gecko-dev/third_party/rust/parking_lot
Servo VCS Sync 833dcb7e06 No bug - Revendor rust dependencies 2018-03-21 19:17:05 +00:00
..
src No bug - Revendor rust dependencies 2018-03-21 19:17:05 +00:00
.cargo-checksum.json No bug - Revendor rust dependencies 2018-03-21 19:17:05 +00:00
.travis.yml No bug - Revendor rust dependencies 2018-03-21 19:17:05 +00:00
Cargo.toml No bug - Revendor rust dependencies 2018-03-21 19:17:05 +00:00
LICENSE-APACHE
LICENSE-MIT
README.md No bug - Revendor rust dependencies 2018-03-21 19:17:05 +00:00
appveyor.yml No bug - Revendor rust dependencies 2018-03-21 19:17:05 +00:00

README.md

parking_lot

Build Status Build status Crates.io

Documentation (synchronization primitives)

Documentation (core parking lot API)

This library provides implementations of Mutex, RwLock, Condvar and Once that are smaller, faster and more flexible than those in the Rust standard library, as well as a ReentrantMutex type which supports recursive locking. It also exposes a low-level API for creating your own efficient synchronization primitives.

When tested on x86_64 Linux, parking_lot::Mutex was found to be 1.5x faster than std::sync::Mutex when uncontended, and up to 5x faster when contended from multiple threads. The numbers for RwLock vary depending on the number of reader and writer threads, but are almost always faster than the standard library RwLock, and even up to 50x faster in some cases.

Features

The primitives provided by this library have several advantages over those in the Rust standard library:

  1. Mutex and Once only require 1 byte of storage space, while Condvar and RwLock only require 1 word of storage space. On the other hand the standard library primitives require a dynamically allocated Box to hold OS-specific synchronization primitives. The small size of Mutex in particular encourages the use of fine-grained locks to increase parallelism.
  2. Since they consist of just a single atomic variable, have constant initializers and don't need destructors, these primitives can be used as static global variables. The standard library primitives require dynamic initialization and thus need to be lazily initialized with lazy_static!.
  3. Uncontended lock acquisition and release is done through fast inline paths which only require a single atomic operation.
  4. Microcontention (a contended lock with a short critical section) is efficiently handled by spinning a few times while trying to acquire a lock.
  5. The locks are adaptive and will suspend a thread after a few failed spin attempts. This makes the locks suitable for both long and short critical sections.
  6. Condvar, RwLock and Once work on Windows XP, unlike the standard library versions of those types.
  7. RwLock takes advantage of hardware lock elision on processors that support it, which can lead to huge performance wins with many readers.
  8. RwLock uses a task-fair locking policy, which avoids reader and writer starvation, whereas the standard library version makes no guarantees.
  9. Condvar is guaranteed not to produce spurious wakeups. A thread will only be woken up if it timed out or it was woken up by a notification.
  10. Condvar::notify_all will only wake up a single thread and requeue the rest to wait on the associated Mutex. This avoids a thundering herd problem where all threads try to acquire the lock at the same time.
  11. RwLock supports atomically downgrading a write lock into a read lock.
  12. Mutex and RwLock allow raw unlocking without a RAII guard object.
  13. Mutex<()> and RwLock<()> allow raw locking without a RAII guard object.
  14. Mutex and RwLock support eventual fairness which allows them to be fair on average without sacrificing performance.
  15. A ReentrantMutex type which supports recursive locking.
  16. An experimental deadlock detector that works for Mutex, RwLock and ReentrantMutex. This feature is disabled by default and can be enabled via the deadlock_detection feature.
  17. RwLock supports atomically upgrading an "upgradable" read lock into a write lock.

The parking lot

To keep these primitives small, all thread queuing and suspending functionality is offloaded to the parking lot. The idea behind this is based on the Webkit WTF::ParkingLot class, which essentially consists of a hash table mapping of lock addresses to queues of parked (sleeping) threads. The Webkit parking lot was itself inspired by Linux futexes, but it is more powerful since it allows invoking callbacks while holding a queue lock.

Nightly vs stable

There are a few restrictions when using this library on stable Rust:

  • Mutex and Once will use 1 word of space instead of 1 byte.
  • You will have to use lazy_static! to statically initialize Mutex, Condvar and RwLock types instead of const fn.
  • RwLock will not be able to take advantage of hardware lock elision for readers, which improves performance when there are multiple readers.
  • Slightly less efficient code may be generated for compare_exchange operations. This should not affect architectures like x86 though.

To enable nightly-only functionality, you need to enable the nightly feature in Cargo (see below).

Usage

Add this to your Cargo.toml:

[dependencies]
parking_lot = "0.5"

and this to your crate root:

extern crate parking_lot;

To enable nightly-only features, add this to your Cargo.toml instead:

[dependencies]
parking_lot = {version = "0.5", features = ["nightly"]}

The experimental deadlock detector can be enabled with the deadlock_detection Cargo feature.

The core parking lot API is provided by the parking_lot_core crate. It is separate from the synchronization primitives in the parking_lot crate so that changes to the core API do not cause breaking changes for users of parking_lot.

License

Licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.