зеркало из https://github.com/mozilla/gecko-dev.git
182 строки
5.7 KiB
JavaScript
182 строки
5.7 KiB
JavaScript
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
"use strict";
|
|
|
|
/* globals MessageLoop */
|
|
|
|
var EXPORTED_SYMBOLS = ["DelayedInit"];
|
|
|
|
ChromeUtils.import("resource://gre/modules/XPCOMUtils.jsm");
|
|
|
|
XPCOMUtils.defineLazyServiceGetter(this, "MessageLoop",
|
|
"@mozilla.org/message-loop;1",
|
|
"nsIMessageLoop");
|
|
|
|
/**
|
|
* Use DelayedInit to schedule initializers to run some time after startup.
|
|
* Initializers are added to a list of pending inits. Whenever the main thread
|
|
* message loop is idle, DelayedInit will start running initializers from the
|
|
* pending list. To prevent monopolizing the message loop, every idling period
|
|
* has a maximum duration. When that's reached, we give up the message loop and
|
|
* wait for the next idle.
|
|
*
|
|
* DelayedInit is compatible with lazy getters like those from XPCOMUtils. When
|
|
* the lazy getter is first accessed, its corresponding initializer is run
|
|
* automatically if it hasn't been run already. Each initializer also has a
|
|
* maximum wait parameter that specifies a mandatory timeout; when the timeout
|
|
* is reached, the initializer is forced to run.
|
|
*
|
|
* DelayedInit.schedule(() => Foo.init(), null, null, 5000);
|
|
*
|
|
* In the example above, Foo.init will run automatically when the message loop
|
|
* becomes idle, or when 5000ms has elapsed, whichever comes first.
|
|
*
|
|
* DelayedInit.schedule(() => Foo.init(), this, "Foo", 5000);
|
|
*
|
|
* In the example above, Foo.init will run automatically when the message loop
|
|
* becomes idle, when |this.Foo| is accessed, or when 5000ms has elapsed,
|
|
* whichever comes first.
|
|
*
|
|
* It may be simpler to have a wrapper for DelayedInit.schedule. For example,
|
|
*
|
|
* function InitLater(fn, obj, name) {
|
|
* return DelayedInit.schedule(fn, obj, name, 5000); // constant max wait
|
|
* }
|
|
* InitLater(() => Foo.init());
|
|
* InitLater(() => Bar.init(), this, "Bar");
|
|
*/
|
|
var DelayedInit = {
|
|
schedule: function(fn, object, name, maxWait) {
|
|
return Impl.scheduleInit(fn, object, name, maxWait);
|
|
},
|
|
|
|
scheduleList: function(fns, maxWait) {
|
|
for (let fn of fns) {
|
|
Impl.scheduleInit(fn, null, null, maxWait);
|
|
}
|
|
},
|
|
};
|
|
|
|
// Maximum duration for each idling period. Pending inits are run until this
|
|
// duration is exceeded; then we wait for next idling period.
|
|
const MAX_IDLE_RUN_MS = 50;
|
|
|
|
var Impl = {
|
|
pendingInits: [],
|
|
|
|
onIdle: function() {
|
|
let startTime = Cu.now();
|
|
let time = startTime;
|
|
let nextDue;
|
|
|
|
// Go through all the pending inits. Even if we don't run them,
|
|
// we still need to find out when the next timeout should be.
|
|
for (let init of this.pendingInits) {
|
|
if (init.complete) {
|
|
continue;
|
|
}
|
|
|
|
if (time - startTime < MAX_IDLE_RUN_MS) {
|
|
init.maybeInit();
|
|
time = Cu.now();
|
|
} else {
|
|
// We ran out of time; find when the next closest due time is.
|
|
nextDue = nextDue ? Math.min(nextDue, init.due) : init.due;
|
|
}
|
|
}
|
|
|
|
// Get rid of completed ones.
|
|
this.pendingInits = this.pendingInits.filter((init) => !init.complete);
|
|
|
|
if (nextDue !== undefined) {
|
|
// Schedule the next idle, if we still have pending inits.
|
|
MessageLoop.postIdleTask(() => this.onIdle(),
|
|
Math.max(0, nextDue - time));
|
|
}
|
|
},
|
|
|
|
addPendingInit: function(fn, wait) {
|
|
let init = {
|
|
fn: fn,
|
|
due: Cu.now() + wait,
|
|
complete: false,
|
|
maybeInit: function() {
|
|
if (this.complete) {
|
|
return false;
|
|
}
|
|
this.complete = true;
|
|
this.fn.call();
|
|
this.fn = null;
|
|
return true;
|
|
},
|
|
};
|
|
|
|
if (!this.pendingInits.length) {
|
|
// Schedule for the first idle.
|
|
MessageLoop.postIdleTask(() => this.onIdle(), wait);
|
|
}
|
|
this.pendingInits.push(init);
|
|
return init;
|
|
},
|
|
|
|
scheduleInit: function(fn, object, name, wait) {
|
|
let init = this.addPendingInit(fn, wait);
|
|
|
|
if (!object || !name) {
|
|
// No lazy getter needed.
|
|
return;
|
|
}
|
|
|
|
// Get any existing information about the property.
|
|
let prop = Object.getOwnPropertyDescriptor(object, name) ||
|
|
{ configurable: true, enumerable: true, writable: true };
|
|
|
|
if (!prop.configurable) {
|
|
// Object.defineProperty won't work, so just perform init here.
|
|
init.maybeInit();
|
|
return;
|
|
}
|
|
|
|
// Define proxy getter/setter that will call first initializer first,
|
|
// before delegating the get/set to the original target.
|
|
Object.defineProperty(object, name, {
|
|
get: function proxy_getter() {
|
|
init.maybeInit();
|
|
|
|
// If the initializer actually ran, it may have replaced our proxy
|
|
// property with a real one, so we need to reload he property.
|
|
let newProp = Object.getOwnPropertyDescriptor(object, name);
|
|
if (newProp.get !== proxy_getter) {
|
|
// Set prop if newProp doesn't refer to our proxy property.
|
|
prop = newProp;
|
|
} else {
|
|
// Otherwise, reset to the original property.
|
|
Object.defineProperty(object, name, prop);
|
|
}
|
|
|
|
if (prop.get) {
|
|
return prop.get.call(object);
|
|
}
|
|
return prop.value;
|
|
},
|
|
set: function(newVal) {
|
|
init.maybeInit();
|
|
|
|
// Since our initializer already ran,
|
|
// we can get rid of our proxy property.
|
|
if (prop.get || prop.set) {
|
|
Object.defineProperty(object, name, prop);
|
|
return prop.set.call(object);
|
|
}
|
|
|
|
prop.value = newVal;
|
|
Object.defineProperty(object, name, prop);
|
|
return newVal;
|
|
},
|
|
configurable: true,
|
|
enumerable: true,
|
|
});
|
|
},
|
|
};
|