gecko-dev/toolkit/recordreplay/Assembler.h

188 строки
5.9 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_recordreplay_Assembler_h
#define mozilla_recordreplay_Assembler_h
#include "InfallibleVector.h"
#include <utility>
namespace mozilla {
namespace recordreplay {
// Assembler for x64 instructions. This is a simple assembler that is primarily
// designed for use in copying instructions from a function that is being
// redirected.
class Assembler
{
public:
// Create an assembler that allocates its own instruction storage. Assembled
// code will never be reclaimed by the system.
Assembler();
// Create an assembler that uses the specified memory range for instruction
// storage.
Assembler(uint8_t* aStorage, size_t aSize);
~Assembler();
// Mark the point at which we start copying an instruction in the original
// range.
void NoteOriginalInstruction(uint8_t* aIp);
// Get the address where the next assembled instruction will be placed.
uint8_t* Current();
///////////////////////////////////////////////////////////////////////////////
// Routines for assembling instructions in new instruction storage
///////////////////////////////////////////////////////////////////////////////
// Jump to aTarget. If aTarget is in the range of instructions being copied,
// the target will be the copy of aTarget instead.
void Jump(void* aTarget);
// Conditionally jump to aTarget, depending on the short jump opcode aCode.
// If aTarget is in the range of instructions being copied, the target will
// be the copy of aTarget instead.
void ConditionalJump(uint8_t aCode, void* aTarget);
// Copy an instruction verbatim from aIp.
void CopyInstruction(uint8_t* aIp, size_t aSize);
// push/pop %rax
void PushRax();
void PopRax();
// jump *%rax
void JumpToRax();
// call *%rax
void CallRax();
// movq/movl/movb 0(%rax), %rax
void LoadRax(size_t aWidth);
// cmpq %rax, 0(%rsp)
void CompareRaxWithTopOfStack();
// push/pop %rbx
void PushRbx();
void PopRbx();
// movq/movl/movb %rbx, 0(%rax)
void StoreRbxToRax(size_t aWidth);
// cmpq/cmpb $literal8, %rax
void CompareValueWithRax(uint8_t aValue, size_t aWidth);
// movq $value, %rax
void MoveImmediateToRax(void* aValue);
// movq %rax, register
void MoveRaxToRegister(/*ud_type*/ int aRegister);
// movq register, %rax
void MoveRegisterToRax(/*ud_type*/ int aRegister);
// xchgb register, 0(%rbx)
void ExchangeByteRegisterWithAddressAtRbx(/*ud_type*/ int aRegister);
// xchgb $bl, 0(%rax)
void ExchangeByteRbxWithAddressAtRax();
// Normalize a Udis86 register to its 8 byte version, returning UD_NONE/zero
// for unexpected registers.
static /*ud_type*/ int NormalizeRegister(/*ud_type*/ int aRegister);
///////////////////////////////////////////////////////////////////////////////
// Routines for assembling instructions at arbitrary locations
///////////////////////////////////////////////////////////////////////////////
// Return whether it is possible to patch a short jump to aTarget from aIp.
static bool CanPatchShortJump(uint8_t* aIp, void* aTarget);
// Patch a short jump to aTarget at aIp.
static void PatchShortJump(uint8_t* aIp, void* aTarget);
// Patch a long jump to aTarget at aIp. Rax may be clobbered.
static void PatchJumpClobberRax(uint8_t* aIp, void* aTarget);
// Patch the value used in an earlier MoveImmediateToRax call.
static void PatchMoveImmediateToRax(uint8_t* aIp, void* aValue);
// Patch an int3 breakpoint instruction at Ip.
static void PatchClobber(uint8_t* aIp);
private:
// Patch a jump that doesn't clobber any instructions.
static void PatchJump(uint8_t* aIp, void* aTarget);
// Consume some instruction storage.
void Advance(size_t aSize);
// The maximum amount we can write at a time without a jump potentially
// being introduced into the instruction stream.
static const size_t MaximumAdvance = 20;
inline size_t CountBytes() { return 0; }
template <typename... Tail>
inline size_t CountBytes(uint8_t aByte, Tail... aMoreBytes) {
return 1 + CountBytes(aMoreBytes...);
}
inline void CopyBytes(uint8_t* aIp) {}
template <typename... Tail>
inline void CopyBytes(uint8_t* aIp, uint8_t aByte, Tail... aMoreBytes) {
*aIp = aByte;
CopyBytes(aIp + 1, aMoreBytes...);
}
// Write a complete instruction with bytes specified as parameters.
template <typename... ByteList>
inline void NewInstruction(ByteList... aBytes) {
size_t numBytes = CountBytes(aBytes...);
MOZ_RELEASE_ASSERT(numBytes <= MaximumAdvance);
uint8_t* ip = Current();
CopyBytes(ip, aBytes...);
Advance(numBytes);
}
// Storage for assembling new instructions.
uint8_t* mCursor;
uint8_t* mCursorEnd;
bool mCanAllocateStorage;
// Association between the instruction original and copy pointers, for all
// instructions that have been copied.
InfallibleVector<std::pair<uint8_t*,uint8_t*>> mCopiedInstructions;
// For jumps we have copied, association between the source (in generated
// code) and target (in the original code) of the jump. These will be updated
// to refer to their copy (if there is one) in generated code in the
// assembler's destructor.
InfallibleVector<std::pair<uint8_t*,uint8_t*>> mJumps;
};
// The number of instruction bytes required for a short jump.
static const size_t ShortJumpBytes = 2;
// The number of instruction bytes required for a jump that may clobber rax.
static const size_t JumpBytesClobberRax = 12;
// The maximum byte length of an x86/x64 instruction.
static const size_t MaximumInstructionLength = 15;
// Make a region of memory RWX.
void UnprotectExecutableMemory(uint8_t* aAddress, size_t aSize);
} // recordreplay
} // mozilla
#endif // mozilla_recordreplay_Assembler_h