зеркало из https://github.com/mozilla/gecko-dev.git
1652 строки
71 KiB
C++
1652 строки
71 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set sw=2 ts=2 et tw=80 : */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/layers/AsyncCompositionManager.h"
|
|
#include <stdint.h> // for uint32_t
|
|
#include "apz/src/AsyncPanZoomController.h"
|
|
#include "FrameMetrics.h" // for FrameMetrics
|
|
#include "LayerManagerComposite.h" // for LayerManagerComposite, etc
|
|
#include "Layers.h" // for Layer, ContainerLayer, etc
|
|
#include "gfxPoint.h" // for gfxPoint, gfxSize
|
|
#include "gfxPrefs.h" // for gfxPrefs
|
|
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
|
|
#include "mozilla/WidgetUtils.h" // for ComputeTransformForRotation
|
|
#include "mozilla/dom/KeyframeEffectReadOnly.h"
|
|
#include "mozilla/dom/AnimationEffectReadOnlyBinding.h" // for dom::FillMode
|
|
#include "mozilla/dom/KeyframeEffectBinding.h" // for dom::IterationComposite
|
|
#include "mozilla/gfx/BaseRect.h" // for BaseRect
|
|
#include "mozilla/gfx/Point.h" // for RoundedToInt, PointTyped
|
|
#include "mozilla/gfx/Rect.h" // for RoundedToInt, RectTyped
|
|
#include "mozilla/gfx/ScaleFactor.h" // for ScaleFactor
|
|
#include "mozilla/layers/APZUtils.h" // for CompleteAsyncTransform
|
|
#include "mozilla/layers/Compositor.h" // for Compositor
|
|
#include "mozilla/layers/CompositorBridgeParent.h" // for CompositorBridgeParent, etc
|
|
#include "mozilla/layers/CompositorThread.h"
|
|
#include "mozilla/layers/LayerAnimationUtils.h" // for TimingFunctionToComputedTimingFunction
|
|
#include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper
|
|
#include "nsCoord.h" // for NSAppUnitsToFloatPixels, etc
|
|
#include "nsDebug.h" // for NS_ASSERTION, etc
|
|
#include "nsDeviceContext.h" // for nsDeviceContext
|
|
#include "nsDisplayList.h" // for nsDisplayTransform, etc
|
|
#include "nsMathUtils.h" // for NS_round
|
|
#include "nsPoint.h" // for nsPoint
|
|
#include "nsRect.h" // for mozilla::gfx::IntRect
|
|
#include "nsRegion.h" // for nsIntRegion
|
|
#include "nsTArray.h" // for nsTArray, nsTArray_Impl, etc
|
|
#include "nsTArrayForwardDeclare.h" // for InfallibleTArray
|
|
#include "UnitTransforms.h" // for TransformTo
|
|
#include "gfxPrefs.h"
|
|
#if defined(MOZ_WIDGET_ANDROID)
|
|
# include <android/log.h>
|
|
# include "AndroidBridge.h"
|
|
#endif
|
|
#include "GeckoProfiler.h"
|
|
#include "FrameUniformityData.h"
|
|
#include "TreeTraversal.h" // for ForEachNode, BreadthFirstSearch
|
|
#include "VsyncSource.h"
|
|
|
|
struct nsCSSValueSharedList;
|
|
|
|
namespace mozilla {
|
|
namespace layers {
|
|
|
|
using namespace mozilla::gfx;
|
|
|
|
static bool
|
|
IsSameDimension(dom::ScreenOrientationInternal o1, dom::ScreenOrientationInternal o2)
|
|
{
|
|
bool isO1portrait = (o1 == dom::eScreenOrientation_PortraitPrimary || o1 == dom::eScreenOrientation_PortraitSecondary);
|
|
bool isO2portrait = (o2 == dom::eScreenOrientation_PortraitPrimary || o2 == dom::eScreenOrientation_PortraitSecondary);
|
|
return !(isO1portrait ^ isO2portrait);
|
|
}
|
|
|
|
static bool
|
|
ContentMightReflowOnOrientationChange(const IntRect& rect)
|
|
{
|
|
return rect.width != rect.height;
|
|
}
|
|
|
|
AsyncCompositionManager::AsyncCompositionManager(LayerManagerComposite* aManager)
|
|
: mLayerManager(aManager)
|
|
, mIsFirstPaint(true)
|
|
, mLayersUpdated(false)
|
|
, mPaintSyncId(0)
|
|
, mReadyForCompose(true)
|
|
{
|
|
}
|
|
|
|
AsyncCompositionManager::~AsyncCompositionManager()
|
|
{
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::ResolveRefLayers(CompositorBridgeParent* aCompositor,
|
|
bool* aHasRemoteContent,
|
|
bool* aResolvePlugins)
|
|
{
|
|
if (aHasRemoteContent) {
|
|
*aHasRemoteContent = false;
|
|
}
|
|
|
|
#if defined(XP_WIN) || defined(MOZ_WIDGET_GTK)
|
|
// If valid *aResolvePlugins indicates if we need to update plugin geometry
|
|
// when we walk the tree.
|
|
bool resolvePlugins = (aCompositor && aResolvePlugins && *aResolvePlugins);
|
|
#endif
|
|
|
|
if (!mLayerManager->GetRoot()) {
|
|
// Updated the return value since this result controls completing composition.
|
|
if (aResolvePlugins) {
|
|
*aResolvePlugins = false;
|
|
}
|
|
return;
|
|
}
|
|
|
|
mReadyForCompose = true;
|
|
bool hasRemoteContent = false;
|
|
bool didResolvePlugins = false;
|
|
|
|
ForEachNode<ForwardIterator>(
|
|
mLayerManager->GetRoot(),
|
|
[&](Layer* layer)
|
|
{
|
|
RefLayer* refLayer = layer->AsRefLayer();
|
|
if (!refLayer) {
|
|
return;
|
|
}
|
|
|
|
hasRemoteContent = true;
|
|
const CompositorBridgeParent::LayerTreeState* state =
|
|
CompositorBridgeParent::GetIndirectShadowTree(refLayer->GetReferentId());
|
|
if (!state) {
|
|
return;
|
|
}
|
|
|
|
Layer* referent = state->mRoot;
|
|
if (!referent) {
|
|
return;
|
|
}
|
|
|
|
if (!refLayer->GetLocalVisibleRegion().IsEmpty()) {
|
|
dom::ScreenOrientationInternal chromeOrientation =
|
|
mTargetConfig.orientation();
|
|
dom::ScreenOrientationInternal contentOrientation =
|
|
state->mTargetConfig.orientation();
|
|
if (!IsSameDimension(chromeOrientation, contentOrientation) &&
|
|
ContentMightReflowOnOrientationChange(mTargetConfig.naturalBounds())) {
|
|
mReadyForCompose = false;
|
|
}
|
|
}
|
|
|
|
refLayer->ConnectReferentLayer(referent);
|
|
|
|
#if defined(XP_WIN) || defined(MOZ_WIDGET_GTK)
|
|
if (resolvePlugins) {
|
|
didResolvePlugins |=
|
|
aCompositor->UpdatePluginWindowState(refLayer->GetReferentId());
|
|
}
|
|
#endif
|
|
});
|
|
|
|
if (aHasRemoteContent) {
|
|
*aHasRemoteContent = hasRemoteContent;
|
|
}
|
|
if (aResolvePlugins) {
|
|
*aResolvePlugins = didResolvePlugins;
|
|
}
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::DetachRefLayers()
|
|
{
|
|
if (!mLayerManager->GetRoot()) {
|
|
return;
|
|
}
|
|
|
|
mReadyForCompose = false;
|
|
|
|
ForEachNodePostOrder<ForwardIterator>(mLayerManager->GetRoot(),
|
|
[&](Layer* layer)
|
|
{
|
|
RefLayer* refLayer = layer->AsRefLayer();
|
|
if (!refLayer) {
|
|
return;
|
|
}
|
|
|
|
const CompositorBridgeParent::LayerTreeState* state =
|
|
CompositorBridgeParent::GetIndirectShadowTree(refLayer->GetReferentId());
|
|
if (!state) {
|
|
return;
|
|
}
|
|
|
|
Layer* referent = state->mRoot;
|
|
if (referent) {
|
|
refLayer->DetachReferentLayer(referent);
|
|
}
|
|
});
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::ComputeRotation()
|
|
{
|
|
if (!mTargetConfig.naturalBounds().IsEmpty()) {
|
|
mWorldTransform =
|
|
ComputeTransformForRotation(mTargetConfig.naturalBounds(),
|
|
mTargetConfig.rotation());
|
|
}
|
|
}
|
|
|
|
static void
|
|
GetBaseTransform(Layer* aLayer, Matrix4x4* aTransform)
|
|
{
|
|
// Start with the animated transform if there is one
|
|
*aTransform =
|
|
(aLayer->AsLayerComposite()->GetShadowTransformSetByAnimation()
|
|
? aLayer->GetLocalTransform()
|
|
: aLayer->GetTransform());
|
|
}
|
|
|
|
static void
|
|
TransformClipRect(Layer* aLayer,
|
|
const ParentLayerToParentLayerMatrix4x4& aTransform)
|
|
{
|
|
MOZ_ASSERT(aTransform.Is2D());
|
|
const Maybe<ParentLayerIntRect>& clipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
|
|
if (clipRect) {
|
|
ParentLayerIntRect transformed = TransformBy(aTransform, *clipRect);
|
|
aLayer->AsLayerComposite()->SetShadowClipRect(Some(transformed));
|
|
}
|
|
}
|
|
|
|
// Similar to TransformFixedClip(), but only transforms the fixed part of the
|
|
// clip.
|
|
static void
|
|
TransformFixedClip(Layer* aLayer,
|
|
const ParentLayerToParentLayerMatrix4x4& aTransform,
|
|
AsyncCompositionManager::ClipParts& aClipParts)
|
|
{
|
|
MOZ_ASSERT(aTransform.Is2D());
|
|
if (aClipParts.mFixedClip) {
|
|
*aClipParts.mFixedClip = TransformBy(aTransform, *aClipParts.mFixedClip);
|
|
aLayer->AsLayerComposite()->SetShadowClipRect(aClipParts.Intersect());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Set the given transform as the shadow transform on the layer, assuming
|
|
* that the given transform already has the pre- and post-scales applied.
|
|
* That is, this function cancels out the pre- and post-scales from aTransform
|
|
* before setting it as the shadow transform on the layer, so that when
|
|
* the layer's effective transform is computed, the pre- and post-scales will
|
|
* only be applied once.
|
|
*/
|
|
static void
|
|
SetShadowTransform(Layer* aLayer, LayerToParentLayerMatrix4x4 aTransform)
|
|
{
|
|
if (ContainerLayer* c = aLayer->AsContainerLayer()) {
|
|
aTransform.PreScale(1.0f / c->GetPreXScale(),
|
|
1.0f / c->GetPreYScale(),
|
|
1);
|
|
}
|
|
aTransform.PostScale(1.0f / aLayer->GetPostXScale(),
|
|
1.0f / aLayer->GetPostYScale(),
|
|
1);
|
|
aLayer->AsLayerComposite()->SetShadowBaseTransform(aTransform.ToUnknownMatrix());
|
|
}
|
|
|
|
static void
|
|
TranslateShadowLayer(Layer* aLayer,
|
|
const gfxPoint& aTranslation,
|
|
bool aAdjustClipRect,
|
|
AsyncCompositionManager::ClipPartsCache* aClipPartsCache)
|
|
{
|
|
// This layer might also be a scrollable layer and have an async transform.
|
|
// To make sure we don't clobber that, we start with the shadow transform.
|
|
// (i.e. GetLocalTransform() instead of GetTransform()).
|
|
// Note that the shadow transform is reset on every frame of composition so
|
|
// we don't have to worry about the adjustments compounding over successive
|
|
// frames.
|
|
LayerToParentLayerMatrix4x4 layerTransform = aLayer->GetLocalTransformTyped();
|
|
|
|
// Apply the translation to the layer transform.
|
|
layerTransform.PostTranslate(aTranslation.x, aTranslation.y, 0);
|
|
|
|
SetShadowTransform(aLayer, layerTransform);
|
|
aLayer->AsLayerComposite()->SetShadowTransformSetByAnimation(false);
|
|
|
|
if (aAdjustClipRect) {
|
|
auto transform = ParentLayerToParentLayerMatrix4x4::Translation(aTranslation.x, aTranslation.y, 0);
|
|
// If we're passed a clip parts cache, only transform the fixed part of
|
|
// the clip.
|
|
if (aClipPartsCache) {
|
|
auto iter = aClipPartsCache->find(aLayer);
|
|
MOZ_ASSERT(iter != aClipPartsCache->end());
|
|
TransformFixedClip(aLayer, transform, iter->second);
|
|
} else {
|
|
TransformClipRect(aLayer, transform);
|
|
}
|
|
|
|
// If a fixed- or sticky-position layer has a mask layer, that mask should
|
|
// move along with the layer, so apply the translation to the mask layer too.
|
|
if (Layer* maskLayer = aLayer->GetMaskLayer()) {
|
|
TranslateShadowLayer(maskLayer, aTranslation, false, aClipPartsCache);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
AccumulateLayerTransforms(Layer* aLayer,
|
|
Layer* aAncestor,
|
|
Matrix4x4& aMatrix)
|
|
{
|
|
// Accumulate the transforms between this layer and the subtree root layer.
|
|
for (Layer* l = aLayer; l && l != aAncestor; l = l->GetParent()) {
|
|
Matrix4x4 transform;
|
|
GetBaseTransform(l, &transform);
|
|
aMatrix *= transform;
|
|
}
|
|
}
|
|
|
|
static LayerPoint
|
|
GetLayerFixedMarginsOffset(Layer* aLayer,
|
|
const ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
// Work out the necessary translation, in root scrollable layer space.
|
|
// Because fixed layer margins are stored relative to the root scrollable
|
|
// layer, we can just take the difference between these values.
|
|
LayerPoint translation;
|
|
int32_t sides = aLayer->GetFixedPositionSides();
|
|
|
|
if ((sides & eSideBitsLeftRight) == eSideBitsLeftRight) {
|
|
translation.x += (aFixedLayerMargins.left - aFixedLayerMargins.right) / 2;
|
|
} else if (sides & eSideBitsRight) {
|
|
translation.x -= aFixedLayerMargins.right;
|
|
} else if (sides & eSideBitsLeft) {
|
|
translation.x += aFixedLayerMargins.left;
|
|
}
|
|
|
|
if ((sides & eSideBitsTopBottom) == eSideBitsTopBottom) {
|
|
translation.y += (aFixedLayerMargins.top - aFixedLayerMargins.bottom) / 2;
|
|
} else if (sides & eSideBitsBottom) {
|
|
translation.y -= aFixedLayerMargins.bottom;
|
|
} else if (sides & eSideBitsTop) {
|
|
translation.y += aFixedLayerMargins.top;
|
|
}
|
|
|
|
return translation;
|
|
}
|
|
|
|
static gfxFloat
|
|
IntervalOverlap(gfxFloat aTranslation, gfxFloat aMin, gfxFloat aMax)
|
|
{
|
|
// Determine the amount of overlap between the 1D vector |aTranslation|
|
|
// and the interval [aMin, aMax].
|
|
if (aTranslation > 0) {
|
|
return std::max(0.0, std::min(aMax, aTranslation) - std::max(aMin, 0.0));
|
|
} else {
|
|
return std::min(0.0, std::max(aMin, aTranslation) - std::min(aMax, 0.0));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Finds the metrics on |aLayer| with scroll id |aScrollId|, and returns a
|
|
* LayerMetricsWrapper representing the (layer, metrics) pair, or the null
|
|
* LayerMetricsWrapper if no matching metrics could be found.
|
|
*/
|
|
static LayerMetricsWrapper
|
|
FindMetricsWithScrollId(Layer* aLayer, FrameMetrics::ViewID aScrollId)
|
|
{
|
|
for (uint64_t i = 0; i < aLayer->GetScrollMetadataCount(); ++i) {
|
|
if (aLayer->GetFrameMetrics(i).GetScrollId() == aScrollId) {
|
|
return LayerMetricsWrapper(aLayer, i);
|
|
}
|
|
}
|
|
return LayerMetricsWrapper();
|
|
}
|
|
|
|
/**
|
|
* Checks whether the (layer, metrics) pair (aTransformedLayer, aTransformedMetrics)
|
|
* is on the path from |aFixedLayer| to the metrics with scroll id
|
|
* |aFixedWithRespectTo|, inclusive.
|
|
*/
|
|
static bool
|
|
AsyncTransformShouldBeUnapplied(Layer* aFixedLayer,
|
|
FrameMetrics::ViewID aFixedWithRespectTo,
|
|
Layer* aTransformedLayer,
|
|
FrameMetrics::ViewID aTransformedMetrics)
|
|
{
|
|
LayerMetricsWrapper transformed = FindMetricsWithScrollId(aTransformedLayer, aTransformedMetrics);
|
|
if (!transformed.IsValid()) {
|
|
return false;
|
|
}
|
|
// It's important to start at the bottom, because the fixed layer itself
|
|
// could have the transformed metrics, and they can be at the bottom.
|
|
LayerMetricsWrapper current(aFixedLayer, LayerMetricsWrapper::StartAt::BOTTOM);
|
|
bool encounteredTransformedLayer = false;
|
|
// The transformed layer is on the path from |aFixedLayer| to the fixed-to
|
|
// layer if as we walk up the (layer, metrics) tree starting from
|
|
// |aFixedLayer|, we *first* encounter the transformed layer, and *then* (or
|
|
// at the same time) the fixed-to layer.
|
|
while (current) {
|
|
if (!encounteredTransformedLayer && current == transformed) {
|
|
encounteredTransformedLayer = true;
|
|
}
|
|
if (current.Metrics().GetScrollId() == aFixedWithRespectTo) {
|
|
return encounteredTransformedLayer;
|
|
}
|
|
current = current.GetParent();
|
|
// It's possible that we reach a layers id boundary before we reach an
|
|
// ancestor with the scroll id |aFixedWithRespectTo| (this could happen
|
|
// e.g. if the scroll frame with that scroll id uses containerless
|
|
// scrolling). In such a case, stop the walk, as a new layers id could
|
|
// have a different layer with scroll id |aFixedWithRespectTo| which we
|
|
// don't intend to match.
|
|
if (current && current.AsRefLayer() != nullptr) {
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If |aLayer| is fixed or sticky, returns the scroll id of the scroll frame
|
|
// that it's fixed or sticky to. Otherwise, returns Nothing().
|
|
static Maybe<FrameMetrics::ViewID>
|
|
IsFixedOrSticky(Layer* aLayer)
|
|
{
|
|
bool isRootOfFixedSubtree = aLayer->GetIsFixedPosition() &&
|
|
!aLayer->GetParent()->GetIsFixedPosition();
|
|
if (isRootOfFixedSubtree) {
|
|
return Some(aLayer->GetFixedPositionScrollContainerId());
|
|
}
|
|
if (aLayer->GetIsStickyPosition()) {
|
|
return Some(aLayer->GetStickyScrollContainerId());
|
|
}
|
|
return Nothing();
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::AlignFixedAndStickyLayers(Layer* aTransformedSubtreeRoot,
|
|
FrameMetrics::ViewID aTransformScrollId,
|
|
const LayerToParentLayerMatrix4x4& aPreviousTransformForRoot,
|
|
const LayerToParentLayerMatrix4x4& aCurrentTransformForRoot,
|
|
const ScreenMargin& aFixedLayerMargins,
|
|
ClipPartsCache* aClipPartsCache)
|
|
{
|
|
ForEachNode<ForwardIterator>(
|
|
aTransformedSubtreeRoot,
|
|
[&] (Layer* layer)
|
|
{
|
|
bool needsAsyncTransformUnapplied = false;
|
|
if (Maybe<FrameMetrics::ViewID> fixedTo = IsFixedOrSticky(layer)) {
|
|
needsAsyncTransformUnapplied = AsyncTransformShouldBeUnapplied(layer,
|
|
*fixedTo, aTransformedSubtreeRoot, aTransformScrollId);
|
|
}
|
|
|
|
// We want to process all the fixed and sticky descendants of
|
|
// aTransformedSubtreeRoot. Once we do encounter such a descendant, we don't
|
|
// need to recurse any deeper because the adjustment to the fixed or sticky
|
|
// layer will apply to its subtree.
|
|
if (!needsAsyncTransformUnapplied) {
|
|
return TraversalFlag::Continue;
|
|
}
|
|
|
|
// Insert a translation so that the position of the anchor point is the same
|
|
// before and after the change to the transform of aTransformedSubtreeRoot.
|
|
|
|
// Accumulate the transforms between this layer and the subtree root layer.
|
|
Matrix4x4 ancestorTransform;
|
|
AccumulateLayerTransforms(layer->GetParent(), aTransformedSubtreeRoot,
|
|
ancestorTransform);
|
|
|
|
// Calculate the cumulative transforms between the subtree root with the
|
|
// old transform and the current transform.
|
|
Matrix4x4 oldCumulativeTransform = ancestorTransform * aPreviousTransformForRoot.ToUnknownMatrix();
|
|
Matrix4x4 newCumulativeTransform = ancestorTransform * aCurrentTransformForRoot.ToUnknownMatrix();
|
|
if (newCumulativeTransform.IsSingular()) {
|
|
return TraversalFlag::Skip;
|
|
}
|
|
|
|
// Add in the layer's local transform, if it isn't already included in
|
|
// |aPreviousTransformForRoot| and |aCurrentTransformForRoot| (this happens
|
|
// when the fixed/sticky layer is itself the transformed subtree root).
|
|
Matrix4x4 localTransform;
|
|
GetBaseTransform(layer, &localTransform);
|
|
if (layer != aTransformedSubtreeRoot) {
|
|
oldCumulativeTransform = localTransform * oldCumulativeTransform;
|
|
newCumulativeTransform = localTransform * newCumulativeTransform;
|
|
}
|
|
|
|
// Now work out the translation necessary to make sure the layer doesn't
|
|
// move given the new sub-tree root transform.
|
|
|
|
// Get the layer's fixed anchor point, in the layer's local coordinate space
|
|
// (before any cumulative transform is applied).
|
|
LayerPoint anchor = layer->GetFixedPositionAnchor();
|
|
|
|
// Offset the layer's anchor point to make sure fixed position content
|
|
// respects content document fixed position margins.
|
|
LayerPoint offsetAnchor = anchor + GetLayerFixedMarginsOffset(layer, aFixedLayerMargins);
|
|
|
|
// Additionally transform the anchor to compensate for the change
|
|
// from the old cumulative transform to the new cumulative transform. We do
|
|
// this by using the old transform to take the offset anchor back into
|
|
// subtree root space, and then the inverse of the new cumulative transform
|
|
// to bring it back to layer space.
|
|
LayerPoint transformedAnchor = ViewAs<LayerPixel>(
|
|
newCumulativeTransform.Inverse().TransformPoint(
|
|
(oldCumulativeTransform.TransformPoint(offsetAnchor.ToUnknownPoint()))));
|
|
|
|
// We want to translate the layer by the difference between |transformedAnchor|
|
|
// and |anchor|. To achieve this, we will add a translation to the layer's
|
|
// transform. This translation will apply on top of the layer's local
|
|
// transform, but |anchor| and |transformedAnchor| are in a coordinate space
|
|
// where the local transform isn't applied yet, so apply it and then subtract
|
|
// to get the desired translation.
|
|
auto localTransformTyped = ViewAs<LayerToParentLayerMatrix4x4>(localTransform);
|
|
ParentLayerPoint translation = TransformBy(localTransformTyped, transformedAnchor)
|
|
- TransformBy(localTransformTyped, anchor);
|
|
|
|
// A fixed layer will "consume" (be unadjusted by) the entire translation
|
|
// calculated above. A sticky layer may consume all, part, or none of it,
|
|
// depending on where we are relative to its sticky scroll range.
|
|
bool translationConsumed = true;
|
|
|
|
if (layer->GetIsStickyPosition()) {
|
|
// For sticky positioned layers, the difference between the two rectangles
|
|
// defines a pair of translation intervals in each dimension through which
|
|
// the layer should not move relative to the scroll container. To
|
|
// accomplish this, we limit each dimension of the |translation| to that
|
|
// part of it which overlaps those intervals.
|
|
const LayerRect& stickyOuter = layer->GetStickyScrollRangeOuter();
|
|
const LayerRect& stickyInner = layer->GetStickyScrollRangeInner();
|
|
|
|
// TODO: There's a unit mismatch here, as |translation| is in ParentLayer
|
|
// space while |stickyOuter| and |stickyInner| are in Layer space.
|
|
ParentLayerPoint originalTranslation = translation;
|
|
translation.y = IntervalOverlap(translation.y, stickyOuter.y, stickyOuter.YMost()) -
|
|
IntervalOverlap(translation.y, stickyInner.y, stickyInner.YMost());
|
|
translation.x = IntervalOverlap(translation.x, stickyOuter.x, stickyOuter.XMost()) -
|
|
IntervalOverlap(translation.x, stickyInner.x, stickyInner.XMost());
|
|
if (translation != originalTranslation) {
|
|
translationConsumed = false;
|
|
}
|
|
}
|
|
|
|
// Finally, apply the translation to the layer transform. Note that in cases
|
|
// where the async transform on |aTransformedSubtreeRoot| affects this layer's
|
|
// clip rect, we need to apply the same translation to said clip rect, so
|
|
// that the effective transform on the clip rect takes it back to where it was
|
|
// originally, had there been no async scroll.
|
|
TranslateShadowLayer(layer, ThebesPoint(translation.ToUnknownPoint()),
|
|
true, aClipPartsCache);
|
|
|
|
// If we didn't consume the entire translation, continue the traversal
|
|
// to allow a descendant fixed or sticky layer to consume the rest.
|
|
// TODO: We curently don't handle the case where we consume part but not
|
|
// all of the translation correctly. In such a case,
|
|
// |a[Previous|Current]TransformForRoot| would need to be adjusted
|
|
// to reflect only the unconsumed part of the translation.
|
|
return translationConsumed ? TraversalFlag::Skip : TraversalFlag::Continue;
|
|
});
|
|
}
|
|
|
|
static void
|
|
SampleValue(float aPortion, Animation& aAnimation,
|
|
const StyleAnimationValue& aStart, const StyleAnimationValue& aEnd,
|
|
const StyleAnimationValue& aLastValue, uint64_t aCurrentIteration,
|
|
Animatable* aValue, Layer* aLayer)
|
|
{
|
|
NS_ASSERTION(aStart.GetUnit() == aEnd.GetUnit() ||
|
|
aStart.GetUnit() == StyleAnimationValue::eUnit_None ||
|
|
aEnd.GetUnit() == StyleAnimationValue::eUnit_None,
|
|
"Must have same unit");
|
|
|
|
StyleAnimationValue startValue = aStart;
|
|
StyleAnimationValue endValue = aEnd;
|
|
// Iteration composition for accumulate
|
|
if (static_cast<dom::IterationCompositeOperation>
|
|
(aAnimation.iterationComposite()) ==
|
|
dom::IterationCompositeOperation::Accumulate &&
|
|
aCurrentIteration > 0) {
|
|
// FIXME: Bug 1293492: Add a utility function to calculate both of
|
|
// below StyleAnimationValues.
|
|
DebugOnly<bool> accumulateResult =
|
|
StyleAnimationValue::Accumulate(aAnimation.property(),
|
|
startValue,
|
|
aLastValue,
|
|
aCurrentIteration);
|
|
MOZ_ASSERT(accumulateResult, "could not accumulate value");
|
|
accumulateResult =
|
|
StyleAnimationValue::Accumulate(aAnimation.property(),
|
|
endValue,
|
|
aLastValue,
|
|
aCurrentIteration);
|
|
MOZ_ASSERT(accumulateResult, "could not accumulate value");
|
|
}
|
|
|
|
StyleAnimationValue interpolatedValue;
|
|
// This should never fail because we only pass transform and opacity values
|
|
// to the compositor and they should never fail to interpolate.
|
|
DebugOnly<bool> uncomputeResult =
|
|
StyleAnimationValue::Interpolate(aAnimation.property(),
|
|
startValue, endValue,
|
|
aPortion, interpolatedValue);
|
|
MOZ_ASSERT(uncomputeResult, "could not uncompute value");
|
|
|
|
if (aAnimation.property() == eCSSProperty_opacity) {
|
|
*aValue = interpolatedValue.GetFloatValue();
|
|
return;
|
|
}
|
|
|
|
nsCSSValueSharedList* interpolatedList =
|
|
interpolatedValue.GetCSSValueSharedListValue();
|
|
|
|
TransformData& data = aAnimation.data().get_TransformData();
|
|
nsPoint origin = data.origin();
|
|
// we expect all our transform data to arrive in device pixels
|
|
Point3D transformOrigin = data.transformOrigin();
|
|
nsDisplayTransform::FrameTransformProperties props(interpolatedList,
|
|
transformOrigin);
|
|
|
|
// If our parent layer is a perspective layer, then the offset into reference
|
|
// frame coordinates is already on that layer. If not, then we need to ask
|
|
// for it to be added here.
|
|
uint32_t flags = 0;
|
|
if (!aLayer->GetParent() || !aLayer->GetParent()->GetTransformIsPerspective()) {
|
|
flags = nsDisplayTransform::OFFSET_BY_ORIGIN;
|
|
}
|
|
|
|
Matrix4x4 transform =
|
|
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
|
|
data.appUnitsPerDevPixel(),
|
|
flags, &data.bounds());
|
|
|
|
InfallibleTArray<TransformFunction> functions;
|
|
functions.AppendElement(TransformMatrix(transform));
|
|
*aValue = functions;
|
|
}
|
|
|
|
static bool
|
|
SampleAnimations(Layer* aLayer, TimeStamp aPoint)
|
|
{
|
|
bool activeAnimations = false;
|
|
|
|
ForEachNode<ForwardIterator>(
|
|
aLayer,
|
|
[&activeAnimations, &aPoint] (Layer* layer)
|
|
{
|
|
AnimationArray& animations = layer->GetAnimations();
|
|
InfallibleTArray<AnimData>& animationData = layer->GetAnimationData();
|
|
|
|
// Process in order, since later animations override earlier ones.
|
|
for (size_t i = 0, iEnd = animations.Length(); i < iEnd; ++i) {
|
|
Animation& animation = animations[i];
|
|
AnimData& animData = animationData[i];
|
|
|
|
activeAnimations = true;
|
|
|
|
MOZ_ASSERT(!animation.startTime().IsNull(),
|
|
"Failed to resolve start time of pending animations");
|
|
TimeDuration elapsedDuration =
|
|
(aPoint - animation.startTime()).MultDouble(animation.playbackRate());
|
|
// Skip animations that are yet to start.
|
|
//
|
|
// Currently, this should only happen when the refresh driver is under test
|
|
// control and is made to produce a time in the past or is restored from
|
|
// test control causing it to jump backwards in time.
|
|
//
|
|
// Since activeAnimations is true, this could mean we keep compositing
|
|
// unnecessarily during the delay, but so long as this only happens while
|
|
// the refresh driver is under test control that should be ok.
|
|
if (elapsedDuration.ToSeconds() < 0) {
|
|
continue;
|
|
}
|
|
|
|
TimingParams timing;
|
|
timing.mDuration.emplace(animation.duration());
|
|
// Currently animations run on the compositor have their delay factored
|
|
// into their start time, hence the delay is effectively zero.
|
|
timing.mDelay = TimeDuration(0);
|
|
timing.mIterations = animation.iterations();
|
|
timing.mIterationStart = animation.iterationStart();
|
|
timing.mDirection =
|
|
static_cast<dom::PlaybackDirection>(animation.direction());
|
|
// Animations typically only run on the compositor during their active
|
|
// interval but if we end up sampling them outside that range (for
|
|
// example, while they are waiting to be removed) we currently just
|
|
// assume that we should fill.
|
|
timing.mFill = dom::FillMode::Both;
|
|
timing.mFunction =
|
|
AnimationUtils::TimingFunctionToComputedTimingFunction(
|
|
animation.easingFunction());
|
|
|
|
ComputedTiming computedTiming =
|
|
dom::AnimationEffectReadOnly::GetComputedTimingAt(
|
|
Nullable<TimeDuration>(elapsedDuration), timing,
|
|
animation.playbackRate());
|
|
|
|
MOZ_ASSERT(!computedTiming.mProgress.IsNull(),
|
|
"iteration progress should not be null");
|
|
|
|
uint32_t segmentIndex = 0;
|
|
size_t segmentSize = animation.segments().Length();
|
|
AnimationSegment* segment = animation.segments().Elements();
|
|
while (segment->endPortion() < computedTiming.mProgress.Value() &&
|
|
segmentIndex < segmentSize - 1) {
|
|
++segment;
|
|
++segmentIndex;
|
|
}
|
|
|
|
double positionInSegment =
|
|
(computedTiming.mProgress.Value() - segment->startPortion()) /
|
|
(segment->endPortion() - segment->startPortion());
|
|
|
|
double portion =
|
|
ComputedTimingFunction::GetPortion(animData.mFunctions[segmentIndex],
|
|
positionInSegment,
|
|
computedTiming.mBeforeFlag);
|
|
|
|
// interpolate the property
|
|
Animatable interpolatedValue;
|
|
SampleValue(portion, animation,
|
|
animData.mStartValues[segmentIndex],
|
|
animData.mEndValues[segmentIndex],
|
|
animData.mEndValues.LastElement(),
|
|
computedTiming.mCurrentIteration,
|
|
&interpolatedValue, layer);
|
|
LayerComposite* layerComposite = layer->AsLayerComposite();
|
|
switch (animation.property()) {
|
|
case eCSSProperty_opacity:
|
|
{
|
|
layerComposite->SetShadowOpacity(interpolatedValue.get_float());
|
|
layerComposite->SetShadowOpacitySetByAnimation(true);
|
|
break;
|
|
}
|
|
case eCSSProperty_transform:
|
|
{
|
|
Matrix4x4 matrix = interpolatedValue.get_ArrayOfTransformFunction()[0].get_TransformMatrix().value();
|
|
if (ContainerLayer* c = layer->AsContainerLayer()) {
|
|
matrix.PostScale(c->GetInheritedXScale(), c->GetInheritedYScale(), 1);
|
|
}
|
|
layerComposite->SetShadowBaseTransform(matrix);
|
|
layerComposite->SetShadowTransformSetByAnimation(true);
|
|
break;
|
|
}
|
|
default:
|
|
NS_WARNING("Unhandled animated property");
|
|
}
|
|
}
|
|
});
|
|
return activeAnimations;
|
|
}
|
|
|
|
static bool
|
|
SampleAPZAnimations(const LayerMetricsWrapper& aLayer, TimeStamp aSampleTime)
|
|
{
|
|
bool activeAnimations = false;
|
|
for (LayerMetricsWrapper child = aLayer.GetFirstChild(); child;
|
|
child = child.GetNextSibling()) {
|
|
activeAnimations |= SampleAPZAnimations(child, aSampleTime);
|
|
}
|
|
|
|
if (AsyncPanZoomController* apzc = aLayer.GetApzc()) {
|
|
apzc->ReportCheckerboard(aSampleTime);
|
|
activeAnimations |= apzc->AdvanceAnimations(aSampleTime);
|
|
}
|
|
|
|
return activeAnimations;
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::RecordShadowTransforms(Layer* aLayer)
|
|
{
|
|
MOZ_ASSERT(gfxPrefs::CollectScrollTransforms());
|
|
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
|
|
|
|
ForEachNodePostOrder<ForwardIterator>(
|
|
aLayer,
|
|
[this] (Layer* layer)
|
|
{
|
|
for (uint32_t i = 0; i < layer->GetScrollMetadataCount(); i++) {
|
|
AsyncPanZoomController* apzc = layer->GetAsyncPanZoomController(i);
|
|
if (!apzc) {
|
|
continue;
|
|
}
|
|
gfx::Matrix4x4 shadowTransform = layer->AsLayerComposite()->GetShadowBaseTransform();
|
|
if (!shadowTransform.Is2D()) {
|
|
continue;
|
|
}
|
|
|
|
Matrix transform = shadowTransform.As2D();
|
|
if (transform.IsTranslation() && !shadowTransform.IsIdentity()) {
|
|
Point translation = transform.GetTranslation();
|
|
mLayerTransformRecorder.RecordTransform(layer, translation);
|
|
return;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
static AsyncTransformComponentMatrix
|
|
AdjustForClip(const AsyncTransformComponentMatrix& asyncTransform, Layer* aLayer)
|
|
{
|
|
AsyncTransformComponentMatrix result = asyncTransform;
|
|
|
|
// Container layers start at the origin, but they are clipped to where they
|
|
// actually have content on the screen. The tree transform is meant to apply
|
|
// to the clipped area. If the tree transform includes a scale component,
|
|
// then applying it to container as-is will produce incorrect results. To
|
|
// avoid this, translate the layer so that the clip rect starts at the origin,
|
|
// apply the tree transform, and translate back.
|
|
if (const Maybe<ParentLayerIntRect>& shadowClipRect = aLayer->AsLayerComposite()->GetShadowClipRect()) {
|
|
if (shadowClipRect->TopLeft() != ParentLayerIntPoint()) { // avoid a gratuitous change of basis
|
|
result.ChangeBasis(shadowClipRect->x, shadowClipRect->y, 0);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
ExpandRootClipRect(Layer* aLayer, const ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
// For Fennec we want to expand the root scrollable layer clip rect based on
|
|
// the fixed position margins. In particular, we want this while the dynamic
|
|
// toolbar is in the process of sliding offscreen and the area of the
|
|
// LayerView visible to the user is larger than the viewport size that Gecko
|
|
// knows about (and therefore larger than the clip rect). We could also just
|
|
// clear the clip rect on aLayer entirely but this seems more precise.
|
|
Maybe<ParentLayerIntRect> rootClipRect = aLayer->AsLayerComposite()->GetShadowClipRect();
|
|
if (rootClipRect && aFixedLayerMargins != ScreenMargin()) {
|
|
#ifndef MOZ_WIDGET_ANDROID
|
|
// We should never enter here on anything other than Fennec, since
|
|
// aFixedLayerMargins should be empty everywhere else.
|
|
MOZ_ASSERT(false);
|
|
#endif
|
|
ParentLayerRect rect(rootClipRect.value());
|
|
rect.Deflate(ViewAs<ParentLayerPixel>(aFixedLayerMargins,
|
|
PixelCastJustification::ScreenIsParentLayerForRoot));
|
|
aLayer->AsLayerComposite()->SetShadowClipRect(Some(RoundedOut(rect)));
|
|
}
|
|
}
|
|
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
static void
|
|
MoveScrollbarForLayerMargin(Layer* aRoot, FrameMetrics::ViewID aRootScrollId,
|
|
const ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
// See bug 1223928 comment 9 - once we can detect the RCD with just the
|
|
// isRootContent flag on the metrics, we can probably move this code into
|
|
// ApplyAsyncTransformToScrollbar rather than having it as a separate
|
|
// adjustment on the layer tree.
|
|
Layer* scrollbar = BreadthFirstSearch<ReverseIterator>(aRoot,
|
|
[aRootScrollId](Layer* aNode) {
|
|
return (aNode->GetScrollbarDirection() == Layer::HORIZONTAL &&
|
|
aNode->GetScrollbarTargetContainerId() == aRootScrollId);
|
|
});
|
|
if (scrollbar) {
|
|
// Shift the horizontal scrollbar down into the new space exposed by the
|
|
// dynamic toolbar hiding. Technically we should also scale the vertical
|
|
// scrollbar a bit to expand into the new space but it's not as noticeable
|
|
// and it would add a lot more complexity, so we're going with the "it's not
|
|
// worth it" justification.
|
|
TranslateShadowLayer(scrollbar, gfxPoint(0, -aFixedLayerMargins.bottom), true, nullptr);
|
|
if (scrollbar->GetParent()) {
|
|
// The layer that has the HORIZONTAL direction sits inside another
|
|
// ContainerLayer. This ContainerLayer also has a clip rect that causes
|
|
// the scrollbar to get clipped. We need to expand that clip rect to
|
|
// prevent that from happening. This is kind of ugly in that we're
|
|
// assuming a particular layer tree structure but short of adding more
|
|
// flags to the layer there doesn't appear to be a good way to do this.
|
|
ExpandRootClipRect(scrollbar->GetParent(), aFixedLayerMargins);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool
|
|
AsyncCompositionManager::ApplyAsyncContentTransformToTree(Layer *aLayer,
|
|
bool* aOutFoundRoot)
|
|
{
|
|
bool appliedTransform = false;
|
|
std::stack<Maybe<ParentLayerIntRect>> stackDeferredClips;
|
|
|
|
// Maps layers to their ClipParts. The parts are not stored individually
|
|
// on the layer, but during AlignFixedAndStickyLayers we need access to
|
|
// the individual parts for descendant layers.
|
|
ClipPartsCache clipPartsCache;
|
|
|
|
ForEachNode<ForwardIterator>(
|
|
aLayer,
|
|
[&stackDeferredClips] (Layer* layer)
|
|
{
|
|
stackDeferredClips.push(Maybe<ParentLayerIntRect>());
|
|
},
|
|
[this, &aOutFoundRoot, &stackDeferredClips, &appliedTransform, &clipPartsCache] (Layer* layer)
|
|
{
|
|
Maybe<ParentLayerIntRect> clipDeferredFromChildren = stackDeferredClips.top();
|
|
stackDeferredClips.pop();
|
|
LayerToParentLayerMatrix4x4 oldTransform = layer->GetTransformTyped() *
|
|
AsyncTransformMatrix();
|
|
|
|
AsyncTransformComponentMatrix combinedAsyncTransform;
|
|
bool hasAsyncTransform = false;
|
|
ScreenMargin fixedLayerMargins;
|
|
|
|
// Each layer has multiple clips:
|
|
// - Its local clip, which is fixed to the layer contents, i.e. it moves
|
|
// with those async transforms which the layer contents move with.
|
|
// - Its scrolled clip, which moves with all async transforms.
|
|
// - For each ScrollMetadata on the layer, a scroll clip. This includes
|
|
// the composition bounds and any other clips induced by layout. This
|
|
// moves with async transforms from ScrollMetadatas above it.
|
|
// In this function, these clips are combined into two shadow clip parts:
|
|
// - The fixed clip, which consists of the local clip only, initially
|
|
// transformed by all async transforms.
|
|
// - The scrolled clip, which consists of the other clips, transformed by
|
|
// the appropriate transforms.
|
|
// These two parts are kept separate for now, because for fixed layers, we
|
|
// need to adjust the fixed clip (to cancel out some async transforms).
|
|
// The parts are kept in a cache which is cleared at the beginning of every
|
|
// composite.
|
|
// The final shadow clip for the layer is the intersection of the (possibly
|
|
// adjusted) fixed clip and the scrolled clip.
|
|
ClipParts& clipParts = clipPartsCache[layer];
|
|
clipParts.mFixedClip = layer->GetClipRect();
|
|
clipParts.mScrolledClip = layer->GetScrolledClipRect();
|
|
|
|
// If we are a perspective transform ContainerLayer, apply the clip deferred
|
|
// from our child (if there is any) before we iterate over our frame metrics,
|
|
// because this clip is subject to all async transforms of this layer.
|
|
// Since this clip came from the a scroll clip on the child, it becomes part
|
|
// of our scrolled clip.
|
|
clipParts.mScrolledClip = IntersectMaybeRects(
|
|
clipDeferredFromChildren, clipParts.mScrolledClip);
|
|
|
|
// The transform of a mask layer is relative to the masked layer's parent
|
|
// layer. So whenever we apply an async transform to a layer, we need to
|
|
// apply that same transform to the layer's own mask layer.
|
|
// A layer can also have "ancestor" mask layers for any rounded clips from
|
|
// its ancestor scroll frames. A scroll frame mask layer only needs to be
|
|
// async transformed for async scrolls of this scroll frame's ancestor
|
|
// scroll frames, not for async scrolls of this scroll frame itself.
|
|
// In the loop below, we iterate over scroll frames from inside to outside.
|
|
// At each iteration, this array contains the layer's ancestor mask layers
|
|
// of all scroll frames inside the current one.
|
|
nsTArray<Layer*> ancestorMaskLayers;
|
|
|
|
// The layer's scrolled clip can have an ancestor mask layer as well,
|
|
// which is moved by all async scrolls on this layer.
|
|
if (const Maybe<LayerClip>& scrolledClip = layer->GetScrolledClip()) {
|
|
if (scrolledClip->GetMaskLayerIndex()) {
|
|
ancestorMaskLayers.AppendElement(
|
|
layer->GetAncestorMaskLayerAt(*scrolledClip->GetMaskLayerIndex()));
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < layer->GetScrollMetadataCount(); i++) {
|
|
AsyncPanZoomController* controller = layer->GetAsyncPanZoomController(i);
|
|
if (!controller) {
|
|
continue;
|
|
}
|
|
|
|
hasAsyncTransform = true;
|
|
|
|
AsyncTransform asyncTransformWithoutOverscroll =
|
|
controller->GetCurrentAsyncTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
|
|
AsyncTransformComponentMatrix overscrollTransform =
|
|
controller->GetOverscrollTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
|
|
AsyncTransformComponentMatrix asyncTransform =
|
|
AsyncTransformComponentMatrix(asyncTransformWithoutOverscroll)
|
|
* overscrollTransform;
|
|
|
|
if (!layer->IsScrollInfoLayer()) {
|
|
controller->MarkAsyncTransformAppliedToContent();
|
|
}
|
|
|
|
const ScrollMetadata& scrollMetadata = layer->GetScrollMetadata(i);
|
|
const FrameMetrics& metrics = scrollMetadata.GetMetrics();
|
|
|
|
#if defined(MOZ_WIDGET_ANDROID)
|
|
// If we find a metrics which is the root content doc, use that. If not, use
|
|
// the root layer. Since this function recurses on children first we should
|
|
// only end up using the root layer if the entire tree was devoid of a
|
|
// root content metrics. This is a temporary solution; in the long term we
|
|
// should not need the root content metrics at all. See bug 1201529 comment
|
|
// 6 for details.
|
|
if (!(*aOutFoundRoot)) {
|
|
*aOutFoundRoot = metrics.IsRootContent() || /* RCD */
|
|
(layer->GetParent() == nullptr && /* rootmost metrics */
|
|
i + 1 >= layer->GetScrollMetadataCount());
|
|
if (*aOutFoundRoot) {
|
|
mRootScrollableId = metrics.GetScrollId();
|
|
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
|
|
if (mIsFirstPaint) {
|
|
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
|
|
mContentRect = metrics.GetScrollableRect();
|
|
SetFirstPaintViewport(scrollOffsetLayerPixels,
|
|
geckoZoom,
|
|
mContentRect);
|
|
} else {
|
|
ParentLayerPoint scrollOffset = controller->GetCurrentAsyncScrollOffset(
|
|
AsyncPanZoomController::RESPECT_FORCE_DISABLE);
|
|
// Compute the painted displayport in document-relative CSS pixels.
|
|
CSSRect displayPort(metrics.GetCriticalDisplayPort().IsEmpty() ?
|
|
metrics.GetDisplayPort() :
|
|
metrics.GetCriticalDisplayPort());
|
|
displayPort += metrics.GetScrollOffset();
|
|
SyncFrameMetrics(scrollOffset,
|
|
geckoZoom * asyncTransformWithoutOverscroll.mScale,
|
|
metrics.GetScrollableRect(), displayPort, geckoZoom, mLayersUpdated,
|
|
mPaintSyncId, fixedLayerMargins);
|
|
mFixedLayerMargins = fixedLayerMargins;
|
|
mLayersUpdated = false;
|
|
}
|
|
mIsFirstPaint = false;
|
|
mPaintSyncId = 0;
|
|
}
|
|
}
|
|
#else
|
|
// Non-Android platforms still care about this flag being cleared after
|
|
// the first call to TransformShadowTree().
|
|
mIsFirstPaint = false;
|
|
#endif
|
|
|
|
// Transform the current local clips by this APZC's async transform. If we're
|
|
// using containerful scrolling, then the clip is not part of the scrolled
|
|
// frame and should not be transformed.
|
|
if (!scrollMetadata.UsesContainerScrolling()) {
|
|
MOZ_ASSERT(asyncTransform.Is2D());
|
|
if (clipParts.mFixedClip) {
|
|
*clipParts.mFixedClip = TransformBy(asyncTransform, *clipParts.mFixedClip);
|
|
}
|
|
if (clipParts.mScrolledClip) {
|
|
*clipParts.mScrolledClip = TransformBy(asyncTransform, *clipParts.mScrolledClip);
|
|
}
|
|
}
|
|
// Note: we don't set the layer's shadow clip rect property yet;
|
|
// AlignFixedAndStickyLayers will use the clip parts from the clip parts
|
|
// cache.
|
|
|
|
combinedAsyncTransform *= asyncTransform;
|
|
|
|
// For the purpose of aligning fixed and sticky layers, we disregard
|
|
// the overscroll transform as well as any OMTA transform when computing the
|
|
// 'aCurrentTransformForRoot' parameter. This ensures that the overscroll
|
|
// and OMTA transforms are not unapplied, and therefore that the visual
|
|
// effects apply to fixed and sticky layers. We do this by using
|
|
// GetTransform() as the base transform rather than GetLocalTransform(),
|
|
// which would include those factors.
|
|
LayerToParentLayerMatrix4x4 transformWithoutOverscrollOrOmta =
|
|
layer->GetTransformTyped()
|
|
* CompleteAsyncTransform(
|
|
AdjustForClip(asyncTransformWithoutOverscroll, layer));
|
|
|
|
AlignFixedAndStickyLayers(layer, metrics.GetScrollId(), oldTransform,
|
|
transformWithoutOverscrollOrOmta, fixedLayerMargins,
|
|
&clipPartsCache);
|
|
|
|
// Combine the local clip with the ancestor scrollframe clip. This is not
|
|
// included in the async transform above, since the ancestor clip should not
|
|
// move with this APZC.
|
|
if (scrollMetadata.HasScrollClip()) {
|
|
ParentLayerIntRect clip = scrollMetadata.ScrollClip().GetClipRect();
|
|
if (layer->GetParent() && layer->GetParent()->GetTransformIsPerspective()) {
|
|
// If our parent layer has a perspective transform, we want to apply
|
|
// our scroll clip to it instead of to this layer (see bug 1168263).
|
|
// A layer with a perspective transform shouldn't have multiple
|
|
// children with FrameMetrics, nor a child with multiple FrameMetrics.
|
|
// (A child with multiple FrameMetrics would mean that there's *another*
|
|
// scrollable element between the one with the CSS perspective and the
|
|
// transformed element. But you'd have to use preserve-3d on the inner
|
|
// scrollable element in order to have the perspective apply to the
|
|
// transformed child, and preserve-3d is not supported on scrollable
|
|
// elements, so this case can't occur.)
|
|
MOZ_ASSERT(!stackDeferredClips.top());
|
|
stackDeferredClips.top().emplace(clip);
|
|
} else {
|
|
clipParts.mScrolledClip = IntersectMaybeRects(Some(clip),
|
|
clipParts.mScrolledClip);
|
|
}
|
|
}
|
|
|
|
// Do the same for the ancestor mask layers: ancestorMaskLayers contains
|
|
// the ancestor mask layers for scroll frames *inside* the current scroll
|
|
// frame, so these are the ones we need to shift by our async transform.
|
|
for (Layer* ancestorMaskLayer : ancestorMaskLayers) {
|
|
SetShadowTransform(ancestorMaskLayer,
|
|
ancestorMaskLayer->GetLocalTransformTyped() * asyncTransform);
|
|
}
|
|
|
|
// Append the ancestor mask layer for this scroll frame to ancestorMaskLayers.
|
|
if (scrollMetadata.HasScrollClip()) {
|
|
const LayerClip& scrollClip = scrollMetadata.ScrollClip();
|
|
if (scrollClip.GetMaskLayerIndex()) {
|
|
size_t maskLayerIndex = scrollClip.GetMaskLayerIndex().value();
|
|
Layer* ancestorMaskLayer = layer->GetAncestorMaskLayerAt(maskLayerIndex);
|
|
ancestorMaskLayers.AppendElement(ancestorMaskLayer);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool clipChanged = (hasAsyncTransform || clipDeferredFromChildren ||
|
|
layer->GetScrolledClipRect());
|
|
if (clipChanged) {
|
|
// Intersect the two clip parts and apply them to the layer.
|
|
// During ApplyAsyncContentTransformTree on an ancestor layer,
|
|
// AlignFixedAndStickyLayers may overwrite this with a new clip it
|
|
// computes from the clip parts, but if that doesn't happen, this
|
|
// is the layer's final clip rect.
|
|
layer->AsLayerComposite()->SetShadowClipRect(clipParts.Intersect());
|
|
}
|
|
|
|
if (hasAsyncTransform) {
|
|
// Apply the APZ transform on top of GetLocalTransform() here (rather than
|
|
// GetTransform()) in case the OMTA code in SampleAnimations already set a
|
|
// shadow transform; in that case we want to apply ours on top of that one
|
|
// rather than clobber it.
|
|
SetShadowTransform(layer,
|
|
layer->GetLocalTransformTyped()
|
|
* AdjustForClip(combinedAsyncTransform, layer));
|
|
|
|
// Do the same for the layer's own mask layer, if it has one.
|
|
if (Layer* maskLayer = layer->GetMaskLayer()) {
|
|
SetShadowTransform(maskLayer,
|
|
maskLayer->GetLocalTransformTyped() * combinedAsyncTransform);
|
|
}
|
|
|
|
appliedTransform = true;
|
|
}
|
|
|
|
ExpandRootClipRect(layer, fixedLayerMargins);
|
|
|
|
if (layer->GetScrollbarDirection() != Layer::NONE) {
|
|
ApplyAsyncTransformToScrollbar(layer);
|
|
}
|
|
});
|
|
|
|
return appliedTransform;
|
|
}
|
|
|
|
static bool
|
|
LayerIsScrollbarTarget(const LayerMetricsWrapper& aTarget, Layer* aScrollbar)
|
|
{
|
|
AsyncPanZoomController* apzc = aTarget.GetApzc();
|
|
if (!apzc) {
|
|
return false;
|
|
}
|
|
const FrameMetrics& metrics = aTarget.Metrics();
|
|
if (metrics.GetScrollId() != aScrollbar->GetScrollbarTargetContainerId()) {
|
|
return false;
|
|
}
|
|
return !aTarget.IsScrollInfoLayer();
|
|
}
|
|
|
|
static void
|
|
ApplyAsyncTransformToScrollbarForContent(Layer* aScrollbar,
|
|
const LayerMetricsWrapper& aContent,
|
|
bool aScrollbarIsDescendant)
|
|
{
|
|
// We only apply the transform if the scroll-target layer has non-container
|
|
// children (i.e. when it has some possibly-visible content). This is to
|
|
// avoid moving scroll-bars in the situation that only a scroll information
|
|
// layer has been built for a scroll frame, as this would result in a
|
|
// disparity between scrollbars and visible content.
|
|
if (aContent.IsScrollInfoLayer()) {
|
|
return;
|
|
}
|
|
|
|
const FrameMetrics& metrics = aContent.Metrics();
|
|
AsyncPanZoomController* apzc = aContent.GetApzc();
|
|
MOZ_RELEASE_ASSERT(apzc);
|
|
|
|
AsyncTransformComponentMatrix asyncTransform =
|
|
apzc->GetCurrentAsyncTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
|
|
|
|
// |asyncTransform| represents the amount by which we have scrolled and
|
|
// zoomed since the last paint. Because the scrollbar was sized and positioned based
|
|
// on the painted content, we need to adjust it based on asyncTransform so that
|
|
// it reflects what the user is actually seeing now.
|
|
AsyncTransformComponentMatrix scrollbarTransform;
|
|
if (aScrollbar->GetScrollbarDirection() == Layer::VERTICAL) {
|
|
const ParentLayerCoord asyncScrollY = asyncTransform._42;
|
|
const float asyncZoomY = asyncTransform._22;
|
|
|
|
// The scroll thumb needs to be scaled in the direction of scrolling by the
|
|
// inverse of the async zoom. This is because zooming in decreases the
|
|
// fraction of the whole srollable rect that is in view.
|
|
const float yScale = 1.f / asyncZoomY;
|
|
|
|
// Note: |metrics.GetZoom()| doesn't yet include the async zoom.
|
|
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().yScale * asyncZoomY);
|
|
|
|
// Here we convert the scrollbar thumb ratio into a true unitless ratio by
|
|
// dividing out the conversion factor from the scrollframe's parent's space
|
|
// to the scrollframe's space.
|
|
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
|
|
(metrics.GetPresShellResolution() * asyncZoomY);
|
|
// The scroll thumb needs to be translated in opposite direction of the
|
|
// async scroll. This is because scrolling down, which translates the layer
|
|
// content up, should result in moving the scroll thumb down.
|
|
ParentLayerCoord yTranslation = -asyncScrollY * ratio;
|
|
|
|
// The scroll thumb additionally needs to be translated to compensate for
|
|
// the scale applied above. The origin with respect to which the scale is
|
|
// applied is the origin of the entire scrollbar, rather than the origin of
|
|
// the scroll thumb (meaning, for a vertical scrollbar it's at the top of
|
|
// the composition bounds). This means that empty space above the thumb
|
|
// is scaled too, effectively translating the thumb. We undo that
|
|
// translation here.
|
|
// (One can think of the adjustment being done to the translation here as
|
|
// a change of basis. We have a method to help with that,
|
|
// Matrix4x4::ChangeBasis(), but it wouldn't necessarily make the code
|
|
// cleaner in this case).
|
|
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().y * ratio);
|
|
const CSSCoord thumbOriginScaled = thumbOrigin * yScale;
|
|
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
|
|
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
|
|
yTranslation -= thumbOriginDeltaPL;
|
|
|
|
if (metrics.IsRootContent()) {
|
|
// Scrollbar for the root are painted at the same resolution as the
|
|
// content. Since the coordinate space we apply this transform in includes
|
|
// the resolution, we need to adjust for it as well here. Note that in
|
|
// another metrics.IsRootContent() hunk below we apply a
|
|
// resolution-cancelling transform which ensures the scroll thumb isn't
|
|
// actually rendered at a larger scale.
|
|
yTranslation *= metrics.GetPresShellResolution();
|
|
}
|
|
|
|
scrollbarTransform.PostScale(1.f, yScale, 1.f);
|
|
scrollbarTransform.PostTranslate(0, yTranslation, 0);
|
|
}
|
|
if (aScrollbar->GetScrollbarDirection() == Layer::HORIZONTAL) {
|
|
// See detailed comments under the VERTICAL case.
|
|
|
|
const ParentLayerCoord asyncScrollX = asyncTransform._41;
|
|
const float asyncZoomX = asyncTransform._11;
|
|
|
|
const float xScale = 1.f / asyncZoomX;
|
|
|
|
const CSSToParentLayerScale effectiveZoom(metrics.GetZoom().xScale * asyncZoomX);
|
|
|
|
const float ratio = aScrollbar->GetScrollbarThumbRatio() /
|
|
(metrics.GetPresShellResolution() * asyncZoomX);
|
|
ParentLayerCoord xTranslation = -asyncScrollX * ratio;
|
|
|
|
const CSSCoord thumbOrigin = (metrics.GetScrollOffset().x * ratio);
|
|
const CSSCoord thumbOriginScaled = thumbOrigin * xScale;
|
|
const CSSCoord thumbOriginDelta = thumbOriginScaled - thumbOrigin;
|
|
const ParentLayerCoord thumbOriginDeltaPL = thumbOriginDelta * effectiveZoom;
|
|
xTranslation -= thumbOriginDeltaPL;
|
|
|
|
if (metrics.IsRootContent()) {
|
|
xTranslation *= metrics.GetPresShellResolution();
|
|
}
|
|
|
|
scrollbarTransform.PostScale(xScale, 1.f, 1.f);
|
|
scrollbarTransform.PostTranslate(xTranslation, 0, 0);
|
|
}
|
|
|
|
LayerToParentLayerMatrix4x4 transform =
|
|
aScrollbar->GetLocalTransformTyped() * scrollbarTransform;
|
|
|
|
AsyncTransformComponentMatrix compensation;
|
|
// If the scrollbar layer is for the root then the content's resolution
|
|
// applies to the scrollbar as well. Since we don't actually want the scroll
|
|
// thumb's size to vary with the zoom (other than its length reflecting the
|
|
// fraction of the scrollable length that's in view, which is taken care of
|
|
// above), we apply a transform to cancel out this resolution.
|
|
if (metrics.IsRootContent()) {
|
|
compensation =
|
|
AsyncTransformComponentMatrix::Scaling(
|
|
metrics.GetPresShellResolution(),
|
|
metrics.GetPresShellResolution(),
|
|
1.0f).Inverse();
|
|
}
|
|
// If the scrollbar layer is a child of the content it is a scrollbar for,
|
|
// then we need to adjust for any async transform (including an overscroll
|
|
// transform) on the content. This needs to be cancelled out because layout
|
|
// positions and sizes the scrollbar on the assumption that there is no async
|
|
// transform, and without this adjustment the scrollbar will end up in the
|
|
// wrong place.
|
|
//
|
|
// Note that since the async transform is applied on top of the content's
|
|
// regular transform, we need to make sure to unapply the async transform in
|
|
// the same coordinate space. This requires applying the content transform
|
|
// and then unapplying it after unapplying the async transform.
|
|
if (aScrollbarIsDescendant) {
|
|
AsyncTransformComponentMatrix overscroll =
|
|
apzc->GetOverscrollTransform(AsyncPanZoomController::RESPECT_FORCE_DISABLE);
|
|
Matrix4x4 asyncUntransform = (asyncTransform * overscroll).Inverse().ToUnknownMatrix();
|
|
Matrix4x4 contentTransform = aContent.GetTransform();
|
|
Matrix4x4 contentUntransform = contentTransform.Inverse();
|
|
|
|
AsyncTransformComponentMatrix asyncCompensation =
|
|
ViewAs<AsyncTransformComponentMatrix>(
|
|
contentTransform
|
|
* asyncUntransform
|
|
* contentUntransform);
|
|
|
|
compensation = compensation * asyncCompensation;
|
|
|
|
// We also need to make a corresponding change on the clip rect of all the
|
|
// layers on the ancestor chain from the scrollbar layer up to but not
|
|
// including the layer with the async transform. Otherwise the scrollbar
|
|
// shifts but gets clipped and so appears to flicker.
|
|
for (Layer* ancestor = aScrollbar; ancestor != aContent.GetLayer(); ancestor = ancestor->GetParent()) {
|
|
TransformClipRect(ancestor, asyncCompensation);
|
|
}
|
|
}
|
|
transform = transform * compensation;
|
|
|
|
SetShadowTransform(aScrollbar, transform);
|
|
}
|
|
|
|
static LayerMetricsWrapper
|
|
FindScrolledLayerRecursive(Layer* aScrollbar, const LayerMetricsWrapper& aSubtreeRoot)
|
|
{
|
|
if (LayerIsScrollbarTarget(aSubtreeRoot, aScrollbar)) {
|
|
return aSubtreeRoot;
|
|
}
|
|
|
|
for (LayerMetricsWrapper child = aSubtreeRoot.GetFirstChild();
|
|
child;
|
|
child = child.GetNextSibling())
|
|
{
|
|
// Do not recurse into RefLayers, since our initial aSubtreeRoot is the
|
|
// root (or RefLayer root) of a single layer space to search.
|
|
if (child.AsRefLayer()) {
|
|
continue;
|
|
}
|
|
|
|
LayerMetricsWrapper target = FindScrolledLayerRecursive(aScrollbar, child);
|
|
if (target) {
|
|
return target;
|
|
}
|
|
}
|
|
return LayerMetricsWrapper();
|
|
}
|
|
|
|
static LayerMetricsWrapper
|
|
FindScrolledLayerForScrollbar(Layer* aScrollbar, bool* aOutIsAncestor)
|
|
{
|
|
// First check if the scrolled layer is an ancestor of the scrollbar layer.
|
|
LayerMetricsWrapper root(aScrollbar->Manager()->GetRoot());
|
|
LayerMetricsWrapper prevAncestor(aScrollbar);
|
|
for (LayerMetricsWrapper ancestor(aScrollbar); ancestor; ancestor = ancestor.GetParent()) {
|
|
// Don't walk into remote layer trees; the scrollbar will always be in
|
|
// the same layer space.
|
|
if (ancestor.AsRefLayer()) {
|
|
root = prevAncestor;
|
|
break;
|
|
}
|
|
prevAncestor = ancestor;
|
|
|
|
if (LayerIsScrollbarTarget(ancestor, aScrollbar)) {
|
|
*aOutIsAncestor = true;
|
|
return ancestor;
|
|
}
|
|
}
|
|
|
|
// Search the entire layer space of the scrollbar.
|
|
return FindScrolledLayerRecursive(aScrollbar, root);
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::ApplyAsyncTransformToScrollbar(Layer* aLayer)
|
|
{
|
|
// If this layer corresponds to a scrollbar, then there should be a layer that
|
|
// is a previous sibling or a parent that has a matching ViewID on its FrameMetrics.
|
|
// That is the content that this scrollbar is for. We pick up the transient
|
|
// async transform from that layer and use it to update the scrollbar position.
|
|
// Note that it is possible that the content layer is no longer there; in
|
|
// this case we don't need to do anything because there can't be an async
|
|
// transform on the content.
|
|
bool isAncestor = false;
|
|
const LayerMetricsWrapper& scrollTarget = FindScrolledLayerForScrollbar(aLayer, &isAncestor);
|
|
if (scrollTarget) {
|
|
ApplyAsyncTransformToScrollbarForContent(aLayer, scrollTarget, isAncestor);
|
|
}
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::TransformScrollableLayer(Layer* aLayer)
|
|
{
|
|
FrameMetrics metrics = LayerMetricsWrapper::TopmostScrollableMetrics(aLayer);
|
|
if (!metrics.IsScrollable()) {
|
|
// On Fennec it's possible that the there is no scrollable layer in the
|
|
// tree, and this function just gets called with the root layer. In that
|
|
// case TopmostScrollableMetrics will return an empty FrameMetrics but we
|
|
// still want to use the actual non-scrollable metrics from the layer.
|
|
metrics = LayerMetricsWrapper::BottommostMetrics(aLayer);
|
|
}
|
|
|
|
// We must apply the resolution scale before a pan/zoom transform, so we call
|
|
// GetTransform here.
|
|
LayerToParentLayerMatrix4x4 oldTransform = aLayer->GetTransformTyped() *
|
|
AsyncTransformMatrix();
|
|
|
|
CSSToLayerScale geckoZoom = metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
|
|
|
|
LayerIntPoint scrollOffsetLayerPixels = RoundedToInt(metrics.GetScrollOffset() * geckoZoom);
|
|
|
|
if (mIsFirstPaint) {
|
|
mContentRect = metrics.GetScrollableRect();
|
|
SetFirstPaintViewport(scrollOffsetLayerPixels,
|
|
geckoZoom,
|
|
mContentRect);
|
|
mIsFirstPaint = false;
|
|
} else if (!metrics.GetScrollableRect().IsEqualEdges(mContentRect)) {
|
|
mContentRect = metrics.GetScrollableRect();
|
|
SetPageRect(mContentRect);
|
|
}
|
|
|
|
// We synchronise the viewport information with Java after sending the above
|
|
// notifications, so that Java can take these into account in its response.
|
|
// Calculate the absolute display port to send to Java
|
|
LayerIntRect displayPort = RoundedToInt(
|
|
(metrics.GetCriticalDisplayPort().IsEmpty()
|
|
? metrics.GetDisplayPort()
|
|
: metrics.GetCriticalDisplayPort()
|
|
) * geckoZoom);
|
|
displayPort += scrollOffsetLayerPixels;
|
|
|
|
ScreenMargin fixedLayerMargins(0, 0, 0, 0);
|
|
|
|
// Ideally we would initialize userZoom to AsyncPanZoomController::CalculateResolution(metrics)
|
|
// but this causes a reftest-ipc test to fail (see bug 883646 comment 27). The reason for this
|
|
// appears to be that metrics.mZoom is poorly initialized in some scenarios. In these scenarios,
|
|
// however, we can assume there is no async zooming in progress and so the following statement
|
|
// works fine.
|
|
CSSToParentLayerScale userZoom(metrics.GetDevPixelsPerCSSPixel()
|
|
// This function only applies to the root scrollable frame,
|
|
// for which we can assume that x and y scales are equal.
|
|
* metrics.GetCumulativeResolution().ToScaleFactor()
|
|
* LayerToParentLayerScale(1));
|
|
ParentLayerRect userRect(metrics.GetScrollOffset() * userZoom,
|
|
metrics.GetCompositionBounds().Size());
|
|
SyncViewportInfo(displayPort, geckoZoom, mLayersUpdated, mPaintSyncId,
|
|
userRect, userZoom, fixedLayerMargins);
|
|
mLayersUpdated = false;
|
|
mPaintSyncId = 0;
|
|
|
|
// Handle transformations for asynchronous panning and zooming. We determine the
|
|
// zoom used by Gecko from the transformation set on the root layer, and we
|
|
// determine the scroll offset used by Gecko from the frame metrics of the
|
|
// primary scrollable layer. We compare this to the user zoom and scroll
|
|
// offset in the view transform we obtained from Java in order to compute the
|
|
// transformation we need to apply.
|
|
ParentLayerPoint geckoScroll(0, 0);
|
|
if (metrics.IsScrollable()) {
|
|
geckoScroll = metrics.GetScrollOffset() * userZoom;
|
|
}
|
|
|
|
LayerToParentLayerScale asyncZoom = userZoom / metrics.LayersPixelsPerCSSPixel().ToScaleFactor();
|
|
ParentLayerPoint translation = userRect.TopLeft() - geckoScroll;
|
|
AsyncTransformComponentMatrix treeTransform = AsyncTransform(asyncZoom, -translation);
|
|
|
|
// Apply the tree transform on top of GetLocalTransform() here (rather than
|
|
// GetTransform()) in case the OMTA code in SampleAnimations already set a
|
|
// shadow transform; in that case we want to apply ours on top of that one
|
|
// rather than clobber it.
|
|
SetShadowTransform(aLayer, aLayer->GetLocalTransformTyped() * treeTransform);
|
|
|
|
// Make sure that overscroll and under-zoom are represented in the old
|
|
// transform so that fixed position content moves and scales accordingly.
|
|
// These calculations will effectively scale and offset fixed position layers
|
|
// in screen space when the compensatory transform is performed in
|
|
// AlignFixedAndStickyLayers.
|
|
ParentLayerRect contentScreenRect = mContentRect * userZoom;
|
|
Point3D overscrollTranslation;
|
|
if (userRect.x < contentScreenRect.x) {
|
|
overscrollTranslation.x = contentScreenRect.x - userRect.x;
|
|
} else if (userRect.XMost() > contentScreenRect.XMost()) {
|
|
overscrollTranslation.x = contentScreenRect.XMost() - userRect.XMost();
|
|
}
|
|
if (userRect.y < contentScreenRect.y) {
|
|
overscrollTranslation.y = contentScreenRect.y - userRect.y;
|
|
} else if (userRect.YMost() > contentScreenRect.YMost()) {
|
|
overscrollTranslation.y = contentScreenRect.YMost() - userRect.YMost();
|
|
}
|
|
oldTransform.PreTranslate(overscrollTranslation.x,
|
|
overscrollTranslation.y,
|
|
overscrollTranslation.z);
|
|
|
|
gfx::Size underZoomScale(1.0f, 1.0f);
|
|
if (mContentRect.width * userZoom.scale < metrics.GetCompositionBounds().width) {
|
|
underZoomScale.width = (mContentRect.width * userZoom.scale) /
|
|
metrics.GetCompositionBounds().width;
|
|
}
|
|
if (mContentRect.height * userZoom.scale < metrics.GetCompositionBounds().height) {
|
|
underZoomScale.height = (mContentRect.height * userZoom.scale) /
|
|
metrics.GetCompositionBounds().height;
|
|
}
|
|
oldTransform.PreScale(underZoomScale.width, underZoomScale.height, 1);
|
|
|
|
// Make sure fixed position layers don't move away from their anchor points
|
|
// when we're asynchronously panning or zooming
|
|
AlignFixedAndStickyLayers(aLayer, metrics.GetScrollId(), oldTransform,
|
|
aLayer->GetLocalTransformTyped(),
|
|
fixedLayerMargins, nullptr);
|
|
|
|
ExpandRootClipRect(aLayer, fixedLayerMargins);
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::GetFrameUniformity(FrameUniformityData* aOutData)
|
|
{
|
|
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
|
|
mLayerTransformRecorder.EndTest(aOutData);
|
|
}
|
|
|
|
bool
|
|
AsyncCompositionManager::TransformShadowTree(TimeStamp aCurrentFrame,
|
|
TimeDuration aVsyncRate,
|
|
TransformsToSkip aSkip)
|
|
{
|
|
PROFILER_LABEL("AsyncCompositionManager", "TransformShadowTree",
|
|
js::ProfileEntry::Category::GRAPHICS);
|
|
|
|
Layer* root = mLayerManager->GetRoot();
|
|
if (!root) {
|
|
return false;
|
|
}
|
|
|
|
// First, compute and set the shadow transforms from OMT animations.
|
|
// NB: we must sample animations *before* sampling pan/zoom
|
|
// transforms.
|
|
// Use a previous vsync time to make main thread animations and compositor
|
|
// more in sync with each other.
|
|
// On the initial frame we use aVsyncTimestamp here so the timestamp on the
|
|
// second frame are the same as the initial frame, but it does not matter.
|
|
bool wantNextFrame = SampleAnimations(root,
|
|
!mPreviousFrameTimeStamp.IsNull() ?
|
|
mPreviousFrameTimeStamp : aCurrentFrame);
|
|
|
|
// Reset the previous time stamp if we don't already have any running
|
|
// animations to avoid using the time which is far behind for newly
|
|
// started animations.
|
|
mPreviousFrameTimeStamp = wantNextFrame ? aCurrentFrame : TimeStamp();
|
|
|
|
if (!(aSkip & TransformsToSkip::APZ)) {
|
|
// FIXME/bug 775437: unify this interface with the ~native-fennec
|
|
// derived code
|
|
//
|
|
// Attempt to apply an async content transform to any layer that has
|
|
// an async pan zoom controller (which means that it is rendered
|
|
// async using Gecko). If this fails, fall back to transforming the
|
|
// primary scrollable layer. "Failing" here means that we don't
|
|
// find a frame that is async scrollable. Note that the fallback
|
|
// code also includes Fennec which is rendered async. Fennec uses
|
|
// its own platform-specific async rendering that is done partially
|
|
// in Gecko and partially in Java.
|
|
bool foundRoot = false;
|
|
if (ApplyAsyncContentTransformToTree(root, &foundRoot)) {
|
|
#if defined(MOZ_WIDGET_ANDROID)
|
|
MOZ_ASSERT(foundRoot);
|
|
if (foundRoot && mFixedLayerMargins != ScreenMargin()) {
|
|
MoveScrollbarForLayerMargin(root, mRootScrollableId, mFixedLayerMargins);
|
|
}
|
|
#endif
|
|
} else {
|
|
AutoTArray<Layer*,1> scrollableLayers;
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
mLayerManager->GetRootScrollableLayers(scrollableLayers);
|
|
#else
|
|
mLayerManager->GetScrollableLayers(scrollableLayers);
|
|
#endif
|
|
|
|
for (uint32_t i = 0; i < scrollableLayers.Length(); i++) {
|
|
if (scrollableLayers[i]) {
|
|
TransformScrollableLayer(scrollableLayers[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Advance APZ animations to the next expected vsync timestamp, if we can
|
|
// get it.
|
|
TimeStamp nextFrame = aCurrentFrame;
|
|
|
|
MOZ_ASSERT(aVsyncRate != TimeDuration::Forever());
|
|
if (aVsyncRate != TimeDuration::Forever()) {
|
|
nextFrame += aVsyncRate;
|
|
}
|
|
|
|
wantNextFrame |= SampleAPZAnimations(LayerMetricsWrapper(root), nextFrame);
|
|
}
|
|
|
|
LayerComposite* rootComposite = root->AsLayerComposite();
|
|
|
|
gfx::Matrix4x4 trans = rootComposite->GetShadowBaseTransform();
|
|
trans *= gfx::Matrix4x4::From2D(mWorldTransform);
|
|
rootComposite->SetShadowBaseTransform(trans);
|
|
|
|
if (gfxPrefs::CollectScrollTransforms()) {
|
|
RecordShadowTransforms(root);
|
|
}
|
|
|
|
return wantNextFrame;
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::SetFirstPaintViewport(const LayerIntPoint& aOffset,
|
|
const CSSToLayerScale& aZoom,
|
|
const CSSRect& aCssPageRect)
|
|
{
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
AndroidBridge::Bridge()->SetFirstPaintViewport(aOffset, aZoom, aCssPageRect);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::SetPageRect(const CSSRect& aCssPageRect)
|
|
{
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
AndroidBridge::Bridge()->SetPageRect(aCssPageRect);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::SyncViewportInfo(const LayerIntRect& aDisplayPort,
|
|
const CSSToLayerScale& aDisplayResolution,
|
|
bool aLayersUpdated,
|
|
int32_t aPaintSyncId,
|
|
ParentLayerRect& aScrollRect,
|
|
CSSToParentLayerScale& aScale,
|
|
ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
AndroidBridge::Bridge()->SyncViewportInfo(aDisplayPort,
|
|
aDisplayResolution,
|
|
aLayersUpdated,
|
|
aPaintSyncId,
|
|
aScrollRect,
|
|
aScale,
|
|
aFixedLayerMargins);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
AsyncCompositionManager::SyncFrameMetrics(const ParentLayerPoint& aScrollOffset,
|
|
const CSSToParentLayerScale& aZoom,
|
|
const CSSRect& aCssPageRect,
|
|
const CSSRect& aDisplayPort,
|
|
const CSSToLayerScale& aPaintedResolution,
|
|
bool aLayersUpdated,
|
|
int32_t aPaintSyncId,
|
|
ScreenMargin& aFixedLayerMargins)
|
|
{
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
AndroidBridge::Bridge()->SyncFrameMetrics(aScrollOffset, aZoom, aCssPageRect,
|
|
aDisplayPort, aPaintedResolution,
|
|
aLayersUpdated, aPaintSyncId,
|
|
aFixedLayerMargins);
|
|
#endif
|
|
}
|
|
|
|
} // namespace layers
|
|
} // namespace mozilla
|