gecko-dev/dom/canvas/WebGLContextDraw.cpp

1053 строки
34 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "WebGLContext.h"
#include "GeckoProfiler.h"
#include "MozFramebuffer.h"
#include "GLContext.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/UniquePtrExtensions.h"
#include "nsPrintfCString.h"
#include "WebGLBuffer.h"
#include "WebGLContextUtils.h"
#include "WebGLFramebuffer.h"
#include "WebGLProgram.h"
#include "WebGLRenderbuffer.h"
#include "WebGLShader.h"
#include "WebGLTexture.h"
#include "WebGLTransformFeedback.h"
#include "WebGLVertexArray.h"
#include "WebGLVertexAttribData.h"
#include <algorithm>
namespace mozilla {
// For a Tegra workaround.
static const int MAX_DRAW_CALLS_SINCE_FLUSH = 100;
////////////////////////////////////////
class ScopedResolveTexturesForDraw
{
struct TexRebindRequest
{
uint32_t texUnit;
WebGLTexture* tex;
};
WebGLContext* const mWebGL;
std::vector<TexRebindRequest> mRebindRequests;
public:
ScopedResolveTexturesForDraw(WebGLContext* webgl, const char* funcName,
bool* const out_error);
~ScopedResolveTexturesForDraw();
};
bool
WebGLTexture::IsFeedback(WebGLContext* webgl, const char* funcName, uint32_t texUnit,
const std::vector<const WebGLFBAttachPoint*>& fbAttachments) const
{
auto itr = fbAttachments.cbegin();
for (; itr != fbAttachments.cend(); ++itr) {
const auto& attach = *itr;
if (attach->Texture() == this)
break;
}
if (itr == fbAttachments.cend())
return false;
////
const auto minLevel = mBaseMipmapLevel;
uint32_t maxLevel;
if (!MaxEffectiveMipmapLevel(texUnit, &maxLevel)) {
// No valid mips. Will need fake-black.
return false;
}
////
for (; itr != fbAttachments.cend(); ++itr) {
const auto& attach = *itr;
if (attach->Texture() != this)
continue;
const auto dstLevel = attach->MipLevel();
if (minLevel <= dstLevel && dstLevel <= maxLevel) {
webgl->ErrorInvalidOperation("%s: Feedback loop detected between tex target"
" 0x%04x, tex unit %u, levels %u-%u; and"
" framebuffer attachment 0x%04x, level %u.",
funcName, mTarget.get(), texUnit, minLevel,
maxLevel, attach->mAttachmentPoint, dstLevel);
return true;
}
}
return false;
}
ScopedResolveTexturesForDraw::ScopedResolveTexturesForDraw(WebGLContext* webgl,
const char* funcName,
bool* const out_error)
: mWebGL(webgl)
{
MOZ_ASSERT(mWebGL->gl->IsCurrent());
const std::vector<const WebGLFBAttachPoint*>* attachList = nullptr;
const auto& fb = mWebGL->mBoundDrawFramebuffer;
if (fb) {
attachList = &(fb->ResolvedCompleteData()->texDrawBuffers);
}
MOZ_ASSERT(mWebGL->mActiveProgramLinkInfo);
const auto& uniformSamplers = mWebGL->mActiveProgramLinkInfo->uniformSamplers;
for (const auto& uniform : uniformSamplers) {
const auto& texList = *(uniform->mSamplerTexList);
for (const auto& texUnit : uniform->mSamplerValues) {
if (texUnit >= texList.Length())
continue;
const auto& tex = texList[texUnit];
if (!tex)
continue;
if (attachList &&
tex->IsFeedback(mWebGL, funcName, texUnit, *attachList))
{
*out_error = true;
return;
}
FakeBlackType fakeBlack;
if (!tex->ResolveForDraw(funcName, texUnit, &fakeBlack)) {
mWebGL->ErrorOutOfMemory("%s: Failed to resolve textures for draw.",
funcName);
*out_error = true;
return;
}
if (fakeBlack == FakeBlackType::None)
continue;
if (!mWebGL->BindFakeBlack(texUnit, tex->Target(), fakeBlack)) {
mWebGL->ErrorOutOfMemory("%s: Failed to create fake black texture.",
funcName);
*out_error = true;
return;
}
mRebindRequests.push_back({texUnit, tex});
}
}
*out_error = false;
}
ScopedResolveTexturesForDraw::~ScopedResolveTexturesForDraw()
{
if (mRebindRequests.empty())
return;
gl::GLContext* gl = mWebGL->gl;
for (const auto& itr : mRebindRequests) {
gl->fActiveTexture(LOCAL_GL_TEXTURE0 + itr.texUnit);
gl->fBindTexture(itr.tex->Target().get(), itr.tex->mGLName);
}
gl->fActiveTexture(LOCAL_GL_TEXTURE0 + mWebGL->mActiveTexture);
}
bool
WebGLContext::BindFakeBlack(uint32_t texUnit, TexTarget target, FakeBlackType fakeBlack)
{
MOZ_ASSERT(fakeBlack == FakeBlackType::RGBA0000 ||
fakeBlack == FakeBlackType::RGBA0001);
const auto fnGetSlot = [this, target, fakeBlack]() -> UniquePtr<FakeBlackTexture>*
{
switch (fakeBlack) {
case FakeBlackType::RGBA0000:
switch (target.get()) {
case LOCAL_GL_TEXTURE_2D : return &mFakeBlack_2D_0000;
case LOCAL_GL_TEXTURE_CUBE_MAP: return &mFakeBlack_CubeMap_0000;
case LOCAL_GL_TEXTURE_3D : return &mFakeBlack_3D_0000;
case LOCAL_GL_TEXTURE_2D_ARRAY: return &mFakeBlack_2D_Array_0000;
default: return nullptr;
}
case FakeBlackType::RGBA0001:
switch (target.get()) {
case LOCAL_GL_TEXTURE_2D : return &mFakeBlack_2D_0001;
case LOCAL_GL_TEXTURE_CUBE_MAP: return &mFakeBlack_CubeMap_0001;
case LOCAL_GL_TEXTURE_3D : return &mFakeBlack_3D_0001;
case LOCAL_GL_TEXTURE_2D_ARRAY: return &mFakeBlack_2D_Array_0001;
default: return nullptr;
}
default:
return nullptr;
}
};
UniquePtr<FakeBlackTexture>* slot = fnGetSlot();
if (!slot) {
MOZ_CRASH("GFX: fnGetSlot failed.");
}
UniquePtr<FakeBlackTexture>& fakeBlackTex = *slot;
if (!fakeBlackTex) {
gl->fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, 1);
if (IsWebGL2()) {
gl->fPixelStorei(LOCAL_GL_UNPACK_SKIP_PIXELS, 0);
gl->fPixelStorei(LOCAL_GL_UNPACK_SKIP_ROWS, 0);
gl->fPixelStorei(LOCAL_GL_UNPACK_SKIP_IMAGES, 0);
}
fakeBlackTex = FakeBlackTexture::Create(gl, target, fakeBlack);
gl->fPixelStorei(LOCAL_GL_UNPACK_ALIGNMENT, mPixelStore_UnpackAlignment);
if (IsWebGL2()) {
gl->fPixelStorei(LOCAL_GL_UNPACK_SKIP_PIXELS, mPixelStore_UnpackSkipPixels);
gl->fPixelStorei(LOCAL_GL_UNPACK_SKIP_ROWS, mPixelStore_UnpackSkipRows);
gl->fPixelStorei(LOCAL_GL_UNPACK_SKIP_IMAGES, mPixelStore_UnpackSkipImages);
}
if (!fakeBlackTex) {
return false;
}
}
gl->fActiveTexture(LOCAL_GL_TEXTURE0 + texUnit);
gl->fBindTexture(target.get(), fakeBlackTex->mGLName);
gl->fActiveTexture(LOCAL_GL_TEXTURE0 + mActiveTexture);
return true;
}
////////////////////////////////////////
bool
WebGLContext::ValidateStencilParamsForDrawCall(const char* const funcName) const
{
const auto stencilBits = [&]() -> uint8_t {
if (!mStencilTestEnabled)
return 0;
if (!mBoundDrawFramebuffer)
return mOptions.stencil ? 8 : 0;
if (mBoundDrawFramebuffer->StencilAttachment().IsDefined())
return 8;
if (mBoundDrawFramebuffer->DepthStencilAttachment().IsDefined())
return 8;
return 0;
}();
const uint32_t stencilMax = (1 << stencilBits) - 1;
const auto fnMask = [&](const uint32_t x) { return x & stencilMax; };
const auto fnClamp = [&](const int32_t x) {
return std::max(0, std::min(x, (int32_t)stencilMax));
};
bool ok = true;
ok &= (fnMask(mStencilWriteMaskFront) == fnMask(mStencilWriteMaskBack));
ok &= (fnMask(mStencilValueMaskFront) == fnMask(mStencilValueMaskBack));
ok &= (fnClamp(mStencilRefFront) == fnClamp(mStencilRefBack));
if (!ok) {
ErrorInvalidOperation("%s: Stencil front/back state must effectively match."
" (before front/back comparison, WRITEMASK and VALUE_MASK"
" are masked with (2^s)-1, and REF is clamped to"
" [0, (2^s)-1], where `s` is the number of enabled stencil"
" bits in the draw framebuffer)",
funcName);
}
return ok;
}
////////////////////////////////////////
template<typename T>
static bool
DoSetsIntersect(const std::set<T>& a, const std::set<T>& b)
{
std::vector<T> intersection;
std::set_intersection(a.begin(), a.end(), b.begin(), b.end(),
std::back_inserter(intersection));
return bool(intersection.size());
}
class ScopedDrawHelper final
{
WebGLContext* const mWebGL;
bool mDidFake;
public:
ScopedDrawHelper(WebGLContext* const webgl, const char* const funcName,
const GLenum mode, const Maybe<uint32_t>& lastRequiredVertex,
const uint32_t instanceCount, bool* const out_error)
: mWebGL(webgl)
, mDidFake(false)
{
MOZ_ASSERT(mWebGL->gl->IsCurrent());
if (!mWebGL->BindCurFBForDraw(funcName)) {
*out_error = true;
return;
}
if (!mWebGL->ValidateDrawModeEnum(mode, funcName)) {
*out_error = true;
return;
}
if (!mWebGL->ValidateStencilParamsForDrawCall(funcName)) {
*out_error = true;
return;
}
if (!mWebGL->mActiveProgramLinkInfo) {
mWebGL->ErrorInvalidOperation("%s: The current program is not linked.", funcName);
*out_error = true;
return;
}
const auto& linkInfo = mWebGL->mActiveProgramLinkInfo;
////
// Check UBO sizes.
for (const auto& cur : linkInfo->uniformBlocks) {
const auto& dataSize = cur->mDataSize;
const auto& binding = cur->mBinding;
if (!binding) {
mWebGL->ErrorInvalidOperation("%s: Buffer for uniform block is null.",
funcName);
*out_error = true;
return;
}
const auto availByteCount = binding->ByteCount();
if (dataSize > availByteCount) {
mWebGL->ErrorInvalidOperation("%s: Buffer for uniform block is smaller"
" than UNIFORM_BLOCK_DATA_SIZE.",
funcName);
*out_error = true;
return;
}
if (binding->mBufferBinding->IsBoundForTF()) {
mWebGL->ErrorInvalidOperation("%s: Buffer for uniform block is bound or"
" in use for transform feedback.",
funcName);
*out_error = true;
return;
}
}
////
const auto& tfo = mWebGL->mBoundTransformFeedback;
if (tfo && tfo->IsActiveAndNotPaused()) {
uint32_t numUsed;
switch (linkInfo->transformFeedbackBufferMode) {
case LOCAL_GL_INTERLEAVED_ATTRIBS:
numUsed = 1;
break;
case LOCAL_GL_SEPARATE_ATTRIBS:
numUsed = linkInfo->transformFeedbackVaryings.size();
break;
default:
MOZ_CRASH();
}
for (uint32_t i = 0; i < numUsed; ++i) {
const auto& buffer = tfo->mIndexedBindings[i].mBufferBinding;
if (buffer->IsBoundForNonTF()) {
mWebGL->ErrorInvalidOperation("%s: Transform feedback varying %u's"
" buffer is bound for"
" non-transform-feedback.",
funcName, i);
*out_error = true;
return;
}
// Technically we don't know that this will be updated yet, but we can
// speculatively mark it.
buffer->ResetLastUpdateFenceId();
}
}
////
const auto& fetchLimits = linkInfo->GetDrawFetchLimits(funcName);
if (!fetchLimits) {
*out_error = true;
return;
}
if (lastRequiredVertex && instanceCount) {
if (lastRequiredVertex.value() >= fetchLimits->maxVerts) {
mWebGL->ErrorInvalidOperation("%s: Vertex fetch requires vertex #%u, but"
" attribs only supply %" PRIu64 ".",
funcName, lastRequiredVertex.value(),
fetchLimits->maxVerts);
*out_error = true;
return;
}
if (instanceCount > fetchLimits->maxInstances) {
mWebGL->ErrorInvalidOperation("%s: Instance fetch requires %u, but"
" attribs only supply %" PRIu64 ".",
funcName, instanceCount,
fetchLimits->maxInstances);
*out_error = true;
return;
}
}
////
if (lastRequiredVertex) {
if (!mWebGL->DoFakeVertexAttrib0(funcName, lastRequiredVertex.value())) {
*out_error = true;
return;
}
mDidFake = true;
}
////
mWebGL->RunContextLossTimer();
}
~ScopedDrawHelper() {
if (mDidFake) {
mWebGL->UndoFakeVertexAttrib0();
}
}
};
////////////////////////////////////////
static uint32_t
UsedVertsForTFDraw(GLenum mode, uint32_t vertCount)
{
uint8_t vertsPerPrim;
switch (mode) {
case LOCAL_GL_POINTS:
vertsPerPrim = 1;
break;
case LOCAL_GL_LINES:
vertsPerPrim = 2;
break;
case LOCAL_GL_TRIANGLES:
vertsPerPrim = 3;
break;
default:
MOZ_CRASH("`mode`");
}
return vertCount / vertsPerPrim * vertsPerPrim;
}
class ScopedDrawWithTransformFeedback final
{
WebGLContext* const mWebGL;
WebGLTransformFeedback* const mTFO;
const bool mWithTF;
uint32_t mUsedVerts;
public:
ScopedDrawWithTransformFeedback(WebGLContext* webgl, const char* funcName,
GLenum mode, uint32_t vertCount,
uint32_t instanceCount, bool* const out_error)
: mWebGL(webgl)
, mTFO(mWebGL->mBoundTransformFeedback)
, mWithTF(mTFO &&
mTFO->mIsActive &&
!mTFO->mIsPaused)
, mUsedVerts(0)
{
*out_error = false;
if (!mWithTF)
return;
if (mode != mTFO->mActive_PrimMode) {
mWebGL->ErrorInvalidOperation("%s: Drawing with transform feedback requires"
" `mode` to match BeginTransformFeedback's"
" `primitiveMode`.",
funcName);
*out_error = true;
return;
}
const auto usedVertsPerInstance = UsedVertsForTFDraw(mode, vertCount);
const auto usedVerts = CheckedInt<uint32_t>(usedVertsPerInstance) * instanceCount;
const auto remainingCapacity = mTFO->mActive_VertCapacity - mTFO->mActive_VertPosition;
if (!usedVerts.isValid() ||
usedVerts.value() > remainingCapacity)
{
mWebGL->ErrorInvalidOperation("%s: Insufficient buffer capacity remaining for"
" transform feedback.",
funcName);
*out_error = true;
return;
}
mUsedVerts = usedVerts.value();
}
void Advance() const {
if (!mWithTF)
return;
mTFO->mActive_VertPosition += mUsedVerts;
}
};
static bool
HasInstancedDrawing(const WebGLContext& webgl)
{
return webgl.IsWebGL2() ||
webgl.IsExtensionEnabled(WebGLExtensionID::ANGLE_instanced_arrays);
}
////////////////////////////////////////
bool
WebGLContext::DrawArrays_check(const char* const funcName, const GLint first,
const GLsizei vertCount, const GLsizei instanceCount,
Maybe<uint32_t>* const out_lastVert)
{
if (!ValidateNonNegative(funcName, "first", first) ||
!ValidateNonNegative(funcName, "vertCount", vertCount) ||
!ValidateNonNegative(funcName, "instanceCount", instanceCount))
{
return false;
}
if (IsWebGL2() && !gl->IsSupported(gl::GLFeature::prim_restart_fixed)) {
MOZ_ASSERT(gl->IsSupported(gl::GLFeature::prim_restart));
if (mPrimRestartTypeBytes != 0) {
mPrimRestartTypeBytes = 0;
// OSX appears to have severe perf issues with leaving this enabled.
gl->fDisable(LOCAL_GL_PRIMITIVE_RESTART);
}
}
if (!vertCount) {
*out_lastVert = Nothing();
} else {
const auto lastVert_checked = CheckedInt<uint32_t>(first) + vertCount - 1;
if (!lastVert_checked.isValid()) {
ErrorOutOfMemory("%s: `first+vertCount` out of range.", funcName);
return false;
}
*out_lastVert = Some(lastVert_checked.value());
}
return true;
}
void
WebGLContext::DrawArraysInstanced(GLenum mode, GLint first, GLsizei vertCount,
GLsizei instanceCount, const char* const funcName)
{
AUTO_PROFILER_LABEL("WebGLContext::DrawArraysInstanced", GRAPHICS);
if (IsContextLost())
return;
const gl::GLContext::TlsScope inTls(gl);
Maybe<uint32_t> lastVert;
if (!DrawArrays_check(funcName, first, vertCount, instanceCount, &lastVert))
return;
bool error = false;
const ScopedDrawHelper scopedHelper(this, funcName, mode, lastVert, instanceCount,
&error);
if (error)
return;
const ScopedResolveTexturesForDraw scopedResolve(this, funcName, &error);
if (error)
return;
const ScopedDrawWithTransformFeedback scopedTF(this, funcName, mode, vertCount,
instanceCount, &error);
if (error)
return;
{
ScopedDrawCallWrapper wrapper(*this);
if (vertCount && instanceCount) {
AUTO_PROFILER_LABEL("glDrawArraysInstanced", GRAPHICS);
if (HasInstancedDrawing(*this)) {
gl->fDrawArraysInstanced(mode, first, vertCount, instanceCount);
} else {
MOZ_ASSERT(instanceCount == 1);
gl->fDrawArrays(mode, first, vertCount);
}
}
}
Draw_cleanup(funcName);
scopedTF.Advance();
}
////////////////////////////////////////
bool
WebGLContext::DrawElements_check(const char* const funcName, const GLsizei rawIndexCount,
const GLenum type, const WebGLintptr byteOffset,
const GLsizei instanceCount,
Maybe<uint32_t>* const out_lastVert)
{
if (mBoundTransformFeedback &&
mBoundTransformFeedback->mIsActive &&
!mBoundTransformFeedback->mIsPaused)
{
ErrorInvalidOperation("%s: DrawElements* functions are incompatible with"
" transform feedback.",
funcName);
return false;
}
if (!ValidateNonNegative(funcName, "vertCount", rawIndexCount) ||
!ValidateNonNegative(funcName, "byteOffset", byteOffset) ||
!ValidateNonNegative(funcName, "instanceCount", instanceCount))
{
return false;
}
const auto indexCount = uint32_t(rawIndexCount);
uint8_t bytesPerIndex = 0;
switch (type) {
case LOCAL_GL_UNSIGNED_BYTE:
bytesPerIndex = 1;
break;
case LOCAL_GL_UNSIGNED_SHORT:
bytesPerIndex = 2;
break;
case LOCAL_GL_UNSIGNED_INT:
if (IsWebGL2() || IsExtensionEnabled(WebGLExtensionID::OES_element_index_uint)) {
bytesPerIndex = 4;
}
break;
}
if (!bytesPerIndex) {
ErrorInvalidEnum("%s: Invalid `type`: 0x%04x", funcName, type);
return false;
}
if (byteOffset % bytesPerIndex != 0) {
ErrorInvalidOperation("%s: `byteOffset` must be a multiple of the size of `type`",
funcName);
return false;
}
////
if (IsWebGL2() && !gl->IsSupported(gl::GLFeature::prim_restart_fixed)) {
MOZ_ASSERT(gl->IsSupported(gl::GLFeature::prim_restart));
if (mPrimRestartTypeBytes != bytesPerIndex) {
mPrimRestartTypeBytes = bytesPerIndex;
const uint32_t ones = UINT32_MAX >> (32 - 8*mPrimRestartTypeBytes);
gl->fEnable(LOCAL_GL_PRIMITIVE_RESTART);
gl->fPrimitiveRestartIndex(ones);
}
}
////
// Index fetching
const auto& indexBuffer = mBoundVertexArray->mElementArrayBuffer;
if (!indexBuffer) {
ErrorInvalidOperation("%s: Index buffer not bound.", funcName);
return false;
}
MOZ_ASSERT(!indexBuffer->IsBoundForTF(), "This should be impossible.");
if (!indexCount || !instanceCount) {
*out_lastVert = Nothing();
return true;
}
const size_t availBytes = indexBuffer->ByteLength();
const auto availIndices = AvailGroups(availBytes, byteOffset, bytesPerIndex,
bytesPerIndex);
if (indexCount > availIndices) {
ErrorInvalidOperation("%s: Index buffer too small.", funcName);
return false;
}
*out_lastVert = indexBuffer->GetIndexedFetchMaxVert(type, byteOffset, indexCount);
return true;
}
static void
HandleDrawElementsErrors(WebGLContext* webgl, const char* funcName,
gl::GLContext::LocalErrorScope& errorScope)
{
const auto err = errorScope.GetError();
if (err == LOCAL_GL_INVALID_OPERATION) {
webgl->ErrorInvalidOperation("%s: Driver rejected indexed draw call, possibly"
" due to out-of-bounds indices.", funcName);
return;
}
MOZ_ASSERT(!err);
if (err) {
webgl->ErrorImplementationBug("%s: Unexpected driver error during indexed draw"
" call. Please file a bug.",
funcName);
return;
}
}
void
WebGLContext::DrawElementsInstanced(GLenum mode, GLsizei indexCount, GLenum type,
WebGLintptr byteOffset, GLsizei instanceCount,
const char* const funcName)
{
AUTO_PROFILER_LABEL("WebGLContext::DrawElementsInstanced", GRAPHICS);
if (IsContextLost())
return;
const gl::GLContext::TlsScope inTls(gl);
Maybe<uint32_t> lastVert;
if (!DrawElements_check(funcName, indexCount, type, byteOffset, instanceCount,
&lastVert))
{
return;
}
bool error = false;
const ScopedDrawHelper scopedHelper(this, funcName, mode, lastVert, instanceCount,
&error);
if (error)
return;
const ScopedResolveTexturesForDraw scopedResolve(this, funcName, &error);
if (error)
return;
{
ScopedDrawCallWrapper wrapper(*this);
{
UniquePtr<gl::GLContext::LocalErrorScope> errorScope;
if (MOZ_UNLIKELY( gl->IsANGLE() &&
gl->mDebugFlags & gl::GLContext::DebugFlagAbortOnError ))
{
// ANGLE does range validation even when it doesn't need to.
// With MOZ_GL_ABORT_ON_ERROR, we need to catch it or hit assertions.
errorScope.reset(new gl::GLContext::LocalErrorScope(*gl));
}
if (indexCount && instanceCount) {
AUTO_PROFILER_LABEL("glDrawElementsInstanced", GRAPHICS);
if (HasInstancedDrawing(*this)) {
gl->fDrawElementsInstanced(mode, indexCount, type,
reinterpret_cast<GLvoid*>(byteOffset),
instanceCount);
} else {
MOZ_ASSERT(instanceCount == 1);
gl->fDrawElements(mode, indexCount, type,
reinterpret_cast<GLvoid*>(byteOffset));
}
}
if (errorScope) {
HandleDrawElementsErrors(this, funcName, *errorScope);
}
}
}
Draw_cleanup(funcName);
}
////////////////////////////////////////
void
WebGLContext::Draw_cleanup(const char* funcName)
{
if (gl->WorkAroundDriverBugs()) {
if (gl->Renderer() == gl::GLRenderer::Tegra) {
mDrawCallsSinceLastFlush++;
if (mDrawCallsSinceLastFlush >= MAX_DRAW_CALLS_SINCE_FLUSH) {
gl->fFlush();
mDrawCallsSinceLastFlush = 0;
}
}
}
// Let's check for a really common error: Viewport is larger than the actual
// destination framebuffer.
uint32_t destWidth = mViewportWidth;
uint32_t destHeight = mViewportHeight;
if (mBoundDrawFramebuffer) {
const auto& drawBuffers = mBoundDrawFramebuffer->ColorDrawBuffers();
for (const auto& cur : drawBuffers) {
if (!cur->IsDefined())
continue;
cur->Size(&destWidth, &destHeight);
break;
}
} else {
destWidth = mDefaultFB->mSize.width;
destHeight = mDefaultFB->mSize.height;
}
if (mViewportWidth > int32_t(destWidth) ||
mViewportHeight > int32_t(destHeight))
{
if (!mAlreadyWarnedAboutViewportLargerThanDest) {
GenerateWarning("%s: Drawing to a destination rect smaller than the viewport"
" rect. (This warning will only be given once)",
funcName);
mAlreadyWarnedAboutViewportLargerThanDest = true;
}
}
}
WebGLVertexAttrib0Status
WebGLContext::WhatDoesVertexAttrib0Need() const
{
MOZ_ASSERT(mCurrentProgram);
MOZ_ASSERT(mActiveProgramLinkInfo);
bool legacyAttrib0 = gl->IsCompatibilityProfile();
#ifdef XP_MACOSX
if (gl->WorkAroundDriverBugs()) {
// Failures in conformance/attribs/gl-disabled-vertex-attrib.
// Even in Core profiles on NV. Sigh.
legacyAttrib0 |= (gl->Vendor() == gl::GLVendor::NVIDIA);
}
#endif
if (!legacyAttrib0)
return WebGLVertexAttrib0Status::Default;
if (!mActiveProgramLinkInfo->attrib0Active) {
// Ensure that the legacy code has enough buffer.
return WebGLVertexAttrib0Status::EmulatedUninitializedArray;
}
const auto& isAttribArray0Enabled = mBoundVertexArray->mAttribs[0].mEnabled;
return isAttribArray0Enabled ? WebGLVertexAttrib0Status::Default
: WebGLVertexAttrib0Status::EmulatedInitializedArray;
}
bool
WebGLContext::DoFakeVertexAttrib0(const char* const funcName, const uint32_t lastVert)
{
const auto whatDoesAttrib0Need = WhatDoesVertexAttrib0Need();
if (MOZ_LIKELY(whatDoesAttrib0Need == WebGLVertexAttrib0Status::Default))
return true;
if (!mAlreadyWarnedAboutFakeVertexAttrib0) {
GenerateWarning("Drawing without vertex attrib 0 array enabled forces the browser "
"to do expensive emulation work when running on desktop OpenGL "
"platforms, for example on Mac. It is preferable to always draw "
"with vertex attrib 0 array enabled, by using bindAttribLocation "
"to bind some always-used attribute to location 0.");
mAlreadyWarnedAboutFakeVertexAttrib0 = true;
}
gl->fEnableVertexAttribArray(0);
if (!mFakeVertexAttrib0BufferObject) {
gl->fGenBuffers(1, &mFakeVertexAttrib0BufferObject);
mFakeVertexAttrib0BufferObjectSize = 0;
}
gl->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, mFakeVertexAttrib0BufferObject);
////
switch (mGenericVertexAttribTypes[0]) {
case LOCAL_GL_FLOAT:
gl->fVertexAttribPointer(0, 4, LOCAL_GL_FLOAT, false, 0, 0);
break;
case LOCAL_GL_INT:
gl->fVertexAttribIPointer(0, 4, LOCAL_GL_INT, 0, 0);
break;
case LOCAL_GL_UNSIGNED_INT:
gl->fVertexAttribIPointer(0, 4, LOCAL_GL_UNSIGNED_INT, 0, 0);
break;
default:
MOZ_CRASH();
}
////
const auto bytesPerVert = sizeof(mFakeVertexAttrib0Data);
const auto checked_dataSize = (CheckedUint32(lastVert)+1) * bytesPerVert;
if (!checked_dataSize.isValid()) {
ErrorOutOfMemory("Integer overflow trying to construct a fake vertex attrib 0"
" array for a draw-operation with %" PRIu64 " vertices. Try"
" reducing the number of vertices.",
uint64_t(lastVert) + 1);
return false;
}
const auto dataSize = checked_dataSize.value();
if (mFakeVertexAttrib0BufferObjectSize < dataSize) {
gl->fBufferData(LOCAL_GL_ARRAY_BUFFER, dataSize, nullptr, LOCAL_GL_DYNAMIC_DRAW);
mFakeVertexAttrib0BufferObjectSize = dataSize;
mFakeVertexAttrib0DataDefined = false;
}
if (whatDoesAttrib0Need == WebGLVertexAttrib0Status::EmulatedUninitializedArray)
return true;
////
if (mFakeVertexAttrib0DataDefined &&
memcmp(mFakeVertexAttrib0Data, mGenericVertexAttrib0Data, bytesPerVert) == 0)
{
return true;
}
////
const UniqueBuffer data(malloc(dataSize));
if (!data) {
ErrorOutOfMemory("%s: Failed to allocate fake vertex attrib 0 array.",
funcName);
return false;
}
auto itr = (uint8_t*)data.get();
const auto itrEnd = itr + dataSize;
while (itr != itrEnd) {
memcpy(itr, mGenericVertexAttrib0Data, bytesPerVert);
itr += bytesPerVert;
}
{
gl::GLContext::LocalErrorScope errorScope(*gl);
gl->fBufferSubData(LOCAL_GL_ARRAY_BUFFER, 0, dataSize, data.get());
const auto err = errorScope.GetError();
if (err) {
ErrorOutOfMemory("%s: Failed to upload fake vertex attrib 0 data.", funcName);
return false;
}
}
////
memcpy(mFakeVertexAttrib0Data, mGenericVertexAttrib0Data, bytesPerVert);
mFakeVertexAttrib0DataDefined = true;
return true;
}
void
WebGLContext::UndoFakeVertexAttrib0()
{
const auto whatDoesAttrib0Need = WhatDoesVertexAttrib0Need();
if (MOZ_LIKELY(whatDoesAttrib0Need == WebGLVertexAttrib0Status::Default))
return;
if (mBoundVertexArray->mAttribs[0].mBuf) {
const WebGLVertexAttribData& attrib0 = mBoundVertexArray->mAttribs[0];
gl->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, attrib0.mBuf->mGLName);
attrib0.DoVertexAttribPointer(gl, 0);
} else {
gl->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, 0);
}
gl->fBindBuffer(LOCAL_GL_ARRAY_BUFFER, mBoundArrayBuffer ? mBoundArrayBuffer->mGLName : 0);
}
static GLuint
CreateGLTexture(gl::GLContext* gl)
{
MOZ_ASSERT(gl->IsCurrent());
GLuint ret = 0;
gl->fGenTextures(1, &ret);
return ret;
}
UniquePtr<WebGLContext::FakeBlackTexture>
WebGLContext::FakeBlackTexture::Create(gl::GLContext* gl, TexTarget target,
FakeBlackType type)
{
GLenum texFormat;
switch (type) {
case FakeBlackType::RGBA0000:
texFormat = LOCAL_GL_RGBA;
break;
case FakeBlackType::RGBA0001:
texFormat = LOCAL_GL_RGB;
break;
default:
MOZ_CRASH("GFX: bad type");
}
UniquePtr<FakeBlackTexture> result(new FakeBlackTexture(gl));
gl::ScopedBindTexture scopedBind(gl, result->mGLName, target.get());
gl->fTexParameteri(target.get(), LOCAL_GL_TEXTURE_MIN_FILTER, LOCAL_GL_NEAREST);
gl->fTexParameteri(target.get(), LOCAL_GL_TEXTURE_MAG_FILTER, LOCAL_GL_NEAREST);
const webgl::DriverUnpackInfo dui = {texFormat, texFormat, LOCAL_GL_UNSIGNED_BYTE};
UniqueBuffer zeros = moz_xcalloc(1, 4); // Infallible allocation.
MOZ_ASSERT(gl->IsCurrent());
if (target == LOCAL_GL_TEXTURE_CUBE_MAP) {
for (int i = 0; i < 6; ++i) {
const TexImageTarget curTarget = LOCAL_GL_TEXTURE_CUBE_MAP_POSITIVE_X + i;
const GLenum error = DoTexImage(gl, curTarget.get(), 0, &dui, 1, 1, 1,
zeros.get());
if (error) {
return nullptr;
}
}
} else {
const GLenum error = DoTexImage(gl, target.get(), 0, &dui, 1, 1, 1,
zeros.get());
if (error) {
return nullptr;
}
}
return result;
}
WebGLContext::FakeBlackTexture::FakeBlackTexture(gl::GLContext* gl)
: mGL(gl)
, mGLName(CreateGLTexture(gl))
{
}
WebGLContext::FakeBlackTexture::~FakeBlackTexture()
{
mGL->fDeleteTextures(1, &mGLName);
}
} // namespace mozilla