsNull()) {
PodZero(writeData, aInput.GetDuration());
} else {
MOZ_ASSERT(aInput.GetDuration() == WEBAUDIO_BLOCK_SIZE, "sanity check");
MOZ_ASSERT(aInput.ChannelCount() == inputChannelCount);
AudioBlockCopyChannelWithScale(
static_cast<const float*>(aInput.mChannelData[i]), aInput.mVolume,
writeData);
}
}
mInputWriteIndex += aInput.GetDuration();
// Now, see if we have data to output
// Note that we need to do this before sending the buffer to the main
// thread so that our delay time is updated.
*aOutput = mSharedBuffers->GetOutputBuffer();
if (mInputWriteIndex >= mBufferSize) {
SendBuffersToMainThread(aStream, aFrom);
mInputWriteIndex -= mBufferSize;
}
}
bool IsActive() const override {
// Could return false when !mIsConnected after all output chunks produced
// by main thread events calling
// SharedBuffers::FinishProducingOutputBuffer() have been processed.
return true;
}
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override {
// Not owned:
// - mDestination (probably)
size_t amount = AudioNodeEngine::SizeOfExcludingThis(aMallocSizeOf);
amount += mSharedBuffers->SizeOfIncludingThis(aMallocSizeOf);
if (mInputBuffer) {
amount += mInputBuffer->SizeOfIncludingThis(aMallocSizeOf);
}
return amount;
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
private:
void SendBuffersToMainThread(AudioNodeStream* aStream, GraphTime aFrom) {
MOZ_ASSERT(!NS_IsMainThread());
// we now have a full input buffer ready to be sent to the main thread.
StreamTime playbackTick = mDestination->GraphTimeToStreamTime(aFrom);
// Add the duration of the current sample
playbackTick += WEBAUDIO_BLOCK_SIZE;
// Add the delay caused by the main thread
playbackTick += mSharedBuffers->DelaySoFar();
// Compute the playback time in the coordinate system of the destination
double playbackTime = mDestination->StreamTimeToSeconds(playbackTick);
class Command final : public Runnable {
public:
Command(AudioNodeStream* aStream,
already_AddRefed<ThreadSharedFloatArrayBufferList> aInputBuffer,
double aPlaybackTime)
: mozilla::Runnable("Command"),
mStream(aStream),
mInputBuffer(aInputBuffer),
mPlaybackTime(aPlaybackTime) {}
NS_IMETHOD Run() override {
auto engine =
static_cast<ScriptProcessorNodeEngine*>(mStream->Engine());
AudioChunk output;
output.SetNull(engine->mBufferSize);
{
auto node =
static_cast<ScriptProcessorNode*>(engine->NodeMainThread());
if (!node) {
return NS_OK;
}
if (node->HasListenersFor(nsGkAtoms::onaudioprocess)) {
DispatchAudioProcessEvent(node, &output);
}
// The node may have been destroyed during event dispatch.
}
// Append it to our output buffer queue
engine->GetSharedBuffers()->FinishProducingOutputBuffer(output);
return NS_OK;
}
// Sets up |output| iff buffers are set in event handlers.
void DispatchAudioProcessEvent(ScriptProcessorNode* aNode,
AudioChunk* aOutput) {
AudioContext* context = aNode->Context();
if (!context) {
return;
}
AutoJSAPI jsapi;
if (NS_WARN_IF(!jsapi.Init(aNode->GetOwner()))) {
return;
}
JSContext* cx = jsapi.cx();
uint32_t inputChannelCount = aNode->ChannelCount();
// Create the input buffer
RefPtr<AudioBuffer> inputBuffer;
if (mInputBuffer) {
ErrorResult rv;
inputBuffer = AudioBuffer::Create(
context->GetOwner(), inputChannelCount, aNode->BufferSize(),
context->SampleRate(), mInputBuffer.forget(), rv);
if (rv.Failed()) {
rv.SuppressException();
return;
}
}
// Ask content to produce data in the output buffer
// Note that we always avoid creating the output buffer here, and we try
// to avoid creating the input buffer as well. The AudioProcessingEvent
// class knows how to lazily create them if needed once the script tries
// to access them. Otherwise, we may be able to get away without
// creating them!
RefPtr<AudioProcessingEvent> event =
new AudioProcessingEvent(aNode, nullptr, nullptr);
event->InitEvent(inputBuffer, inputChannelCount, mPlaybackTime);
aNode->DispatchTrustedEvent(event);
// Steal the output buffers if they have been set.
// Don't create a buffer if it hasn't been used to return output;
// FinishProducingOutputBuffer() will optimize output = null.
// GetThreadSharedChannelsForRate() may also return null after OOM.
if (event->HasOutputBuffer()) {
ErrorResult rv;
AudioBuffer* buffer = event->GetOutputBuffer(rv);
// HasOutputBuffer() returning true means that GetOutputBuffer()
// will not fail.
MOZ_ASSERT(!rv.Failed());
*aOutput = buffer->GetThreadSharedChannelsForRate(cx);
MOZ_ASSERT(aOutput->IsNull() ||
aOutput->mBufferFormat == AUDIO_FORMAT_FLOAT32,
"AudioBuffers initialized from JS have float data");
}
}
private:
RefPtr<AudioNodeStream> mStream;
RefPtr<ThreadSharedFloatArrayBufferList> mInputBuffer;
double mPlaybackTime;
};
RefPtr<Command> command =
new Command(aStream, mInputBuffer.forget(), playbackTime);
mAbstractMainThread->Dispatch(command.forget());
}
friend class ScriptProcessorNode;
RefPtr<AudioNodeStream> mDestination;
nsAutoPtr<SharedBuffers> mSharedBuffers;
RefPtr<ThreadSharedFloatArrayBufferList> mInputBuffer;
const uint32_t mBufferSize;
const uint32_t mInputChannelCount;
// The write index into the current input buffer
uint32_t mInputWriteIndex;
bool mIsConnected = false;
};
ScriptProcessorNode::ScriptProcessorNode(AudioContext* aContext,
uint32_t aBufferSize,
uint32_t aNumberOfInputChannels,
uint32_t aNumberOfOutputChannels)
: AudioNode(aContext, aNumberOfInputChannels,
mozilla::dom::ChannelCountMode::Explicit,
mozilla::dom::ChannelInterpretation::Speakers),
mBufferSize(aBufferSize ? aBufferSize
: // respect what the web developer requested
4096) // choose our own buffer size -- 4KB for now
,
mNumberOfOutputChannels(aNumberOfOutputChannels) {
MOZ_ASSERT(BufferSize() % WEBAUDIO_BLOCK_SIZE == 0, "Invalid buffer size");
ScriptProcessorNodeEngine* engine = new ScriptProcessorNodeEngine(
this, aContext->Destination(), BufferSize(), aNumberOfInputChannels);
mStream = AudioNodeStream::Create(
aContext, engine, AudioNodeStream::NO_STREAM_FLAGS, aContext->Graph());
}
ScriptProcessorNode::~ScriptProcessorNode() {}
size_t ScriptProcessorNode::SizeOfExcludingThis(
MallocSizeOf aMallocSizeOf) const {
size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf);
return amount;
}
size_t ScriptProcessorNode::SizeOfIncludingThis(
MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
void ScriptProcessorNode::EventListenerAdded(nsAtom* aType) {
AudioNode::EventListenerAdded(aType);
if (aType == nsGkAtoms::onaudioprocess) {
UpdateConnectedStatus();
}
}
void ScriptProcessorNode::EventListenerRemoved(nsAtom* aType) {
AudioNode::EventListenerRemoved(aType);
if (aType == nsGkAtoms::onaudioprocess) {
UpdateConnectedStatus();
}
}
JSObject* ScriptProcessorNode::WrapObject(JSContext* aCx,
JS::Handle<JSObject*> aGivenProto) {
return ScriptProcessorNode_Binding::Wrap(aCx, this, aGivenProto);
}
void ScriptProcessorNode::UpdateConnectedStatus() {
bool isConnected =
mHasPhantomInput || !(OutputNodes().IsEmpty() &&
OutputParams().IsEmpty() && InputNodes().IsEmpty());
// Events are queued even when there is no listener because a listener
// may be added while events are in the queue.
SendInt32ParameterToStream(ScriptProcessorNodeEngine::IS_CONNECTED,
isConnected);
if (isConnected && HasListenersFor(nsGkAtoms::onaudioprocess)) {
MarkActive();
} else {
MarkInactive();
}
auto engine = static_cast<ScriptProcessorNodeEngine*>(mStream->Engine());
engine->GetSharedBuffers()->NotifyNodeIsConnected(isConnected);
}
} // namespace dom
} // namespace mozilla