gecko-dev/gfx/thebes/gfxTextRun.cpp

3471 строка
130 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim: set ts=4 et sw=4 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gfxTextRun.h"
#include "gfxGlyphExtents.h"
#include "gfxPlatformFontList.h"
#include "gfxUserFontSet.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/PathHelpers.h"
#include "mozilla/SizePrintfMacros.h"
#include "mozilla/Sprintf.h"
#include "nsGkAtoms.h"
#include "nsILanguageAtomService.h"
#include "nsServiceManagerUtils.h"
#include "gfxContext.h"
#include "gfxFontConstants.h"
#include "gfxFontMissingGlyphs.h"
#include "gfxScriptItemizer.h"
#include "nsUnicodeProperties.h"
#include "nsUnicodeRange.h"
#include "nsStyleConsts.h"
#include "mozilla/Likely.h"
#include "gfx2DGlue.h"
#include "mozilla/gfx/Logging.h" // for gfxCriticalError
#include "mozilla/UniquePtr.h"
#ifdef XP_WIN
#include "gfxWindowsPlatform.h"
#endif
#include "cairo.h"
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::unicode;
using mozilla::services::GetObserverService;
static const char16_t kEllipsisChar[] = { 0x2026, 0x0 };
static const char16_t kASCIIPeriodsChar[] = { '.', '.', '.', 0x0 };
#ifdef DEBUG_roc
#define DEBUG_TEXT_RUN_STORAGE_METRICS
#endif
#ifdef DEBUG_TEXT_RUN_STORAGE_METRICS
extern uint32_t gTextRunStorageHighWaterMark;
extern uint32_t gTextRunStorage;
extern uint32_t gFontCount;
extern uint32_t gGlyphExtentsCount;
extern uint32_t gGlyphExtentsWidthsTotalSize;
extern uint32_t gGlyphExtentsSetupEagerSimple;
extern uint32_t gGlyphExtentsSetupEagerTight;
extern uint32_t gGlyphExtentsSetupLazyTight;
extern uint32_t gGlyphExtentsSetupFallBackToTight;
#endif
bool
gfxTextRun::GlyphRunIterator::NextRun()
{
uint32_t glyphRunCount;
if (mTextRun->mHasGlyphRunArray) {
glyphRunCount = mTextRun->mGlyphRunArray.Length();
if (mNextIndex >= glyphRunCount) {
return false;
}
mGlyphRun = &mTextRun->mGlyphRunArray[mNextIndex];
} else {
if (mNextIndex > 0) {
return false;
}
glyphRunCount = 1;
mGlyphRun = &mTextRun->mSingleGlyphRun;
}
if (mGlyphRun->mCharacterOffset >= mEndOffset) {
return false;
}
mStringStart = std::max(mStartOffset, mGlyphRun->mCharacterOffset);
uint32_t last = mNextIndex + 1 < glyphRunCount
? mTextRun->mGlyphRunArray[mNextIndex + 1].mCharacterOffset
: mTextRun->GetLength();
mStringEnd = std::min(mEndOffset, last);
++mNextIndex;
return true;
}
#ifdef DEBUG_TEXT_RUN_STORAGE_METRICS
static void
AccountStorageForTextRun(gfxTextRun *aTextRun, int32_t aSign)
{
// Ignores detailed glyphs... we don't know when those have been constructed
// Also ignores gfxSkipChars dynamic storage (which won't be anything
// for preformatted text)
// Also ignores GlyphRun array, again because it hasn't been constructed
// by the time this gets called. If there's only one glyphrun that's stored
// directly in the textrun anyway so no additional overhead.
uint32_t length = aTextRun->GetLength();
int32_t bytes = length * sizeof(gfxTextRun::CompressedGlyph);
bytes += sizeof(gfxTextRun);
gTextRunStorage += bytes*aSign;
gTextRunStorageHighWaterMark = std::max(gTextRunStorageHighWaterMark, gTextRunStorage);
}
#endif
static bool
NeedsGlyphExtents(gfxTextRun *aTextRun)
{
if (aTextRun->GetFlags() & gfx::ShapedTextFlags::TEXT_NEED_BOUNDING_BOX)
return true;
uint32_t numRuns;
const gfxTextRun::GlyphRun *glyphRuns = aTextRun->GetGlyphRuns(&numRuns);
for (uint32_t i = 0; i < numRuns; ++i) {
if (glyphRuns[i].mFont->GetFontEntry()->IsUserFont())
return true;
}
return false;
}
// Helper for textRun creation to preallocate storage for glyph records;
// this function returns a pointer to the newly-allocated glyph storage.
// Returns nullptr if allocation fails.
void *
gfxTextRun::AllocateStorageForTextRun(size_t aSize, uint32_t aLength)
{
// Allocate the storage we need, returning nullptr on failure rather than
// throwing an exception (because web content can create huge runs).
void *storage = malloc(aSize + aLength * sizeof(CompressedGlyph));
if (!storage) {
NS_WARNING("failed to allocate storage for text run!");
return nullptr;
}
// Initialize the glyph storage (beyond aSize) to zero
memset(reinterpret_cast<char*>(storage) + aSize, 0,
aLength * sizeof(CompressedGlyph));
return storage;
}
already_AddRefed<gfxTextRun>
gfxTextRun::Create(const gfxTextRunFactory::Parameters *aParams,
uint32_t aLength, gfxFontGroup *aFontGroup,
gfx::ShapedTextFlags aFlags,
nsTextFrameUtils::Flags aFlags2)
{
void *storage = AllocateStorageForTextRun(sizeof(gfxTextRun), aLength);
if (!storage) {
return nullptr;
}
RefPtr<gfxTextRun> result = new (storage) gfxTextRun(aParams, aLength,
aFontGroup,
aFlags, aFlags2);
return result.forget();
}
gfxTextRun::gfxTextRun(const gfxTextRunFactory::Parameters *aParams,
uint32_t aLength, gfxFontGroup *aFontGroup,
gfx::ShapedTextFlags aFlags,
nsTextFrameUtils::Flags aFlags2)
: gfxShapedText(aLength, aFlags, aParams->mAppUnitsPerDevUnit)
, mSingleGlyphRun()
, mUserData(aParams->mUserData)
, mFontGroup(aFontGroup)
, mFlags2(aFlags2)
, mReleasedFontGroup(false)
, mHasGlyphRunArray(false)
, mShapingState(eShapingState_Normal)
{
NS_ASSERTION(mAppUnitsPerDevUnit > 0, "Invalid app unit scale");
NS_ADDREF(mFontGroup);
#ifndef RELEASE_OR_BETA
gfxTextPerfMetrics *tp = aFontGroup->GetTextPerfMetrics();
if (tp) {
tp->current.textrunConst++;
}
#endif
mCharacterGlyphs = reinterpret_cast<CompressedGlyph*>(this + 1);
if (aParams->mSkipChars) {
mSkipChars.TakeFrom(aParams->mSkipChars);
}
#ifdef DEBUG_TEXT_RUN_STORAGE_METRICS
AccountStorageForTextRun(this, 1);
#endif
mSkipDrawing = mFontGroup->ShouldSkipDrawing();
}
gfxTextRun::~gfxTextRun()
{
#ifdef DEBUG_TEXT_RUN_STORAGE_METRICS
AccountStorageForTextRun(this, -1);
#endif
#ifdef DEBUG
// Make it easy to detect a dead text run
mFlags = ~gfx::ShapedTextFlags();
mFlags2 = ~nsTextFrameUtils::Flags();
#endif
if (mHasGlyphRunArray) {
mGlyphRunArray.~nsTArray<GlyphRun>();
} else {
mSingleGlyphRun.mFont = nullptr;
}
// The cached ellipsis textrun (if any) in a fontgroup will have already
// been told to release its reference to the group, so we mustn't do that
// again here.
if (!mReleasedFontGroup) {
#ifndef RELEASE_OR_BETA
gfxTextPerfMetrics *tp = mFontGroup->GetTextPerfMetrics();
if (tp) {
tp->current.textrunDestr++;
}
#endif
NS_RELEASE(mFontGroup);
}
}
void
gfxTextRun::ReleaseFontGroup()
{
NS_ASSERTION(!mReleasedFontGroup, "doubly released!");
NS_RELEASE(mFontGroup);
mReleasedFontGroup = true;
}
bool
gfxTextRun::SetPotentialLineBreaks(Range aRange, const uint8_t* aBreakBefore)
{
NS_ASSERTION(aRange.end <= GetLength(), "Overflow");
uint32_t changed = 0;
CompressedGlyph* cg = mCharacterGlyphs + aRange.start;
const CompressedGlyph* const end = cg + aRange.Length();
while (cg < end) {
uint8_t canBreak = *aBreakBefore++;
if (canBreak && !cg->IsClusterStart()) {
// XXX If we replace the line-breaker with one based more closely
// on UAX#14 (e.g. using ICU), this may not be needed any more.
// Avoid possible breaks inside a cluster, EXCEPT when the previous
// character was a space (compare UAX#14 rules LB9, LB10).
if (cg == mCharacterGlyphs || !(cg - 1)->CharIsSpace()) {
canBreak = CompressedGlyph::FLAG_BREAK_TYPE_NONE;
}
}
changed |= cg->SetCanBreakBefore(canBreak);
++cg;
}
return changed != 0;
}
gfxTextRun::LigatureData
gfxTextRun::ComputeLigatureData(Range aPartRange,
PropertyProvider *aProvider) const
{
NS_ASSERTION(aPartRange.start < aPartRange.end,
"Computing ligature data for empty range");
NS_ASSERTION(aPartRange.end <= GetLength(), "Character length overflow");
LigatureData result;
const CompressedGlyph *charGlyphs = mCharacterGlyphs;
uint32_t i;
for (i = aPartRange.start; !charGlyphs[i].IsLigatureGroupStart(); --i) {
NS_ASSERTION(i > 0, "Ligature at the start of the run??");
}
result.mRange.start = i;
for (i = aPartRange.start + 1;
i < GetLength() && !charGlyphs[i].IsLigatureGroupStart(); ++i) {
}
result.mRange.end = i;
int32_t ligatureWidth = GetAdvanceForGlyphs(result.mRange);
// Count the number of started clusters we have seen
uint32_t totalClusterCount = 0;
uint32_t partClusterIndex = 0;
uint32_t partClusterCount = 0;
for (i = result.mRange.start; i < result.mRange.end; ++i) {
// Treat the first character of the ligature as the start of a
// cluster for our purposes of allocating ligature width to its
// characters.
if (i == result.mRange.start || charGlyphs[i].IsClusterStart()) {
++totalClusterCount;
if (i < aPartRange.start) {
++partClusterIndex;
} else if (i < aPartRange.end) {
++partClusterCount;
}
}
}
NS_ASSERTION(totalClusterCount > 0, "Ligature involving no clusters??");
result.mPartAdvance = partClusterIndex * (ligatureWidth / totalClusterCount);
result.mPartWidth = partClusterCount * (ligatureWidth / totalClusterCount);
// Any rounding errors are apportioned to the final part of the ligature,
// so that measuring all parts of a ligature and summing them is equal to
// the ligature width.
if (aPartRange.end == result.mRange.end) {
gfxFloat allParts = totalClusterCount * (ligatureWidth / totalClusterCount);
result.mPartWidth += ligatureWidth - allParts;
}
if (partClusterCount == 0) {
// nothing to draw
result.mClipBeforePart = result.mClipAfterPart = true;
} else {
// Determine whether we should clip before or after this part when
// drawing its slice of the ligature.
// We need to clip before the part if any cluster is drawn before
// this part.
result.mClipBeforePart = partClusterIndex > 0;
// We need to clip after the part if any cluster is drawn after
// this part.
result.mClipAfterPart = partClusterIndex + partClusterCount < totalClusterCount;
}
if (aProvider && (mFlags & gfx::ShapedTextFlags::TEXT_ENABLE_SPACING)) {
gfxFont::Spacing spacing;
if (aPartRange.start == result.mRange.start) {
aProvider->GetSpacing(
Range(aPartRange.start, aPartRange.start + 1), &spacing);
result.mPartWidth += spacing.mBefore;
}
if (aPartRange.end == result.mRange.end) {
aProvider->GetSpacing(
Range(aPartRange.end - 1, aPartRange.end), &spacing);
result.mPartWidth += spacing.mAfter;
}
}
return result;
}
gfxFloat
gfxTextRun::ComputePartialLigatureWidth(Range aPartRange,
PropertyProvider *aProvider) const
{
if (aPartRange.start >= aPartRange.end)
return 0;
LigatureData data = ComputeLigatureData(aPartRange, aProvider);
return data.mPartWidth;
}
int32_t
gfxTextRun::GetAdvanceForGlyphs(Range aRange) const
{
int32_t advance = 0;
for (auto i = aRange.start; i < aRange.end; ++i) {
advance += GetAdvanceForGlyph(i);
}
return advance;
}
static void
GetAdjustedSpacing(const gfxTextRun *aTextRun, gfxTextRun::Range aRange,
gfxTextRun::PropertyProvider *aProvider,
gfxTextRun::PropertyProvider::Spacing *aSpacing)
{
if (aRange.start >= aRange.end)
return;
aProvider->GetSpacing(aRange, aSpacing);
#ifdef DEBUG
// Check to see if we have spacing inside ligatures
const gfxTextRun::CompressedGlyph *charGlyphs = aTextRun->GetCharacterGlyphs();
uint32_t i;
for (i = aRange.start; i < aRange.end; ++i) {
if (!charGlyphs[i].IsLigatureGroupStart()) {
NS_ASSERTION(i == aRange.start ||
aSpacing[i - aRange.start].mBefore == 0,
"Before-spacing inside a ligature!");
NS_ASSERTION(i - 1 <= aRange.start ||
aSpacing[i - 1 - aRange.start].mAfter == 0,
"After-spacing inside a ligature!");
}
}
#endif
}
bool
gfxTextRun::GetAdjustedSpacingArray(Range aRange, PropertyProvider *aProvider,
Range aSpacingRange,
nsTArray<PropertyProvider::Spacing>*
aSpacing) const
{
if (!aProvider || !(mFlags & gfx::ShapedTextFlags::TEXT_ENABLE_SPACING))
return false;
if (!aSpacing->AppendElements(aRange.Length()))
return false;
auto spacingOffset = aSpacingRange.start - aRange.start;
memset(aSpacing->Elements(), 0, sizeof(gfxFont::Spacing) * spacingOffset);
GetAdjustedSpacing(this, aSpacingRange, aProvider,
aSpacing->Elements() + spacingOffset);
memset(aSpacing->Elements() + aSpacingRange.end - aRange.start, 0,
sizeof(gfxFont::Spacing) * (aRange.end - aSpacingRange.end));
return true;
}
void
gfxTextRun::ShrinkToLigatureBoundaries(Range* aRange) const
{
if (aRange->start >= aRange->end)
return;
const CompressedGlyph *charGlyphs = mCharacterGlyphs;
while (aRange->start < aRange->end &&
!charGlyphs[aRange->start].IsLigatureGroupStart()) {
++aRange->start;
}
if (aRange->end < GetLength()) {
while (aRange->end > aRange->start &&
!charGlyphs[aRange->end].IsLigatureGroupStart()) {
--aRange->end;
}
}
}
void
gfxTextRun::DrawGlyphs(gfxFont *aFont, Range aRange, gfxPoint *aPt,
PropertyProvider *aProvider, Range aSpacingRange,
TextRunDrawParams& aParams,
gfx::ShapedTextFlags aOrientation) const
{
AutoTArray<PropertyProvider::Spacing,200> spacingBuffer;
bool haveSpacing = GetAdjustedSpacingArray(aRange, aProvider,
aSpacingRange, &spacingBuffer);
aParams.spacing = haveSpacing ? spacingBuffer.Elements() : nullptr;
aFont->Draw(this, aRange.start, aRange.end, aPt, aParams, aOrientation);
}
static void
ClipPartialLigature(const gfxTextRun* aTextRun,
gfxFloat *aStart, gfxFloat *aEnd,
gfxFloat aOrigin,
gfxTextRun::LigatureData *aLigature)
{
if (aLigature->mClipBeforePart) {
if (aTextRun->IsRightToLeft()) {
*aEnd = std::min(*aEnd, aOrigin);
} else {
*aStart = std::max(*aStart, aOrigin);
}
}
if (aLigature->mClipAfterPart) {
gfxFloat endEdge =
aOrigin + aTextRun->GetDirection() * aLigature->mPartWidth;
if (aTextRun->IsRightToLeft()) {
*aStart = std::max(*aStart, endEdge);
} else {
*aEnd = std::min(*aEnd, endEdge);
}
}
}
void
gfxTextRun::DrawPartialLigature(gfxFont *aFont, Range aRange,
gfxPoint *aPt, PropertyProvider *aProvider,
TextRunDrawParams& aParams,
gfx::ShapedTextFlags aOrientation) const
{
if (aRange.start >= aRange.end) {
return;
}
// Draw partial ligature. We hack this by clipping the ligature.
LigatureData data = ComputeLigatureData(aRange, aProvider);
gfxRect clipExtents = aParams.context->GetClipExtents();
gfxFloat start, end;
if (aParams.isVerticalRun) {
start = clipExtents.Y() * mAppUnitsPerDevUnit;
end = clipExtents.YMost() * mAppUnitsPerDevUnit;
ClipPartialLigature(this, &start, &end, aPt->y, &data);
} else {
start = clipExtents.X() * mAppUnitsPerDevUnit;
end = clipExtents.XMost() * mAppUnitsPerDevUnit;
ClipPartialLigature(this, &start, &end, aPt->x, &data);
}
{
// use division here to ensure that when the rect is aligned on multiples
// of mAppUnitsPerDevUnit, we clip to true device unit boundaries.
// Also, make sure we snap the rectangle to device pixels.
Rect clipRect = aParams.isVerticalRun ?
Rect(clipExtents.X(), start / mAppUnitsPerDevUnit,
clipExtents.Width(), (end - start) / mAppUnitsPerDevUnit) :
Rect(start / mAppUnitsPerDevUnit, clipExtents.Y(),
(end - start) / mAppUnitsPerDevUnit, clipExtents.Height());
MaybeSnapToDevicePixels(clipRect, *aParams.dt, true);
aParams.context->Save();
aParams.context->Clip(clipRect);
}
gfxPoint pt;
if (aParams.isVerticalRun) {
pt = gfxPoint(aPt->x, aPt->y - aParams.direction * data.mPartAdvance);
} else {
pt = gfxPoint(aPt->x - aParams.direction * data.mPartAdvance, aPt->y);
}
DrawGlyphs(aFont, data.mRange, &pt,
aProvider, aRange, aParams, aOrientation);
aParams.context->Restore();
if (aParams.isVerticalRun) {
aPt->y += aParams.direction * data.mPartWidth;
} else {
aPt->x += aParams.direction * data.mPartWidth;
}
}
// Returns true if a glyph run is using a font with synthetic bolding enabled,
// or a color font (COLR/SVG/sbix/CBDT), false otherwise. This is used to
// check whether the text run needs to be explicitly composited in order to
// support opacity.
static bool
HasSyntheticBoldOrColor(const gfxTextRun *aRun, gfxTextRun::Range aRange)
{
gfxTextRun::GlyphRunIterator iter(aRun, aRange);
while (iter.NextRun()) {
gfxFont *font = iter.GetGlyphRun()->mFont;
if (font) {
if (font->IsSyntheticBold()) {
return true;
}
gfxFontEntry* fe = font->GetFontEntry();
if (fe->TryGetSVGData(font) || fe->TryGetColorGlyphs()) {
return true;
}
#if defined(XP_MACOSX) // sbix fonts only supported via Core Text
if (fe->HasFontTable(TRUETYPE_TAG('s', 'b', 'i', 'x'))) {
return true;
}
#endif
}
}
return false;
}
// Returns true if color is neither opaque nor transparent (i.e. alpha is not 0
// or 1), and false otherwise. If true, aCurrentColorOut is set on output.
static bool
HasNonOpaqueNonTransparentColor(gfxContext *aContext, Color& aCurrentColorOut)
{
if (aContext->GetDeviceColor(aCurrentColorOut)) {
if (0.f < aCurrentColorOut.a && aCurrentColorOut.a < 1.f) {
return true;
}
}
return false;
}
// helper class for double-buffering drawing with non-opaque color
struct BufferAlphaColor {
explicit BufferAlphaColor(gfxContext *aContext)
: mContext(aContext)
{
}
~BufferAlphaColor() {}
void PushSolidColor(const gfxRect& aBounds, const Color& aAlphaColor, uint32_t appsPerDevUnit)
{
mContext->Save();
mContext->NewPath();
mContext->Rectangle(gfxRect(aBounds.X() / appsPerDevUnit,
aBounds.Y() / appsPerDevUnit,
aBounds.Width() / appsPerDevUnit,
aBounds.Height() / appsPerDevUnit), true);
mContext->Clip();
mContext->SetColor(Color(aAlphaColor.r, aAlphaColor.g, aAlphaColor.b));
mContext->PushGroupForBlendBack(gfxContentType::COLOR_ALPHA, aAlphaColor.a);
}
void PopAlpha()
{
// pop the text, using the color alpha as the opacity
mContext->PopGroupAndBlend();
mContext->Restore();
}
gfxContext *mContext;
};
void
gfxTextRun::Draw(Range aRange, gfxPoint aPt, const DrawParams& aParams) const
{
NS_ASSERTION(aRange.end <= GetLength(), "Substring out of range");
NS_ASSERTION(aParams.drawMode == DrawMode::GLYPH_PATH ||
!(aParams.drawMode & DrawMode::GLYPH_PATH),
"GLYPH_PATH cannot be used with GLYPH_FILL, GLYPH_STROKE or GLYPH_STROKE_UNDERNEATH");
NS_ASSERTION(aParams.drawMode == DrawMode::GLYPH_PATH || !aParams.callbacks,
"callback must not be specified unless using GLYPH_PATH");
bool skipDrawing = mSkipDrawing;
if (aParams.drawMode & DrawMode::GLYPH_FILL) {
Color currentColor;
if (aParams.context->GetDeviceColor(currentColor) &&
currentColor.a == 0) {
skipDrawing = true;
}
}
gfxFloat direction = GetDirection();
if (skipDrawing) {
// We don't need to draw anything;
// but if the caller wants advance width, we need to compute it here
if (aParams.advanceWidth) {
gfxTextRun::Metrics metrics = MeasureText(
aRange, gfxFont::LOOSE_INK_EXTENTS,
aParams.context->GetDrawTarget(), aParams.provider);
*aParams.advanceWidth = metrics.mAdvanceWidth * direction;
}
// return without drawing
return;
}
// synthetic bolding draws glyphs twice ==> colors with opacity won't draw
// correctly unless first drawn without alpha
BufferAlphaColor syntheticBoldBuffer(aParams.context);
Color currentColor;
bool needToRestore = false;
if (aParams.drawMode & DrawMode::GLYPH_FILL &&
HasNonOpaqueNonTransparentColor(aParams.context, currentColor) &&
HasSyntheticBoldOrColor(this, aRange)) {
needToRestore = true;
// Measure text; use the bounding box to determine the area we need
// to buffer.
gfxTextRun::Metrics metrics = MeasureText(
aRange, gfxFont::LOOSE_INK_EXTENTS,
aParams.context->GetDrawTarget(), aParams.provider);
if (IsRightToLeft()) {
metrics.mBoundingBox.MoveBy(gfxPoint(aPt.x - metrics.mAdvanceWidth,
aPt.y));
} else {
metrics.mBoundingBox.MoveBy(aPt);
}
syntheticBoldBuffer.PushSolidColor(metrics.mBoundingBox, currentColor,
GetAppUnitsPerDevUnit());
}
// Set up parameters that will be constant across all glyph runs we need
// to draw, regardless of the font used.
TextRunDrawParams params;
params.context = aParams.context;
params.devPerApp = 1.0 / double(GetAppUnitsPerDevUnit());
params.isVerticalRun = IsVertical();
params.isRTL = IsRightToLeft();
params.direction = direction;
params.strokeOpts = aParams.strokeOpts;
params.textStrokeColor = aParams.textStrokeColor;
params.textStrokePattern = aParams.textStrokePattern;
params.drawOpts = aParams.drawOpts;
params.drawMode = aParams.drawMode;
params.callbacks = aParams.callbacks;
params.runContextPaint = aParams.contextPaint;
params.paintSVGGlyphs = !aParams.callbacks ||
aParams.callbacks->mShouldPaintSVGGlyphs;
params.dt = aParams.context->GetDrawTarget();
params.fontSmoothingBGColor =
aParams.context->GetFontSmoothingBackgroundColor();
GlyphRunIterator iter(this, aRange);
gfxFloat advance = 0.0;
while (iter.NextRun()) {
gfxFont *font = iter.GetGlyphRun()->mFont;
uint32_t start = iter.GetStringStart();
uint32_t end = iter.GetStringEnd();
Range ligatureRange(start, end);
ShrinkToLigatureBoundaries(&ligatureRange);
bool drawPartial = (aParams.drawMode & DrawMode::GLYPH_FILL) ||
(aParams.drawMode == DrawMode::GLYPH_PATH &&
aParams.callbacks);
gfxPoint origPt = aPt;
if (drawPartial) {
DrawPartialLigature(font, Range(start, ligatureRange.start),
&aPt, aParams.provider, params,
iter.GetGlyphRun()->mOrientation);
}
DrawGlyphs(font, ligatureRange, &aPt,
aParams.provider, ligatureRange, params,
iter.GetGlyphRun()->mOrientation);
if (drawPartial) {
DrawPartialLigature(font, Range(ligatureRange.end, end),
&aPt, aParams.provider, params,
iter.GetGlyphRun()->mOrientation);
}
if (params.isVerticalRun) {
advance += (aPt.y - origPt.y) * params.direction;
} else {
advance += (aPt.x - origPt.x) * params.direction;
}
}
// composite result when synthetic bolding used
if (needToRestore) {
syntheticBoldBuffer.PopAlpha();
}
if (aParams.advanceWidth) {
*aParams.advanceWidth = advance;
}
}
// This method is mostly parallel to Draw().
void
gfxTextRun::DrawEmphasisMarks(gfxContext *aContext, gfxTextRun* aMark,
gfxFloat aMarkAdvance, gfxPoint aPt,
Range aRange, PropertyProvider* aProvider) const
{
MOZ_ASSERT(aRange.end <= GetLength());
EmphasisMarkDrawParams params;
params.context = aContext;
params.mark = aMark;
params.advance = aMarkAdvance;
params.direction = GetDirection();
params.isVertical = IsVertical();
gfxFloat& inlineCoord = params.isVertical ? aPt.y : aPt.x;
gfxFloat direction = params.direction;
GlyphRunIterator iter(this, aRange);
while (iter.NextRun()) {
gfxFont* font = iter.GetGlyphRun()->mFont;
uint32_t start = iter.GetStringStart();
uint32_t end = iter.GetStringEnd();
Range ligatureRange(start, end);
ShrinkToLigatureBoundaries(&ligatureRange);
inlineCoord += direction * ComputePartialLigatureWidth(
Range(start, ligatureRange.start), aProvider);
AutoTArray<PropertyProvider::Spacing, 200> spacingBuffer;
bool haveSpacing = GetAdjustedSpacingArray(
ligatureRange, aProvider, ligatureRange, &spacingBuffer);
params.spacing = haveSpacing ? spacingBuffer.Elements() : nullptr;
font->DrawEmphasisMarks(this, &aPt, ligatureRange.start,
ligatureRange.Length(), params);
inlineCoord += direction * ComputePartialLigatureWidth(
Range(ligatureRange.end, end), aProvider);
}
}
void
gfxTextRun::AccumulateMetricsForRun(gfxFont *aFont, Range aRange,
gfxFont::BoundingBoxType aBoundingBoxType,
DrawTarget* aRefDrawTarget,
PropertyProvider *aProvider,
Range aSpacingRange,
gfx::ShapedTextFlags aOrientation,
Metrics *aMetrics) const
{
AutoTArray<PropertyProvider::Spacing,200> spacingBuffer;
bool haveSpacing = GetAdjustedSpacingArray(aRange, aProvider,
aSpacingRange, &spacingBuffer);
Metrics metrics = aFont->Measure(this, aRange.start, aRange.end,
aBoundingBoxType, aRefDrawTarget,
haveSpacing ? spacingBuffer.Elements() : nullptr,
aOrientation);
aMetrics->CombineWith(metrics, IsRightToLeft());
}
void
gfxTextRun::AccumulatePartialLigatureMetrics(gfxFont *aFont, Range aRange,
gfxFont::BoundingBoxType aBoundingBoxType, DrawTarget* aRefDrawTarget,
PropertyProvider *aProvider, gfx::ShapedTextFlags aOrientation,
Metrics *aMetrics) const
{
if (aRange.start >= aRange.end)
return;
// Measure partial ligature. We hack this by clipping the metrics in the
// same way we clip the drawing.
LigatureData data = ComputeLigatureData(aRange, aProvider);
// First measure the complete ligature
Metrics metrics;
AccumulateMetricsForRun(aFont, data.mRange,
aBoundingBoxType, aRefDrawTarget,
aProvider, aRange, aOrientation, &metrics);
// Clip the bounding box to the ligature part
gfxFloat bboxLeft = metrics.mBoundingBox.X();
gfxFloat bboxRight = metrics.mBoundingBox.XMost();
// Where we are going to start "drawing" relative to our left baseline origin
gfxFloat origin = IsRightToLeft() ? metrics.mAdvanceWidth - data.mPartAdvance : 0;
ClipPartialLigature(this, &bboxLeft, &bboxRight, origin, &data);
metrics.mBoundingBox.x = bboxLeft;
metrics.mBoundingBox.width = bboxRight - bboxLeft;
// mBoundingBox is now relative to the left baseline origin for the entire
// ligature. Shift it left.
metrics.mBoundingBox.x -=
IsRightToLeft() ? metrics.mAdvanceWidth - (data.mPartAdvance + data.mPartWidth)
: data.mPartAdvance;
metrics.mAdvanceWidth = data.mPartWidth;
aMetrics->CombineWith(metrics, IsRightToLeft());
}
gfxTextRun::Metrics
gfxTextRun::MeasureText(Range aRange,
gfxFont::BoundingBoxType aBoundingBoxType,
DrawTarget* aRefDrawTarget,
PropertyProvider *aProvider) const
{
NS_ASSERTION(aRange.end <= GetLength(), "Substring out of range");
Metrics accumulatedMetrics;
GlyphRunIterator iter(this, aRange);
while (iter.NextRun()) {
gfxFont *font = iter.GetGlyphRun()->mFont;
uint32_t start = iter.GetStringStart();
uint32_t end = iter.GetStringEnd();
Range ligatureRange(start, end);
ShrinkToLigatureBoundaries(&ligatureRange);
AccumulatePartialLigatureMetrics(
font, Range(start, ligatureRange.start),
aBoundingBoxType, aRefDrawTarget, aProvider,
iter.GetGlyphRun()->mOrientation, &accumulatedMetrics);
// XXX This sucks. We have to get glyph extents just so we can detect
// glyphs outside the font box, even when aBoundingBoxType is LOOSE,
// even though in almost all cases we could get correct results just
// by getting some ascent/descent from the font and using our stored
// advance widths.
AccumulateMetricsForRun(font,
ligatureRange, aBoundingBoxType,
aRefDrawTarget, aProvider, ligatureRange,
iter.GetGlyphRun()->mOrientation, &accumulatedMetrics);
AccumulatePartialLigatureMetrics(
font, Range(ligatureRange.end, end),
aBoundingBoxType, aRefDrawTarget, aProvider,
iter.GetGlyphRun()->mOrientation, &accumulatedMetrics);
}
return accumulatedMetrics;
}
#define MEASUREMENT_BUFFER_SIZE 100
void
gfxTextRun::ClassifyAutoHyphenations(uint32_t aStart, Range aRange,
nsTArray<HyphenType>& aHyphenBuffer,
HyphenationState* aWordState)
{
NS_PRECONDITION(aRange.end - aStart <= aHyphenBuffer.Length() &&
aRange.start >= aStart, "Range out of bounds");
MOZ_ASSERT(aWordState->mostRecentBoundary >= aStart,
"Unexpected aMostRecentWordBoundary!!");
uint32_t start = std::min<uint32_t>(aRange.start, aWordState->mostRecentBoundary);
for (uint32_t i = start; i < aRange.end; ++i) {
if (aHyphenBuffer[i - aStart] == HyphenType::Explicit &&
!aWordState->hasExplicitHyphen) {
aWordState->hasExplicitHyphen = true;
}
if (!aWordState->hasManualHyphen &&
(aHyphenBuffer[i - aStart] == HyphenType::Soft ||
aHyphenBuffer[i - aStart] == HyphenType::Explicit)) {
aWordState->hasManualHyphen = true;
// This is the first manual hyphen in the current word. We can only
// know if the current word has a manual hyphen until now. So, we need
// to run a sub loop to update the auto hyphens between the start of
// the current word and this manual hyphen.
if (aWordState->hasAutoHyphen) {
for (uint32_t j = aWordState->mostRecentBoundary; j < i; j++) {
if (aHyphenBuffer[j - aStart] == HyphenType::AutoWithoutManualInSameWord) {
aHyphenBuffer[j - aStart] = HyphenType::AutoWithManualInSameWord;
}
}
}
}
if (aHyphenBuffer[i - aStart] == HyphenType::AutoWithoutManualInSameWord) {
if (!aWordState->hasAutoHyphen) {
aWordState->hasAutoHyphen = true;
}
if (aWordState->hasManualHyphen) {
aHyphenBuffer[i - aStart] = HyphenType::AutoWithManualInSameWord;
}
}
// If we're at the word boundary, clear/reset couple states.
if (mCharacterGlyphs[i].CharIsSpace() ||
mCharacterGlyphs[i].CharIsTab() ||
mCharacterGlyphs[i].CharIsNewline() ||
// Since we will not have a boundary in the end of the string, let's
// call the end of the string a special case for word boundary.
i == GetLength() - 1) {
// We can only get to know whether we should raise/clear an explicit
// manual hyphen until we get to the end of a word, because this depends
// on whether there exists at least one auto hyphen in the same word.
if (!aWordState->hasAutoHyphen && aWordState->hasExplicitHyphen) {
for (uint32_t j = aWordState->mostRecentBoundary; j <= i; j++) {
if (aHyphenBuffer[j - aStart] == HyphenType::Explicit) {
aHyphenBuffer[j - aStart] = HyphenType::None;
}
}
}
aWordState->mostRecentBoundary = i;
aWordState->hasManualHyphen = false;
aWordState->hasAutoHyphen = false;
aWordState->hasExplicitHyphen = false;
}
}
}
uint32_t
gfxTextRun::BreakAndMeasureText(uint32_t aStart, uint32_t aMaxLength,
bool aLineBreakBefore, gfxFloat aWidth,
PropertyProvider *aProvider,
SuppressBreak aSuppressBreak,
gfxFloat *aTrimWhitespace,
bool aWhitespaceCanHang,
Metrics *aMetrics,
gfxFont::BoundingBoxType aBoundingBoxType,
DrawTarget* aRefDrawTarget,
bool *aUsedHyphenation,
uint32_t *aLastBreak,
bool aCanWordWrap,
gfxBreakPriority *aBreakPriority)
{
aMaxLength = std::min(aMaxLength, GetLength() - aStart);
NS_ASSERTION(aStart + aMaxLength <= GetLength(), "Substring out of range");
Range bufferRange(aStart, aStart +
std::min<uint32_t>(aMaxLength, MEASUREMENT_BUFFER_SIZE));
PropertyProvider::Spacing spacingBuffer[MEASUREMENT_BUFFER_SIZE];
bool haveSpacing = aProvider &&
!!(mFlags & gfx::ShapedTextFlags::TEXT_ENABLE_SPACING);
if (haveSpacing) {
GetAdjustedSpacing(this, bufferRange, aProvider, spacingBuffer);
}
AutoTArray<HyphenType, 4096> hyphenBuffer;
HyphenationState wordState;
wordState.mostRecentBoundary = aStart;
bool haveHyphenation = aProvider &&
(aProvider->GetHyphensOption() == StyleHyphens::Auto ||
(aProvider->GetHyphensOption() == StyleHyphens::Manual &&
!!(mFlags & gfx::ShapedTextFlags::TEXT_ENABLE_HYPHEN_BREAKS)));
if (haveHyphenation) {
if (hyphenBuffer.AppendElements(bufferRange.Length(), fallible)) {
aProvider->GetHyphenationBreaks(bufferRange, hyphenBuffer.Elements());
if (aProvider->GetHyphensOption() == StyleHyphens::Auto) {
ClassifyAutoHyphenations(aStart, bufferRange, hyphenBuffer,
&wordState);
}
} else {
haveHyphenation = false;
}
}
gfxFloat width = 0;
gfxFloat advance = 0;
// The number of space characters that can be trimmed or hang at a soft-wrap
uint32_t trimmableChars = 0;
// The amount of space removed by ignoring trimmableChars
gfxFloat trimmableAdvance = 0;
int32_t lastBreak = -1;
int32_t lastBreakTrimmableChars = -1;
gfxFloat lastBreakTrimmableAdvance = -1;
// Cache the last candidate break
int32_t lastCandidateBreak = -1;
int32_t lastCandidateBreakTrimmableChars = -1;
gfxFloat lastCandidateBreakTrimmableAdvance = -1;
bool lastCandidateBreakUsedHyphenation = false;
gfxBreakPriority lastCandidateBreakPriority = gfxBreakPriority::eNoBreak;
bool aborted = false;
uint32_t end = aStart + aMaxLength;
bool lastBreakUsedHyphenation = false;
Range ligatureRange(aStart, end);
ShrinkToLigatureBoundaries(&ligatureRange);
// We may need to move `i` backwards in the following loop, and re-scan
// part of the textrun; we'll use `rescanLimit` so we can tell when that
// is happening: if `i < rescanLimit` then we're rescanning.
uint32_t rescanLimit = aStart;
for (uint32_t i = aStart; i < end; ++i) {
if (i >= bufferRange.end) {
// Fetch more spacing and hyphenation data
uint32_t oldHyphenBufferLength = hyphenBuffer.Length();
bufferRange.start = i;
bufferRange.end = std::min(aStart + aMaxLength,
i + MEASUREMENT_BUFFER_SIZE);
// For spacing, we always overwrite the old data with the newly
// fetched one. However, for hyphenation, hyphenation data sometimes
// depends on the context in every word (if "hyphens: auto" is set).
// To ensure we get enough information between neighboring buffers,
// we grow the hyphenBuffer instead of overwrite it.
// NOTE that this means bufferRange does not correspond to the
// entire hyphenBuffer, but only to the most recently added portion.
// Therefore, we need to add the old length to hyphenBuffer.Elements()
// when getting more data.
if (haveSpacing) {
GetAdjustedSpacing(this, bufferRange, aProvider, spacingBuffer);
}
if (haveHyphenation) {
if (hyphenBuffer.AppendElements(bufferRange.Length(), fallible)) {
aProvider->GetHyphenationBreaks(
bufferRange, hyphenBuffer.Elements() + oldHyphenBufferLength);
if (aProvider->GetHyphensOption() == StyleHyphens::Auto) {
uint32_t prevMostRecentWordBoundary = wordState.mostRecentBoundary;
ClassifyAutoHyphenations(aStart, bufferRange, hyphenBuffer,
&wordState);
// If the buffer boundary is in the middle of a word,
// we need to go back to the start of the current word.
// So, we can correct the wrong candidates that we set
// in the previous runs of the loop.
if (prevMostRecentWordBoundary < oldHyphenBufferLength) {
rescanLimit = i;
i = prevMostRecentWordBoundary - 1;
continue;
}
}
} else {
haveHyphenation = false;
}
}
}
// There can't be a word-wrap break opportunity at the beginning of the
// line: if the width is too small for even one character to fit, it
// could be the first and last break opportunity on the line, and that
// would trigger an infinite loop.
if (aSuppressBreak != eSuppressAllBreaks &&
(aSuppressBreak != eSuppressInitialBreak || i > aStart)) {
bool atNaturalBreak = mCharacterGlyphs[i].CanBreakBefore() == 1;
bool atHyphenationBreak = !atNaturalBreak && haveHyphenation &&
hyphenBuffer[i - aStart] != HyphenType::None;
bool atAutoHyphenWithManualHyphenInSameWord = atHyphenationBreak &&
hyphenBuffer[i - aStart] == HyphenType::AutoWithManualInSameWord;
bool atBreak = atNaturalBreak || atHyphenationBreak;
bool wordWrapping =
aCanWordWrap && mCharacterGlyphs[i].IsClusterStart() &&
*aBreakPriority <= gfxBreakPriority::eWordWrapBreak;
if (atBreak || wordWrapping) {
gfxFloat hyphenatedAdvance = advance;
if (atHyphenationBreak) {
hyphenatedAdvance += aProvider->GetHyphenWidth();
}
if (lastBreak < 0 ||
width + hyphenatedAdvance - trimmableAdvance <= aWidth) {
// We can break here.
lastBreak = i;
lastBreakTrimmableChars = trimmableChars;
lastBreakTrimmableAdvance = trimmableAdvance;
lastBreakUsedHyphenation = atHyphenationBreak;
*aBreakPriority = atBreak ? gfxBreakPriority::eNormalBreak
: gfxBreakPriority::eWordWrapBreak;
}
width += advance;
advance = 0;
if (width - trimmableAdvance > aWidth) {
// No more text fits. Abort
aborted = true;
break;
}
// There are various kinds of break opportunities:
// 1. word wrap break,
// 2. natural break,
// 3. manual hyphenation break,
// 4. auto hyphenation break without any manual hyphenation
// in the same word,
// 5. auto hyphenation break with another manual hyphenation
// in the same word.
// Allow all of them except the last one to be a candidate.
// So, we can ensure that we don't use an automatic
// hyphenation opportunity within a word that contains another
// manual hyphenation, unless it is the only choice.
if (wordWrapping ||
!atAutoHyphenWithManualHyphenInSameWord) {
lastCandidateBreak = lastBreak;
lastCandidateBreakTrimmableChars = lastBreakTrimmableChars;
lastCandidateBreakTrimmableAdvance = lastBreakTrimmableAdvance;
lastCandidateBreakUsedHyphenation = lastBreakUsedHyphenation;
lastCandidateBreakPriority = *aBreakPriority;
}
}
}
// If we're re-scanning part of a word (to re-process potential
// hyphenation types) then we don't want to accumulate widths again
// for the characters that were already added to `advance`.
if (i < rescanLimit) {
continue;
}
gfxFloat charAdvance;
if (i >= ligatureRange.start && i < ligatureRange.end) {
charAdvance = GetAdvanceForGlyphs(Range(i, i + 1));
if (haveSpacing) {
PropertyProvider::Spacing *space =
&spacingBuffer[i - bufferRange.start];
charAdvance += space->mBefore + space->mAfter;
}
} else {
charAdvance =
ComputePartialLigatureWidth(Range(i, i + 1), aProvider);
}
advance += charAdvance;
if (aTrimWhitespace || aWhitespaceCanHang) {
if (mCharacterGlyphs[i].CharIsSpace()) {
++trimmableChars;
trimmableAdvance += charAdvance;
} else {
trimmableAdvance = 0;
trimmableChars = 0;
}
}
}
if (!aborted) {
width += advance;
}
// There are three possibilities:
// 1) all the text fit (width <= aWidth)
// 2) some of the text fit up to a break opportunity (width > aWidth && lastBreak >= 0)
// 3) none of the text fits before a break opportunity (width > aWidth && lastBreak < 0)
uint32_t charsFit;
bool usedHyphenation = false;
if (width - trimmableAdvance <= aWidth) {
charsFit = aMaxLength;
} else if (lastBreak >= 0) {
if (lastCandidateBreak >= 0 && lastCandidateBreak != lastBreak) {
lastBreak = lastCandidateBreak;
lastBreakTrimmableChars = lastCandidateBreakTrimmableChars;
lastBreakTrimmableAdvance = lastCandidateBreakTrimmableAdvance;
lastBreakUsedHyphenation = lastCandidateBreakUsedHyphenation;
*aBreakPriority = lastCandidateBreakPriority;
}
charsFit = lastBreak - aStart;
trimmableChars = lastBreakTrimmableChars;
trimmableAdvance = lastBreakTrimmableAdvance;
usedHyphenation = lastBreakUsedHyphenation;
} else {
charsFit = aMaxLength;
}
if (aMetrics) {
auto fitEnd = aStart + charsFit;
// Initially, measure everything, so that our bounding box includes
// any trimmable or hanging whitespace.
*aMetrics = MeasureText(Range(aStart, fitEnd),
aBoundingBoxType, aRefDrawTarget,
aProvider);
if (aTrimWhitespace || aWhitespaceCanHang) {
// Measure trailing whitespace that is to be trimmed/hung.
Metrics trimOrHangMetrics =
MeasureText(Range(fitEnd - trimmableChars, fitEnd),
aBoundingBoxType, aRefDrawTarget,
aProvider);
if (aTrimWhitespace) {
aMetrics->mAdvanceWidth -= trimOrHangMetrics.mAdvanceWidth;
} else if (aMetrics->mAdvanceWidth > aWidth) {
// Restrict width of hanging whitespace so it doesn't overflow.
aMetrics->mAdvanceWidth =
std::max(aWidth, aMetrics->mAdvanceWidth -
trimOrHangMetrics.mAdvanceWidth);
}
}
}
if (aTrimWhitespace) {
*aTrimWhitespace = trimmableAdvance;
}
if (aUsedHyphenation) {
*aUsedHyphenation = usedHyphenation;
}
if (aLastBreak && charsFit == aMaxLength) {
if (lastBreak < 0) {
*aLastBreak = UINT32_MAX;
} else {
*aLastBreak = lastBreak - aStart;
}
}
return charsFit;
}
gfxFloat
gfxTextRun::GetAdvanceWidth(Range aRange, PropertyProvider *aProvider,
PropertyProvider::Spacing* aSpacing) const
{
NS_ASSERTION(aRange.end <= GetLength(), "Substring out of range");
Range ligatureRange = aRange;
ShrinkToLigatureBoundaries(&ligatureRange);
gfxFloat result =
ComputePartialLigatureWidth(Range(aRange.start, ligatureRange.start),
aProvider) +
ComputePartialLigatureWidth(Range(ligatureRange.end, aRange.end),
aProvider);
if (aSpacing) {
aSpacing->mBefore = aSpacing->mAfter = 0;
}
// Account for all remaining spacing here. This is more efficient than
// processing it along with the glyphs.
if (aProvider && (mFlags & gfx::ShapedTextFlags::TEXT_ENABLE_SPACING)) {
uint32_t i;
AutoTArray<PropertyProvider::Spacing,200> spacingBuffer;
if (spacingBuffer.AppendElements(aRange.Length())) {
GetAdjustedSpacing(this, ligatureRange, aProvider,
spacingBuffer.Elements());
for (i = 0; i < ligatureRange.Length(); ++i) {
PropertyProvider::Spacing *space = &spacingBuffer[i];
result += space->mBefore + space->mAfter;
}
if (aSpacing) {
aSpacing->mBefore = spacingBuffer[0].mBefore;
aSpacing->mAfter = spacingBuffer.LastElement().mAfter;
}
}
}
return result + GetAdvanceForGlyphs(ligatureRange);
}
bool
gfxTextRun::SetLineBreaks(Range aRange,
bool aLineBreakBefore, bool aLineBreakAfter,
gfxFloat *aAdvanceWidthDelta)
{
// Do nothing because our shaping does not currently take linebreaks into
// account. There is no change in advance width.
if (aAdvanceWidthDelta) {
*aAdvanceWidthDelta = 0;
}
return false;
}
uint32_t
gfxTextRun::FindFirstGlyphRunContaining(uint32_t aOffset) const
{
NS_ASSERTION(aOffset <= GetLength(), "Bad offset looking for glyphrun");
NS_ASSERTION(GetLength() == 0 ||
(!mHasGlyphRunArray && mSingleGlyphRun.mFont) ||
(mHasGlyphRunArray && mGlyphRunArray.Length() > 0),
"non-empty text but no glyph runs present!");
if (!mHasGlyphRunArray) {
return 0;
}
if (aOffset == GetLength()) {
return mGlyphRunArray.Length();
}
uint32_t start = 0;
uint32_t end = mGlyphRunArray.Length();
while (end - start > 1) {
uint32_t mid = (start + end)/2;
if (mGlyphRunArray[mid].mCharacterOffset <= aOffset) {
start = mid;
} else {
end = mid;
}
}
NS_ASSERTION(mGlyphRunArray[start].mCharacterOffset <= aOffset,
"Hmm, something went wrong, aOffset should have been found");
return start;
}
nsresult
gfxTextRun::AddGlyphRun(gfxFont *aFont, uint8_t aMatchType,
uint32_t aUTF16Offset, bool aForceNewRun,
gfx::ShapedTextFlags aOrientation)
{
NS_ASSERTION(aFont, "adding glyph run for null font!");
NS_ASSERTION(aOrientation != gfx::ShapedTextFlags::TEXT_ORIENT_VERTICAL_MIXED,
"mixed orientation should have been resolved");
if (!aFont) {
return NS_OK;
}
if (!mHasGlyphRunArray) {
// We don't currently have an array.
if (!mSingleGlyphRun.mFont) {
// This is the first glyph run: just store it directly.
mSingleGlyphRun.mFont = aFont;
mSingleGlyphRun.mMatchType = aMatchType;
mSingleGlyphRun.mOrientation = aOrientation;
mSingleGlyphRun.mCharacterOffset = aUTF16Offset;
return NS_OK;
}
}
uint32_t numGlyphRuns = mHasGlyphRunArray ? mGlyphRunArray.Length() : 1;
if (!aForceNewRun && numGlyphRuns > 0) {
GlyphRun* lastGlyphRun =
mHasGlyphRunArray ? &mGlyphRunArray[numGlyphRuns - 1]
: &mSingleGlyphRun;
NS_ASSERTION(lastGlyphRun->mCharacterOffset <= aUTF16Offset,
"Glyph runs out of order (and run not forced)");
// Don't append a run if the font is already the one we want
if (lastGlyphRun->mFont == aFont &&
lastGlyphRun->mMatchType == aMatchType &&
lastGlyphRun->mOrientation == aOrientation)
{
return NS_OK;
}
// If the offset has not changed, avoid leaving a zero-length run
// by overwriting the last entry instead of appending...
if (lastGlyphRun->mCharacterOffset == aUTF16Offset) {
// ...except that if the run before the last entry had the same
// font as the new one wants, merge with it instead of creating
// adjacent runs with the same font
if (numGlyphRuns > 1 &&
mGlyphRunArray[numGlyphRuns - 2].mFont == aFont &&
mGlyphRunArray[numGlyphRuns - 2].mMatchType == aMatchType &&
mGlyphRunArray[numGlyphRuns - 2].mOrientation == aOrientation)
{
mGlyphRunArray.TruncateLength(numGlyphRuns - 1);
if (mGlyphRunArray.Length() == 1) {
ConvertFromGlyphRunArray();
}
return NS_OK;
}
lastGlyphRun->mFont = aFont;
lastGlyphRun->mMatchType = aMatchType;
lastGlyphRun->mOrientation = aOrientation;
return NS_OK;
}
}
NS_ASSERTION(aForceNewRun || numGlyphRuns > 0 || aUTF16Offset == 0,
"First run doesn't cover the first character (and run not forced)?");
if (!mHasGlyphRunArray) {
ConvertToGlyphRunArray();
}
GlyphRun* glyphRun = mGlyphRunArray.AppendElement();
if (!glyphRun) {
if (mGlyphRunArray.Length() == 1) {
ConvertFromGlyphRunArray();
}
return NS_ERROR_OUT_OF_MEMORY;
}
glyphRun->mFont = aFont;
glyphRun->mCharacterOffset = aUTF16Offset;
glyphRun->mMatchType = aMatchType;
glyphRun->mOrientation = aOrientation;
return NS_OK;
}
void
gfxTextRun::SortGlyphRuns()
{
if (!mHasGlyphRunArray) {
return;
}
// We should never have an empty or one-element array here; if there's only
// one glyphrun, it should be stored directly in the textrun without using
// an array at all.
MOZ_ASSERT(mGlyphRunArray.Length() > 1);
AutoTArray<GlyphRun,16> runs(Move(mGlyphRunArray));
GlyphRunOffsetComparator comp;
runs.Sort(comp);
// Now copy back, coalescing adjacent glyph runs that have the same font
mGlyphRunArray.Clear();
gfxFont* prevFont = nullptr;
gfx::ShapedTextFlags prevOrient = gfx::ShapedTextFlags();
DebugOnly<uint32_t> prevOffset = 0;
for (auto& run : runs) {
// a GlyphRun with the same font and orientation as the previous can
// just be skipped; the last GlyphRun will cover its character range.
MOZ_ASSERT(run.mFont != nullptr);
if (prevFont == nullptr ||
run.mFont != prevFont || run.mOrientation != prevOrient) {
// If two fonts have the same character offset, Sort() will have
// randomized the order.
MOZ_ASSERT(prevFont == nullptr ||
run.mCharacterOffset != prevOffset,
"Two fonts for the same run, glyph indices unreliable");
prevFont = run.mFont;
prevOrient = run.mOrientation;
#ifdef DEBUG
prevOffset = run.mCharacterOffset;
#endif
if (!mGlyphRunArray.AppendElement(Move(run))) {
NS_WARNING("Failed to append glyph run!");
}
}
}
MOZ_ASSERT(mGlyphRunArray.Length() > 0);
if (mGlyphRunArray.Length() == 1) {
ConvertFromGlyphRunArray();
}
}
// Note that SanitizeGlyphRuns scans all glyph runs in the textrun;
// therefore we only call it once, at the end of textrun construction,
// NOT incrementally as each glyph run is added (bug 680402).
void
gfxTextRun::SanitizeGlyphRuns()
{
if (!mHasGlyphRunArray) {
return;
}
MOZ_ASSERT(mGlyphRunArray.Length() > 1);
// If any glyph run starts with ligature-continuation characters, we need to advance it
// to the first "real" character to avoid drawing partial ligature glyphs from wrong font
// (seen with U+FEFF in reftest 474417-1, as Core Text eliminates the glyph, which makes
// it appear as if a ligature has been formed)
int32_t i, lastRunIndex = mGlyphRunArray.Length() - 1;
const CompressedGlyph *charGlyphs = mCharacterGlyphs;
for (i = lastRunIndex; i >= 0; --i) {
GlyphRun& run = mGlyphRunArray[i];
while (charGlyphs[run.mCharacterOffset].IsLigatureContinuation() &&
run.mCharacterOffset < GetLength()) {
run.mCharacterOffset++;
}
// if the run has become empty, eliminate it
if ((i < lastRunIndex &&
run.mCharacterOffset >= mGlyphRunArray[i+1].mCharacterOffset) ||
(i == lastRunIndex && run.mCharacterOffset == GetLength())) {
mGlyphRunArray.RemoveElementAt(i);
--lastRunIndex;
}
}
MOZ_ASSERT(mGlyphRunArray.Length() > 0);
if (mGlyphRunArray.Length() == 1) {
ConvertFromGlyphRunArray();
}
}
uint32_t
gfxTextRun::CountMissingGlyphs() const
{
uint32_t i;
uint32_t count = 0;
for (i = 0; i < GetLength(); ++i) {
if (mCharacterGlyphs[i].IsMissing()) {
++count;
}
}
return count;
}
void
gfxTextRun::CopyGlyphDataFrom(gfxShapedWord *aShapedWord, uint32_t aOffset)
{
uint32_t wordLen = aShapedWord->GetLength();
NS_ASSERTION(aOffset + wordLen <= GetLength(),
"word overruns end of textrun!");
CompressedGlyph *charGlyphs = GetCharacterGlyphs();
const CompressedGlyph *wordGlyphs = aShapedWord->GetCharacterGlyphs();
if (aShapedWord->HasDetailedGlyphs()) {
for (uint32_t i = 0; i < wordLen; ++i, ++aOffset) {
const CompressedGlyph& g = wordGlyphs[i];
if (g.IsSimpleGlyph()) {
charGlyphs[aOffset] = g;
} else {
const DetailedGlyph *details =
g.GetGlyphCount() > 0 ?
aShapedWord->GetDetailedGlyphs(i) : nullptr;
SetGlyphs(aOffset, g, details);
}
}
} else {
memcpy(charGlyphs + aOffset, wordGlyphs,
wordLen * sizeof(CompressedGlyph));
}
}
void
gfxTextRun::CopyGlyphDataFrom(gfxTextRun *aSource, Range aRange, uint32_t aDest)
{
NS_ASSERTION(aRange.end <= aSource->GetLength(),
"Source substring out of range");
NS_ASSERTION(aDest + aRange.Length() <= GetLength(),
"Destination substring out of range");
if (aSource->mSkipDrawing) {
mSkipDrawing = true;
}
// Copy base glyph data, and DetailedGlyph data where present
const CompressedGlyph *srcGlyphs = aSource->mCharacterGlyphs + aRange.start;
CompressedGlyph *dstGlyphs = mCharacterGlyphs + aDest;
for (uint32_t i = 0; i < aRange.Length(); ++i) {
CompressedGlyph g = srcGlyphs[i];
g.SetCanBreakBefore(!g.IsClusterStart() ?
CompressedGlyph::FLAG_BREAK_TYPE_NONE :
dstGlyphs[i].CanBreakBefore());
if (!g.IsSimpleGlyph()) {
uint32_t count = g.GetGlyphCount();
if (count > 0) {
DetailedGlyph *dst = AllocateDetailedGlyphs(i + aDest, count);
if (dst) {
DetailedGlyph *src =
aSource->GetDetailedGlyphs(i + aRange.start);
if (src) {
::memcpy(dst, src, count * sizeof(DetailedGlyph));
} else {
g.SetMissing(0);
}
} else {
g.SetMissing(0);
}
}
}
dstGlyphs[i] = g;
}
// Copy glyph runs
GlyphRunIterator iter(aSource, aRange);
#ifdef DEBUG
const GlyphRun *prevRun = nullptr;
#endif
while (iter.NextRun()) {
gfxFont *font = iter.GetGlyphRun()->mFont;
NS_ASSERTION(!prevRun || prevRun->mFont != iter.GetGlyphRun()->mFont ||
prevRun->mMatchType != iter.GetGlyphRun()->mMatchType ||
prevRun->mOrientation != iter.GetGlyphRun()->mOrientation,
"Glyphruns not coalesced?");
#ifdef DEBUG
prevRun = iter.GetGlyphRun();
uint32_t end = iter.GetStringEnd();
#endif
uint32_t start = iter.GetStringStart();
// These used to be NS_ASSERTION()s, but WARNING is more appropriate.
// Although it's unusual (and not desirable), it's possible for us to assign
// different fonts to a base character and a following diacritic.
// Example on OSX 10.5/10.6 with default fonts installed:
// data:text/html,<p style="font-family:helvetica, arial, sans-serif;">
// &%23x043E;&%23x0486;&%23x20;&%23x043E;&%23x0486;
// This means the rendering of the cluster will probably not be very good,
// but it's the best we can do for now if the specified font only covered the
// initial base character and not its applied marks.
NS_WARNING_ASSERTION(
aSource->IsClusterStart(start),
"Started font run in the middle of a cluster");
NS_WARNING_ASSERTION(
end == aSource->GetLength() || aSource->IsClusterStart(end),
"Ended font run in the middle of a cluster");
nsresult rv = AddGlyphRun(font, iter.GetGlyphRun()->mMatchType,
start - aRange.start + aDest, false,
iter.GetGlyphRun()->mOrientation);
if (NS_FAILED(rv))
return;
}
}
void
gfxTextRun::ClearGlyphsAndCharacters()
{
ResetGlyphRuns();
memset(reinterpret_cast<char*>(mCharacterGlyphs), 0,
mLength * sizeof(CompressedGlyph));
mDetailedGlyphs = nullptr;
}
void
gfxTextRun::SetSpaceGlyph(gfxFont* aFont, DrawTarget* aDrawTarget,
uint32_t aCharIndex,
gfx::ShapedTextFlags aOrientation)
{
if (SetSpaceGlyphIfSimple(aFont, aCharIndex, ' ', aOrientation)) {
return;
}
aFont->InitWordCache();
static const uint8_t space = ' ';
gfx::ShapedTextFlags
flags = gfx::ShapedTextFlags::TEXT_IS_8BIT |
gfx::ShapedTextFlags::TEXT_IS_PERSISTENT |
aOrientation;
bool vertical =
!!(GetFlags() & gfx::ShapedTextFlags::TEXT_ORIENT_VERTICAL_UPRIGHT);
gfxFontShaper::RoundingFlags roundingFlags =
aFont->GetRoundOffsetsToPixels(aDrawTarget);
gfxShapedWord* sw = aFont->GetShapedWord(aDrawTarget,
&space, 1,
gfxShapedWord::HashMix(0, ' '),
Script::LATIN,
vertical,
mAppUnitsPerDevUnit,
flags,
roundingFlags,
nullptr);
if (sw) {
AddGlyphRun(aFont, gfxTextRange::kFontGroup, aCharIndex, false,
aOrientation);
CopyGlyphDataFrom(sw, aCharIndex);
}
}
bool
gfxTextRun::SetSpaceGlyphIfSimple(gfxFont* aFont, uint32_t aCharIndex,
char16_t aSpaceChar,
gfx::ShapedTextFlags aOrientation)
{
uint32_t spaceGlyph = aFont->GetSpaceGlyph();
if (!spaceGlyph || !CompressedGlyph::IsSimpleGlyphID(spaceGlyph)) {
return false;
}
gfxFont::Orientation fontOrientation =
(aOrientation & gfx::ShapedTextFlags::TEXT_ORIENT_VERTICAL_UPRIGHT) ?
gfxFont::eVertical : gfxFont::eHorizontal;
uint32_t spaceWidthAppUnits =
NS_lroundf(aFont->GetMetrics(fontOrientation).spaceWidth *
mAppUnitsPerDevUnit);
if (!CompressedGlyph::IsSimpleAdvance(spaceWidthAppUnits)) {
return false;
}
AddGlyphRun(aFont, gfxTextRange::kFontGroup, aCharIndex, false,
aOrientation);
CompressedGlyph g;
g.SetSimpleGlyph(spaceWidthAppUnits, spaceGlyph);
if (aSpaceChar == ' ') {
g.SetIsSpace();
}
GetCharacterGlyphs()[aCharIndex] = g;
return true;
}
void
gfxTextRun::FetchGlyphExtents(DrawTarget* aRefDrawTarget)
{
bool needsGlyphExtents = NeedsGlyphExtents(this);
if (!needsGlyphExtents && !mDetailedGlyphs)
return;
uint32_t runCount;
const GlyphRun* glyphRuns = GetGlyphRuns(&runCount);
CompressedGlyph *charGlyphs = mCharacterGlyphs;
for (uint32_t i = 0; i < runCount; ++i) {
const GlyphRun& run = glyphRuns[i];
gfxFont *font = run.mFont;
if (MOZ_UNLIKELY(font->GetStyle()->size == 0) ||
MOZ_UNLIKELY(font->GetStyle()->sizeAdjust == 0.0f)) {
continue;
}
uint32_t start = run.mCharacterOffset;
uint32_t end = i + 1 < runCount ?
glyphRuns[i + 1].mCharacterOffset : GetLength();
bool fontIsSetup = false;
uint32_t j;
gfxGlyphExtents *extents = font->GetOrCreateGlyphExtents(mAppUnitsPerDevUnit);
for (j = start; j < end; ++j) {
const gfxTextRun::CompressedGlyph *glyphData = &charGlyphs[j];
if (glyphData->IsSimpleGlyph()) {
// If we're in speed mode, don't set up glyph extents here; we'll
// just return "optimistic" glyph bounds later
if (needsGlyphExtents) {
uint32_t glyphIndex = glyphData->GetSimpleGlyph();
if (!extents->IsGlyphKnown(glyphIndex)) {
if (!fontIsSetup) {
if (!font->SetupCairoFont(aRefDrawTarget)) {
NS_WARNING("failed to set up font for glyph extents");
break;
}
fontIsSetup = true;
}
#ifdef DEBUG_TEXT_RUN_STORAGE_METRICS
++gGlyphExtentsSetupEagerSimple;
#endif
font->SetupGlyphExtents(aRefDrawTarget,
glyphIndex, false, extents);
}
}
} else if (!glyphData->IsMissing()) {
uint32_t glyphCount = glyphData->GetGlyphCount();
if (glyphCount == 0) {
continue;
}
const gfxTextRun::DetailedGlyph *details = GetDetailedGlyphs(j);
if (!details) {
continue;
}
for (uint32_t k = 0; k < glyphCount; ++k, ++details) {
uint32_t glyphIndex = details->mGlyphID;
if (!extents->IsGlyphKnownWithTightExtents(glyphIndex)) {
if (!fontIsSetup) {
if (!font->SetupCairoFont(aRefDrawTarget)) {
NS_WARNING("failed to set up font for glyph extents");
break;
}
fontIsSetup = true;
}
#ifdef DEBUG_TEXT_RUN_STORAGE_METRICS
++gGlyphExtentsSetupEagerTight;
#endif
font->SetupGlyphExtents(aRefDrawTarget,
glyphIndex, true, extents);
}
}
}
}
}
}
size_t
gfxTextRun::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf)
{
// The second arg is how much gfxTextRun::AllocateStorage would have
// allocated.
size_t total = mHasGlyphRunArray
? mGlyphRunArray.ShallowSizeOfExcludingThis(aMallocSizeOf)
: 0;
if (mDetailedGlyphs) {
total += mDetailedGlyphs->SizeOfIncludingThis(aMallocSizeOf);
}
return total;
}
size_t
gfxTextRun::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf)
{
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
#ifdef DEBUG
void
gfxTextRun::Dump(FILE* aOutput) {
if (!aOutput) {
aOutput = stdout;
}
fputc('[', aOutput);
uint32_t numGlyphRuns;
const GlyphRun* glyphRuns = GetGlyphRuns(&numGlyphRuns);
for (uint32_t i = 0; i < numGlyphRuns; ++i) {
if (i > 0) {
fputc(',', aOutput);
}
gfxFont* font = glyphRuns[i].mFont;
const gfxFontStyle* style = font->GetStyle();
NS_ConvertUTF16toUTF8 fontName(font->GetName());
nsAutoCString lang;
style->language->ToUTF8String(lang);
fprintf(aOutput, "%d: %s %f/%d/%d/%s", glyphRuns[i].mCharacterOffset,
fontName.get(), style->size,
style->weight, style->style, lang.get());
}
fputc(']', aOutput);
}
#endif
gfxFontGroup::gfxFontGroup(const FontFamilyList& aFontFamilyList,
const gfxFontStyle *aStyle,
gfxTextPerfMetrics* aTextPerf,
gfxUserFontSet *aUserFontSet,
gfxFloat aDevToCssSize)
: mFamilyList(aFontFamilyList)
, mStyle(*aStyle)
, mUnderlineOffset(UNDERLINE_OFFSET_NOT_SET)
, mHyphenWidth(-1)
, mDevToCssSize(aDevToCssSize)
, mUserFontSet(aUserFontSet)
, mTextPerf(aTextPerf)
, mLastPrefLang(eFontPrefLang_Western)
, mPageLang(gfxPlatformFontList::GetFontPrefLangFor(aStyle->language))
, mLastPrefFirstFont(false)
, mSkipDrawing(false)
{
// We don't use SetUserFontSet() here, as we want to unconditionally call
// BuildFontList() rather than only do UpdateUserFonts() if it changed.
mCurrGeneration = GetGeneration();
BuildFontList();
}
gfxFontGroup::~gfxFontGroup()
{
// Should not be dropped by stylo
MOZ_ASSERT(NS_IsMainThread());
}
void
gfxFontGroup::BuildFontList()
{
// initialize fonts in the font family list
AutoTArray<gfxFontFamily*,10> fonts;
gfxPlatformFontList *pfl = gfxPlatformFontList::PlatformFontList();
// lookup fonts in the fontlist
for (const FontFamilyName& name : mFamilyList.GetFontlist()) {
if (name.IsNamed()) {
AddPlatformFont(name.mName, fonts);
} else {
pfl->AddGenericFonts(name.mType, mStyle.language, fonts);
if (mTextPerf) {
mTextPerf->current.genericLookups++;
}
}
}
// if necessary, append default generic onto the end
if (mFamilyList.GetDefaultFontType() != eFamily_none &&
!mFamilyList.HasDefaultGeneric()) {
pfl->AddGenericFonts(mFamilyList.GetDefaultFontType(),
mStyle.language, fonts);
if (mTextPerf) {
mTextPerf->current.genericLookups++;
}
}
// build the fontlist from the specified families
for (gfxFontFamily* fontFamily : fonts) {
AddFamilyToFontList(fontFamily);
}
}
void
gfxFontGroup::AddPlatformFont(const nsAString& aName,
nsTArray<gfxFontFamily*>& aFamilyList)
{
// First, look up in the user font set...
// If the fontSet matches the family, we must not look for a platform
// font of the same name, even if we fail to actually get a fontEntry
// here; we'll fall back to the next name in the CSS font-family list.
if (mUserFontSet) {
// Add userfonts to the fontlist whether already loaded
// or not. Loading is initiated during font matching.
gfxFontFamily* family = mUserFontSet->LookupFamily(aName);
if (family) {
aFamilyList.AppendElement(family);
return;
}
}
// Not known in the user font set ==> check system fonts
gfxPlatformFontList::PlatformFontList()
->FindAndAddFamilies(aName, &aFamilyList, &mStyle, mDevToCssSize);
}
void
gfxFontGroup::AddFamilyToFontList(gfxFontFamily* aFamily)
{
NS_ASSERTION(aFamily, "trying to add a null font family to fontlist");
AutoTArray<gfxFontEntry*,4> fontEntryList;
bool needsBold;
aFamily->FindAllFontsForStyle(mStyle, fontEntryList, needsBold);
// add these to the fontlist
for (gfxFontEntry* fe : fontEntryList) {
if (!HasFont(fe)) {
FamilyFace ff(aFamily, fe, needsBold);
if (fe->mIsUserFontContainer) {
ff.CheckState(mSkipDrawing);
}
mFonts.AppendElement(ff);
}
}
// for a family marked as "check fallback faces", only mark the last
// entry so that fallbacks for a family are only checked once
if (aFamily->CheckForFallbackFaces() &&
!fontEntryList.IsEmpty() && !mFonts.IsEmpty()) {
mFonts.LastElement().SetCheckForFallbackFaces();
}
}
bool
gfxFontGroup::HasFont(const gfxFontEntry *aFontEntry)
{
uint32_t count = mFonts.Length();
for (uint32_t i = 0; i < count; ++i) {
if (mFonts[i].FontEntry() == aFontEntry) {
return true;
}
}
return false;
}
gfxFont*
gfxFontGroup::GetFontAt(int32_t i, uint32_t aCh)
{
if (uint32_t(i) >= mFonts.Length()) {
return nullptr;
}
FamilyFace& ff = mFonts[i];
if (ff.IsInvalid() || ff.IsLoading()) {
return nullptr;
}
RefPtr<gfxFont> font = ff.Font();
if (!font) {
gfxFontEntry* fe = mFonts[i].FontEntry();
gfxCharacterMap* unicodeRangeMap = nullptr;
if (fe->mIsUserFontContainer) {
gfxUserFontEntry* ufe = static_cast<gfxUserFontEntry*>(fe);
if (ufe->LoadState() == gfxUserFontEntry::STATUS_NOT_LOADED &&
ufe->CharacterInUnicodeRange(aCh) &&
!FontLoadingForFamily(ff.Family(), aCh)) {
ufe->Load();
ff.CheckState(mSkipDrawing);
}
fe = ufe->GetPlatformFontEntry();
if (!fe) {
return nullptr;
}
unicodeRangeMap = ufe->GetUnicodeRangeMap();
}
font = fe->FindOrMakeFont(&mStyle, mFonts[i].NeedsBold(),
unicodeRangeMap);
if (!font || !font->Valid()) {
ff.SetInvalid();
return nullptr;
}
mFonts[i].SetFont(font);
}
return font.get();
}
void
gfxFontGroup::FamilyFace::CheckState(bool& aSkipDrawing)
{
gfxFontEntry* fe = FontEntry();
if (fe->mIsUserFontContainer) {
gfxUserFontEntry* ufe = static_cast<gfxUserFontEntry*>(fe);
gfxUserFontEntry::UserFontLoadState state = ufe->LoadState();
switch (state) {
case gfxUserFontEntry::STATUS_LOAD_PENDING:
case gfxUserFontEntry::STATUS_LOADING:
SetLoading(true);
break;
case gfxUserFontEntry::STATUS_FAILED:
SetInvalid();
// fall-thru to the default case
MOZ_FALLTHROUGH;
default:
SetLoading(false);
}
if (ufe->WaitForUserFont()) {
aSkipDrawing = true;
}
}
}
bool
gfxFontGroup::FamilyFace::EqualsUserFont(const gfxUserFontEntry* aUserFont) const
{
gfxFontEntry* fe = FontEntry();
// if there's a font, the entry is the underlying platform font
if (mFontCreated) {
gfxFontEntry* pfe = aUserFont->GetPlatformFontEntry();
if (pfe == fe) {
return true;
}
} else if (fe == aUserFont) {
return true;
}
return false;
}
bool
gfxFontGroup::FontLoadingForFamily(gfxFontFamily* aFamily, uint32_t aCh) const
{
uint32_t count = mFonts.Length();
for (uint32_t i = 0; i < count; ++i) {
const FamilyFace& ff = mFonts[i];
if (ff.IsLoading() && ff.Family() == aFamily) {
const gfxUserFontEntry* ufe =
static_cast<gfxUserFontEntry*>(ff.FontEntry());
if (ufe->CharacterInUnicodeRange(aCh)) {
return true;
}
}
}
return false;
}
gfxFont*
gfxFontGroup::GetDefaultFont()
{
if (mDefaultFont) {
return mDefaultFont.get();
}
bool needsBold;
gfxPlatformFontList *pfl = gfxPlatformFontList::PlatformFontList();
gfxFontFamily *defaultFamily = pfl->GetDefaultFont(&mStyle);
NS_ASSERTION(defaultFamily,
"invalid default font returned by GetDefaultFont");
if (defaultFamily) {
gfxFontEntry *fe = defaultFamily->FindFontForStyle(mStyle,
needsBold);
if (fe) {
mDefaultFont = fe->FindOrMakeFont(&mStyle, needsBold);
}
}
uint32_t numInits, loaderState;
pfl->GetFontlistInitInfo(numInits, loaderState);
NS_ASSERTION(numInits != 0,
"must initialize system fontlist before getting default font!");
uint32_t numFonts = 0;
if (!mDefaultFont) {
// Try for a "font of last resort...."
// Because an empty font list would be Really Bad for later code
// that assumes it will be able to get valid metrics for layout,
// just look for the first usable font and put in the list.
// (see bug 554544)
AutoTArray<RefPtr<gfxFontFamily>,200> familyList;
pfl->GetFontFamilyList(familyList);
numFonts = familyList.Length();
for (uint32_t i = 0; i < numFonts; ++i) {
gfxFontEntry *fe = familyList[i]->FindFontForStyle(mStyle,
needsBold);
if (fe) {
mDefaultFont = fe->FindOrMakeFont(&mStyle, needsBold);
if (mDefaultFont) {
break;
}
}
}
}
if (!mDefaultFont) {
// an empty font list at this point is fatal; we're not going to
// be able to do even the most basic layout operations
// annotate crash report with fontlist info
nsAutoCString fontInitInfo;
fontInitInfo.AppendPrintf("no fonts - init: %d fonts: %d loader: %d",
numInits, numFonts, loaderState);
#ifdef XP_WIN
bool dwriteEnabled = gfxWindowsPlatform::GetPlatform()->DWriteEnabled();
double upTime = (double) GetTickCount();
fontInitInfo.AppendPrintf(" backend: %s system-uptime: %9.3f sec",
dwriteEnabled ? "directwrite" : "gdi", upTime/1000);
#endif
gfxCriticalError() << fontInitInfo.get();
char msg[256]; // CHECK buffer length if revising message below
nsAutoString familiesString;
mFamilyList.ToString(familiesString);
SprintfLiteral(msg, "unable to find a usable font (%.220s)",
NS_ConvertUTF16toUTF8(familiesString).get());
NS_RUNTIMEABORT(msg);
}
return mDefaultFont.get();
}
gfxFont*
gfxFontGroup::GetFirstValidFont(uint32_t aCh)
{
uint32_t count = mFonts.Length();
for (uint32_t i = 0; i < count; ++i) {
FamilyFace& ff = mFonts[i];
if (ff.IsInvalid()) {
continue;
}
// already have a font?
gfxFont* font = ff.Font();
if (font) {
return font;
}
// Need to build a font, loading userfont if not loaded. In
// cases where unicode range might apply, use the character
// provided.
if (ff.IsUserFontContainer()) {
gfxUserFontEntry* ufe =
static_cast<gfxUserFontEntry*>(mFonts[i].FontEntry());
bool inRange = ufe->CharacterInUnicodeRange(aCh);
if (ufe->LoadState() == gfxUserFontEntry::STATUS_NOT_LOADED &&
inRange && !FontLoadingForFamily(ff.Family(), aCh)) {
ufe->Load();
ff.CheckState(mSkipDrawing);
}
if (ufe->LoadState() != gfxUserFontEntry::STATUS_LOADED ||
!inRange) {
continue;
}
}
font = GetFontAt(i, aCh);
if (font) {
return font;
}
}
return GetDefaultFont();
}
gfxFont *
gfxFontGroup::GetFirstMathFont()
{
uint32_t count = mFonts.Length();
for (uint32_t i = 0; i < count; ++i) {
gfxFont* font = GetFontAt(i);
if (font && font->TryGetMathTable()) {
return font;
}
}
return nullptr;
}
gfxFontGroup *
gfxFontGroup::Copy(const gfxFontStyle *aStyle)
{
gfxFontGroup *fg =
new gfxFontGroup(mFamilyList, aStyle, mTextPerf,
mUserFontSet, mDevToCssSize);
return fg;
}
bool
gfxFontGroup::IsInvalidChar(uint8_t ch)
{
return ((ch & 0x7f) < 0x20 || ch == 0x7f);
}
bool
gfxFontGroup::IsInvalidChar(char16_t ch)
{
// All printable 7-bit ASCII values are OK
if (ch >= ' ' && ch < 0x7f) {
return false;
}
// No point in sending non-printing control chars through font shaping
if (ch <= 0x9f) {
return true;
}
return (((ch & 0xFF00) == 0x2000 /* Unicode control character */ &&
(ch == 0x200B/*ZWSP*/ || ch == 0x2028/*LSEP*/ || ch == 0x2029/*PSEP*/)) ||
IsBidiControl(ch));
}
already_AddRefed<gfxTextRun>
gfxFontGroup::MakeEmptyTextRun(const Parameters *aParams,
gfx::ShapedTextFlags aFlags,
nsTextFrameUtils::Flags aFlags2)
{
aFlags |= ShapedTextFlags::TEXT_IS_8BIT | ShapedTextFlags::TEXT_IS_PERSISTENT;
return gfxTextRun::Create(aParams, 0, this, aFlags, aFlags2);
}
already_AddRefed<gfxTextRun>
gfxFontGroup::MakeSpaceTextRun(const Parameters *aParams,
gfx::ShapedTextFlags aFlags,
nsTextFrameUtils::Flags aFlags2)
{
aFlags |= ShapedTextFlags::TEXT_IS_8BIT | ShapedTextFlags::TEXT_IS_PERSISTENT;
RefPtr<gfxTextRun> textRun =
gfxTextRun::Create(aParams, 1, this, aFlags, aFlags2);
if (!textRun) {
return nullptr;
}
gfx::ShapedTextFlags orientation = aFlags & ShapedTextFlags::TEXT_ORIENT_MASK;
if (orientation == ShapedTextFlags::TEXT_ORIENT_VERTICAL_MIXED) {
orientation = ShapedTextFlags::TEXT_ORIENT_VERTICAL_SIDEWAYS_RIGHT;
}
gfxFont *font = GetFirstValidFont();
if (MOZ_UNLIKELY(GetStyle()->size == 0) ||
MOZ_UNLIKELY(GetStyle()->sizeAdjust == 0.0f)) {
// Short-circuit for size-0 fonts, as Windows and ATSUI can't handle
// them, and always create at least size 1 fonts, i.e. they still
// render something for size 0 fonts.
textRun->AddGlyphRun(font, gfxTextRange::kFontGroup, 0, false,
orientation);
}
else {
if (font->GetSpaceGlyph()) {
// Normally, the font has a cached space glyph, so we can avoid
// the cost of calling FindFontForChar.
textRun->SetSpaceGlyph(font, aParams->mDrawTarget, 0, orientation);
} else {
// In case the primary font doesn't have <space> (bug 970891),
// find one that does.
uint8_t matchType;
RefPtr<gfxFont> spaceFont =
FindFontForChar(' ', 0, 0, Script::LATIN, nullptr,
&matchType);
if (spaceFont) {
textRun->SetSpaceGlyph(spaceFont, aParams->mDrawTarget, 0,
orientation);
}
}
}
// Note that the gfxGlyphExtents glyph bounds storage for the font will
// always contain an entry for the font's space glyph, so we don't have
// to call FetchGlyphExtents here.
return textRun.forget();
}
already_AddRefed<gfxTextRun>
gfxFontGroup::MakeBlankTextRun(uint32_t aLength,
const Parameters *aParams,
gfx::ShapedTextFlags aFlags,
nsTextFrameUtils::Flags aFlags2)
{
RefPtr<gfxTextRun> textRun =
gfxTextRun::Create(aParams, aLength, this, aFlags, aFlags2);
if (!textRun) {
return nullptr;
}
gfx::ShapedTextFlags orientation = aFlags & ShapedTextFlags::TEXT_ORIENT_MASK;
if (orientation == ShapedTextFlags::TEXT_ORIENT_VERTICAL_MIXED) {
orientation = ShapedTextFlags::TEXT_ORIENT_VERTICAL_UPRIGHT;
}
textRun->AddGlyphRun(GetFirstValidFont(), gfxTextRange::kFontGroup, 0, false,
orientation);
return textRun.forget();
}
already_AddRefed<gfxTextRun>
gfxFontGroup::MakeHyphenTextRun(DrawTarget* aDrawTarget,
uint32_t aAppUnitsPerDevUnit)
{
// only use U+2010 if it is supported by the first font in the group;
// it's better to use ASCII '-' from the primary font than to fall back to
// U+2010 from some other, possibly poorly-matching face
static const char16_t hyphen = 0x2010;
gfxFont *font = GetFirstValidFont(uint32_t(hyphen));
if (font->HasCharacter(hyphen)) {
return MakeTextRun(&hyphen, 1, aDrawTarget, aAppUnitsPerDevUnit,
ShapedTextFlags::TEXT_IS_PERSISTENT,
nsTextFrameUtils::Flags(), nullptr);
}
static const uint8_t dash = '-';
return MakeTextRun(&dash, 1, aDrawTarget, aAppUnitsPerDevUnit,
ShapedTextFlags::TEXT_IS_PERSISTENT,
nsTextFrameUtils::Flags(), nullptr);
}
gfxFloat
gfxFontGroup::GetHyphenWidth(const gfxTextRun::PropertyProvider* aProvider)
{
if (mHyphenWidth < 0) {
RefPtr<DrawTarget> dt(aProvider->GetDrawTarget());
if (dt) {
RefPtr<gfxTextRun>
hyphRun(MakeHyphenTextRun(dt,
aProvider->GetAppUnitsPerDevUnit()));
mHyphenWidth = hyphRun.get() ? hyphRun->GetAdvanceWidth() : 0;
}
}
return mHyphenWidth;
}
already_AddRefed<gfxTextRun>
gfxFontGroup::MakeTextRun(const uint8_t *aString, uint32_t aLength,
const Parameters *aParams,
gfx::ShapedTextFlags aFlags,
nsTextFrameUtils::Flags aFlags2,
gfxMissingFontRecorder *aMFR)
{
if (aLength == 0) {
return MakeEmptyTextRun(aParams, aFlags, aFlags2);
}
if (aLength == 1 && aString[0] == ' ') {
return MakeSpaceTextRun(aParams, aFlags, aFlags2);
}
aFlags |= ShapedTextFlags::TEXT_IS_8BIT;
if (MOZ_UNLIKELY(GetStyle()->size == 0) ||
MOZ_UNLIKELY(GetStyle()->sizeAdjust == 0.0f)) {
// Short-circuit for size-0 fonts, as Windows and ATSUI can't handle
// them, and always create at least size 1 fonts, i.e. they still
// render something for size 0 fonts.
return MakeBlankTextRun(aLength, aParams, aFlags, aFlags2);
}
RefPtr<gfxTextRun> textRun = gfxTextRun::Create(aParams, aLength, this,
aFlags, aFlags2);
if (!textRun) {
return nullptr;
}
InitTextRun(aParams->mDrawTarget, textRun.get(), aString, aLength, aMFR);
textRun->FetchGlyphExtents(aParams->mDrawTarget);
return textRun.forget();
}
already_AddRefed<gfxTextRun>
gfxFontGroup::MakeTextRun(const char16_t *aString, uint32_t aLength,
const Parameters *aParams,
gfx::ShapedTextFlags aFlags,
nsTextFrameUtils::Flags aFlags2,
gfxMissingFontRecorder *aMFR)
{
if (aLength == 0) {
return MakeEmptyTextRun(aParams, aFlags, aFlags2);
}
if (aLength == 1 && aString[0] == ' ') {
return MakeSpaceTextRun(aParams, aFlags, aFlags2);
}
if (MOZ_UNLIKELY(GetStyle()->size == 0) ||
MOZ_UNLIKELY(GetStyle()->sizeAdjust == 0.0f)) {
return MakeBlankTextRun(aLength, aParams, aFlags, aFlags2);
}
RefPtr<gfxTextRun> textRun = gfxTextRun::Create(aParams, aLength, this,
aFlags, aFlags2);
if (!textRun) {
return nullptr;
}
InitTextRun(aParams->mDrawTarget, textRun.get(), aString, aLength, aMFR);
textRun->FetchGlyphExtents(aParams->mDrawTarget);
return textRun.forget();
}
template<typename T>
void
gfxFontGroup::InitTextRun(DrawTarget* aDrawTarget,
gfxTextRun *aTextRun,
const T *aString,
uint32_t aLength,
gfxMissingFontRecorder *aMFR)
{
NS_ASSERTION(aLength > 0, "don't call InitTextRun for a zero-length run");
// we need to do numeral processing even on 8-bit text,
// in case we're converting Western to Hindi/Arabic digits
int32_t numOption = gfxPlatform::GetPlatform()->GetBidiNumeralOption();
UniquePtr<char16_t[]> transformedString;
if (numOption != IBMBIDI_NUMERAL_NOMINAL) {
// scan the string for numerals that may need to be transformed;
// if we find any, we'll make a local copy here and use that for
// font matching and glyph generation/shaping
bool prevIsArabic =
!!(aTextRun->GetFlags() & ShapedTextFlags::TEXT_INCOMING_ARABICCHAR);
for (uint32_t i = 0; i < aLength; ++i) {
char16_t origCh = aString[i];
char16_t newCh = HandleNumberInChar(origCh, prevIsArabic, numOption);
if (newCh != origCh) {
if (!transformedString) {
transformedString = MakeUnique<char16_t[]>(aLength);
if (sizeof(T) == sizeof(char16_t)) {
memcpy(transformedString.get(), aString, i * sizeof(char16_t));
} else {
for (uint32_t j = 0; j < i; ++j) {
transformedString[j] = aString[j];
}
}
}
}
if (transformedString) {
transformedString[i] = newCh;
}
prevIsArabic = IS_ARABIC_CHAR(newCh);
}
}
LogModule* log = mStyle.systemFont
? gfxPlatform::GetLog(eGfxLog_textrunui)
: gfxPlatform::GetLog(eGfxLog_textrun);
// variant fallback handling may end up passing through this twice
bool redo;
do {
redo = false;
if (sizeof(T) == sizeof(uint8_t) && !transformedString) {
if (MOZ_UNLIKELY(MOZ_LOG_TEST(log, LogLevel::Warning))) {
nsAutoCString lang;
mStyle.language->ToUTF8String(lang);
nsAutoString families;
mFamilyList.ToString(families);
nsAutoCString str((const char*)aString, aLength);
MOZ_LOG(log, LogLevel::Warning,\
("(%s) fontgroup: [%s] default: %s lang: %s script: %d "
"len %d weight: %d width: %d style: %s size: %6.2f %" PRIuSIZE "-byte "
"TEXTRUN [%s] ENDTEXTRUN\n",
(mStyle.systemFont ? "textrunui" : "textrun"),
NS_ConvertUTF16toUTF8(families).get(),
(mFamilyList.GetDefaultFontType() == eFamily_serif ?
"serif" :
(mFamilyList.GetDefaultFontType() == eFamily_sans_serif ?
"sans-serif" : "none")),
lang.get(), static_cast<int>(Script::LATIN), aLength,
uint32_t(mStyle.weight), uint32_t(mStyle.stretch),
(mStyle.style & NS_FONT_STYLE_ITALIC ? "italic" :
(mStyle.style & NS_FONT_STYLE_OBLIQUE ? "oblique" :
"normal")),
mStyle.size,
sizeof(T),
str.get()));
}
// the text is still purely 8-bit; bypass the script-run itemizer
// and treat it as a single Latin run
InitScriptRun(aDrawTarget, aTextRun, aString,
0, aLength, Script::LATIN, aMFR);
} else {
const char16_t *textPtr;
if (transformedString) {
textPtr = transformedString.get();
} else {
// typecast to avoid compilation error for the 8-bit version,
// even though this is dead code in that case
textPtr = reinterpret_cast<const char16_t*>(aString);
}
// split into script runs so that script can potentially influence
// the font matching process below
gfxScriptItemizer scriptRuns(textPtr, aLength);
uint32_t runStart = 0, runLimit = aLength;
Script runScript = Script::LATIN;
while (scriptRuns.Next(runStart, runLimit, runScript)) {
if (MOZ_UNLIKELY(MOZ_LOG_TEST(log, LogLevel::Warning))) {
nsAutoCString lang;
mStyle.language->ToUTF8String(lang);
nsAutoString families;
mFamilyList.ToString(families);
uint32_t runLen = runLimit - runStart;
MOZ_LOG(log, LogLevel::Warning,\
("(%s) fontgroup: [%s] default: %s lang: %s script: %d "
"len %d weight: %d width: %d style: %s size: %6.2f "
"%" PRIuSIZE "-byte TEXTRUN [%s] ENDTEXTRUN\n",
(mStyle.systemFont ? "textrunui" : "textrun"),
NS_ConvertUTF16toUTF8(families).get(),
(mFamilyList.GetDefaultFontType() == eFamily_serif ?
"serif" :
(mFamilyList.GetDefaultFontType() == eFamily_sans_serif ?
"sans-serif" : "none")),
lang.get(), static_cast<int>(runScript), runLen,
uint32_t(mStyle.weight), uint32_t(mStyle.stretch),
(mStyle.style & NS_FONT_STYLE_ITALIC ? "italic" :
(mStyle.style & NS_FONT_STYLE_OBLIQUE ? "oblique" :
"normal")),
mStyle.size,
sizeof(T),
NS_ConvertUTF16toUTF8(textPtr + runStart, runLen).get()));
}
InitScriptRun(aDrawTarget, aTextRun, textPtr + runStart,
runStart, runLimit - runStart, runScript, aMFR);
}
}
// if shaping was aborted due to lack of feature support, clear out
// glyph runs and redo shaping with fallback forced on
if (aTextRun->GetShapingState() == gfxTextRun::eShapingState_Aborted) {
redo = true;
aTextRun->SetShapingState(
gfxTextRun::eShapingState_ForceFallbackFeature);
aTextRun->ClearGlyphsAndCharacters();
}
} while (redo);
if (sizeof(T) == sizeof(char16_t) && aLength > 0) {
gfxTextRun::CompressedGlyph *glyph = aTextRun->GetCharacterGlyphs();
if (!glyph->IsSimpleGlyph()) {
glyph->SetClusterStart(true);
}
}
// It's possible for CoreText to omit glyph runs if it decides they contain
// only invisibles (e.g., U+FEFF, see reftest 474417-1). In this case, we
// need to eliminate them from the glyph run array to avoid drawing "partial
// ligatures" with the wrong font.
// We don't do this during InitScriptRun (or gfxFont::InitTextRun) because
// it will iterate back over all glyphruns in the textrun, which leads to
// pathologically-bad perf in the case where a textrun contains many script
// changes (see bug 680402) - we'd end up re-sanitizing all the earlier runs
// every time a new script subrun is processed.
aTextRun->SanitizeGlyphRuns();
aTextRun->SortGlyphRuns();
}
static inline bool
IsPUA(uint32_t aUSV)
{
// We could look up the General Category of the codepoint here,
// but it's simpler to check PUA codepoint ranges.
return (aUSV >= 0xE000 && aUSV <= 0xF8FF) || (aUSV >= 0xF0000);
}
template<typename T>
void
gfxFontGroup::InitScriptRun(DrawTarget* aDrawTarget,
gfxTextRun *aTextRun,
const T *aString, // text for this script run,
// not the entire textrun
uint32_t aOffset, // position of the script run
// within the textrun
uint32_t aLength, // length of the script run
Script aRunScript,
gfxMissingFontRecorder *aMFR)
{
NS_ASSERTION(aLength > 0, "don't call InitScriptRun for a 0-length run");
NS_ASSERTION(aTextRun->GetShapingState() != gfxTextRun::eShapingState_Aborted,
"don't call InitScriptRun with aborted shaping state");
// confirm the load state of userfonts in the list
if (mUserFontSet &&
mCurrGeneration != mUserFontSet->GetGeneration()) {
UpdateUserFonts();
}
gfxFont *mainFont = GetFirstValidFont();
uint32_t runStart = 0;
AutoTArray<gfxTextRange,3> fontRanges;
ComputeRanges(fontRanges, aString, aLength, aRunScript,
aTextRun->GetFlags() & ShapedTextFlags::TEXT_ORIENT_MASK);
uint32_t numRanges = fontRanges.Length();
bool missingChars = false;
for (uint32_t r = 0; r < numRanges; r++) {
const gfxTextRange& range = fontRanges[r];
uint32_t matchedLength = range.Length();
gfxFont *matchedFont = range.font;
bool vertical =
range.orientation == ShapedTextFlags::TEXT_ORIENT_VERTICAL_UPRIGHT;
// create the glyph run for this range
if (matchedFont && mStyle.noFallbackVariantFeatures) {
// common case - just do glyph layout and record the
// resulting positioned glyphs
aTextRun->AddGlyphRun(matchedFont, range.matchType,
aOffset + runStart, (matchedLength > 0),
range.orientation);
if (!matchedFont->SplitAndInitTextRun(aDrawTarget, aTextRun,
aString + runStart,
aOffset + runStart,
matchedLength,
aRunScript,
vertical)) {
// glyph layout failed! treat as missing glyphs
matchedFont = nullptr;
}
} else if (matchedFont) {
// shape with some variant feature that requires fallback handling
bool petiteToSmallCaps = false;
bool syntheticLower = false;
bool syntheticUpper = false;
if (mStyle.variantSubSuper != NS_FONT_VARIANT_POSITION_NORMAL &&
(aTextRun->GetShapingState() ==
gfxTextRun::eShapingState_ForceFallbackFeature ||
!matchedFont->SupportsSubSuperscript(mStyle.variantSubSuper,
aString, aLength,
aRunScript)))
{
// fallback for subscript/superscript variant glyphs
// if the feature was already used, abort and force
// fallback across the entire textrun
gfxTextRun::ShapingState ss = aTextRun->GetShapingState();
if (ss == gfxTextRun::eShapingState_Normal) {
aTextRun->SetShapingState(gfxTextRun::eShapingState_ShapingWithFallback);
} else if (ss == gfxTextRun::eShapingState_ShapingWithFeature) {
aTextRun->SetShapingState(gfxTextRun::eShapingState_Aborted);
return;
}
RefPtr<gfxFont> subSuperFont =
matchedFont->GetSubSuperscriptFont(aTextRun->GetAppUnitsPerDevUnit());
aTextRun->AddGlyphRun(subSuperFont, range.matchType,
aOffset + runStart, (matchedLength > 0),
range.orientation);
if (!subSuperFont->SplitAndInitTextRun(aDrawTarget, aTextRun,
aString + runStart,
aOffset + runStart,
matchedLength,
aRunScript,
vertical)) {
// glyph layout failed! treat as missing glyphs
matchedFont = nullptr;
}
} else if (mStyle.variantCaps != NS_FONT_VARIANT_CAPS_NORMAL &&
!matchedFont->SupportsVariantCaps(aRunScript,
mStyle.variantCaps,
petiteToSmallCaps,
syntheticLower,
syntheticUpper))
{
// fallback for small-caps variant glyphs
if (!matchedFont->InitFakeSmallCapsRun(aDrawTarget, aTextRun,
aString + runStart,
aOffset + runStart,
matchedLength,
range.matchType,
range.orientation,
aRunScript,
syntheticLower,
syntheticUpper)) {
matchedFont = nullptr;
}
} else {
// shape normally with variant feature enabled
gfxTextRun::ShapingState ss = aTextRun->GetShapingState();
// adjust the shaping state if necessary
if (ss == gfxTextRun::eShapingState_Normal) {
aTextRun->SetShapingState(gfxTextRun::eShapingState_ShapingWithFeature);
} else if (ss == gfxTextRun::eShapingState_ShapingWithFallback) {
// already have shaping results using fallback, need to redo
aTextRun->SetShapingState(gfxTextRun::eShapingState_Aborted);
return;
}
// do glyph layout and record the resulting positioned glyphs
aTextRun->AddGlyphRun(matchedFont, range.matchType,
aOffset + runStart, (matchedLength > 0),
range.orientation);
if (!matchedFont->SplitAndInitTextRun(aDrawTarget, aTextRun,
aString + runStart,
aOffset + runStart,
matchedLength,
aRunScript,
vertical)) {
// glyph layout failed! treat as missing glyphs
matchedFont = nullptr;
}
}
} else {
aTextRun->AddGlyphRun(mainFont, gfxTextRange::kFontGroup,
aOffset + runStart, (matchedLength > 0),
range.orientation);
}
if (!matchedFont) {
// We need to set cluster boundaries (and mark spaces) so that
// surrogate pairs, combining characters, etc behave properly,
// even if we don't have glyphs for them
aTextRun->SetupClusterBoundaries(aOffset + runStart, aString + runStart,
matchedLength);
// various "missing" characters may need special handling,
// so we check for them here
uint32_t runLimit = runStart + matchedLength;
for (uint32_t index = runStart; index < runLimit; index++) {
T ch = aString[index];
// tab and newline are not to be displayed as hexboxes,
// but do need to be recorded in the textrun
if (ch == '\n') {
aTextRun->SetIsNewline(aOffset + index);
continue;
}
if (ch == '\t') {
aTextRun->SetIsTab(aOffset + index);
continue;
}
// for 16-bit textruns only, check for surrogate pairs and
// special Unicode spaces; omit these checks in 8-bit runs
if (sizeof(T) == sizeof(char16_t)) {
if (NS_IS_HIGH_SURROGATE(ch) &&
index + 1 < aLength &&
NS_IS_LOW_SURROGATE(aString[index + 1]))
{
uint32_t usv =
SURROGATE_TO_UCS4(ch, aString[index + 1]);
aTextRun->SetMissingGlyph(aOffset + index,
usv,
mainFont);
index++;
if (!mSkipDrawing && !IsPUA(usv)) {
missingChars = true;
}
continue;
}
// check if this is a known Unicode whitespace character that
// we can render using the space glyph with a custom width
gfxFloat wid = mainFont->SynthesizeSpaceWidth(ch);
if (wid >= 0.0) {
nscoord advance =
aTextRun->GetAppUnitsPerDevUnit() * floor(wid + 0.5);
if (gfxShapedText::CompressedGlyph::IsSimpleAdvance(advance)) {
aTextRun->GetCharacterGlyphs()[aOffset + index].
SetSimpleGlyph(advance,
mainFont->GetSpaceGlyph());
} else {
gfxTextRun::DetailedGlyph detailedGlyph;
detailedGlyph.mGlyphID = mainFont->GetSpaceGlyph();
detailedGlyph.mAdvance = advance;
detailedGlyph.mXOffset = detailedGlyph.mYOffset = 0;
gfxShapedText::CompressedGlyph g;
g.SetComplex(true, true, 1);
aTextRun->SetGlyphs(aOffset + index,
g, &detailedGlyph);
}
continue;
}
}
if (IsInvalidChar(ch)) {
// invalid chars are left as zero-width/invisible
continue;
}
// record char code so we can draw a box with the Unicode value
aTextRun->SetMissingGlyph(aOffset + index, ch, mainFont);
if (!mSkipDrawing && !IsPUA(ch)) {
missingChars = true;
}
}
}
runStart += matchedLength;
}
if (aMFR && missingChars) {
aMFR->RecordScript(aRunScript);
}
}
gfxTextRun *
gfxFontGroup::GetEllipsisTextRun(int32_t aAppUnitsPerDevPixel,
gfx::ShapedTextFlags aFlags,
LazyReferenceDrawTargetGetter& aRefDrawTargetGetter)
{
MOZ_ASSERT(!(aFlags & ~ShapedTextFlags::TEXT_ORIENT_MASK),
"flags here should only be used to specify orientation");
if (mCachedEllipsisTextRun &&
(mCachedEllipsisTextRun->GetFlags() & ShapedTextFlags::TEXT_ORIENT_MASK) == aFlags &&
mCachedEllipsisTextRun->GetAppUnitsPerDevUnit() == aAppUnitsPerDevPixel) {
return mCachedEllipsisTextRun.get();
}
// Use a Unicode ellipsis if the font supports it,
// otherwise use three ASCII periods as fallback.
gfxFont* firstFont = GetFirstValidFont(uint32_t(kEllipsisChar[0]));
nsString ellipsis = firstFont->HasCharacter(kEllipsisChar[0])
? nsDependentString(kEllipsisChar,
ArrayLength(kEllipsisChar) - 1)
: nsDependentString(kASCIIPeriodsChar,
ArrayLength(kASCIIPeriodsChar) - 1);
RefPtr<DrawTarget> refDT = aRefDrawTargetGetter.GetRefDrawTarget();
Parameters params = {
refDT, nullptr, nullptr, nullptr, 0, aAppUnitsPerDevPixel
};
mCachedEllipsisTextRun =
MakeTextRun(ellipsis.get(), ellipsis.Length(), &params,
aFlags | ShapedTextFlags::TEXT_IS_PERSISTENT,
nsTextFrameUtils::Flags(), nullptr);
if (!mCachedEllipsisTextRun) {
return nullptr;
}
// don't let the presence of a cached ellipsis textrun prolong the
// fontgroup's life
mCachedEllipsisTextRun->ReleaseFontGroup();
return mCachedEllipsisTextRun.get();
}
already_AddRefed<gfxFont>
gfxFontGroup::FindFallbackFaceForChar(gfxFontFamily* aFamily, uint32_t aCh,
Script aRunScript)
{
GlobalFontMatch data(aCh, aRunScript, &mStyle);
aFamily->SearchAllFontsForChar(&data);
gfxFontEntry* fe = data.mBestMatch;
if (!fe) {
return nullptr;
}
bool needsBold = mStyle.weight >= 600 && !fe->IsBold() &&
mStyle.allowSyntheticWeight;
RefPtr<gfxFont> font = fe->FindOrMakeFont(&mStyle, needsBold);
return font.forget();
}
gfxFloat
gfxFontGroup::GetUnderlineOffset()
{
if (mUnderlineOffset == UNDERLINE_OFFSET_NOT_SET) {
// if the fontlist contains a bad underline font, make the underline
// offset the min of the first valid font and bad font underline offsets
uint32_t len = mFonts.Length();
for (uint32_t i = 0; i < len; i++) {
FamilyFace& ff = mFonts[i];
if (!ff.IsUserFontContainer() &&
!ff.FontEntry()->IsUserFont() &&
ff.Family() &&
ff.Family()->IsBadUnderlineFamily()) {
RefPtr<gfxFont> font = GetFontAt(i);
if (!font) {
continue;
}
gfxFloat bad = font->GetMetrics(gfxFont::eHorizontal).
underlineOffset;
gfxFloat first =
GetFirstValidFont()->GetMetrics(gfxFont::eHorizontal).
underlineOffset;
mUnderlineOffset = std::min(first, bad);
return mUnderlineOffset;
}
}
// no bad underline fonts, use the first valid font's metric
mUnderlineOffset = GetFirstValidFont()->
GetMetrics(gfxFont::eHorizontal).underlineOffset;
}
return mUnderlineOffset;
}
already_AddRefed<gfxFont>
gfxFontGroup::FindFontForChar(uint32_t aCh, uint32_t aPrevCh, uint32_t aNextCh,
Script aRunScript, gfxFont *aPrevMatchedFont,
uint8_t *aMatchType)
{
// If the char is a cluster extender, we want to use the same font as the
// preceding character if possible. This is preferable to using the font
// group because it avoids breaks in shaping within a cluster.
if (aPrevMatchedFont && IsClusterExtender(aCh) &&
aPrevMatchedFont->HasCharacter(aCh)) {
RefPtr<gfxFont> ret = aPrevMatchedFont;
return ret.forget();
}
// Special cases for NNBSP (as used in Mongolian):
const uint32_t NARROW_NO_BREAK_SPACE = 0x202f;
if (aCh == NARROW_NO_BREAK_SPACE) {
// If there is no preceding character, try the font that we'd use
// for the next char (unless it's just another NNBSP; we don't try
// to look ahead through a whole run of them).
if (!aPrevCh && aNextCh && aNextCh != NARROW_NO_BREAK_SPACE) {
RefPtr<gfxFont> nextFont =
FindFontForChar(aNextCh, 0, 0, aRunScript, aPrevMatchedFont,
aMatchType);
if (nextFont && nextFont->HasCharacter(aCh)) {
return nextFont.forget();
}
}
// Otherwise, treat NNBSP like a cluster extender (as above) and try
// to continue the preceding font run.
if (aPrevMatchedFont && aPrevMatchedFont->HasCharacter(aCh)) {
RefPtr<gfxFont> ret = aPrevMatchedFont;
return ret.forget();
}
}
// To optimize common cases, try the first font in the font-group
// before going into the more detailed checks below
uint32_t nextIndex = 0;
bool isJoinControl = gfxFontUtils::IsJoinControl(aCh);
bool wasJoinCauser = gfxFontUtils::IsJoinCauser(aPrevCh);
bool isVarSelector = gfxFontUtils::IsVarSelector(aCh);
if (!isJoinControl && !wasJoinCauser && !isVarSelector) {
RefPtr<gfxFont> firstFont = GetFontAt(0, aCh);
if (firstFont) {
if (firstFont->HasCharacter(aCh)) {
*aMatchType = gfxTextRange::kFontGroup;
return firstFont.forget();
}
RefPtr<gfxFont> font;
if (mFonts[0].CheckForFallbackFaces()) {
font = FindFallbackFaceForChar(mFonts[0].Family(), aCh,
aRunScript);
} else if (!firstFont->GetFontEntry()->IsUserFont()) {
// For platform fonts (but not userfonts), we may need to do
// fallback within the family to handle cases where some faces
// such as Italic or Black have reduced character sets compared
// to the family's Regular face.
gfxFontEntry* fe = firstFont->GetFontEntry();
if (!fe->IsUpright() ||
fe->Weight() != NS_FONT_WEIGHT_NORMAL ||
fe->Stretch() != NS_FONT_STRETCH_NORMAL) {
// If style/weight/stretch was not Normal, see if we can
// fall back to a next-best face (e.g. Arial Black -> Bold,
// or Arial Narrow -> Regular).
font = FindFallbackFaceForChar(mFonts[0].Family(), aCh,
aRunScript);
}
}
if (font) {
*aMatchType = gfxTextRange::kFontGroup;
return font.forget();
}
}
// we don't need to check the first font again below
++nextIndex;
}
if (aPrevMatchedFont) {
// Don't switch fonts for control characters, regardless of
// whether they are present in the current font, as they won't
// actually be rendered (see bug 716229)
if (isJoinControl ||
GetGeneralCategory(aCh) == HB_UNICODE_GENERAL_CATEGORY_CONTROL) {
RefPtr<gfxFont> ret = aPrevMatchedFont;
return ret.forget();
}
// if previous character was a join-causer (ZWJ),
// use the same font as the previous range if we can
if (wasJoinCauser) {
if (aPrevMatchedFont->HasCharacter(aCh)) {
RefPtr<gfxFont> ret = aPrevMatchedFont;
return ret.forget();
}
}
}
// if this character is a variation selector,
// use the previous font regardless of whether it supports VS or not.
// otherwise the text run will be divided.
if (isVarSelector) {
if (aPrevMatchedFont) {
RefPtr<gfxFont> ret = aPrevMatchedFont;
return ret.forget();
}
// VS alone. it's meaningless to search different fonts
return nullptr;
}
// 1. check remaining fonts in the font group
uint32_t fontListLength = mFonts.Length();
for (uint32_t i = nextIndex; i < fontListLength; i++) {
FamilyFace& ff = mFonts[i];
if (ff.IsInvalid() || ff.IsLoading()) {
continue;
}
// if available, use already made gfxFont and check for character
RefPtr<gfxFont> font = ff.Font();
if (font) {
if (font->HasCharacter(aCh)) {
return font.forget();
}
continue;
}
// don't have a gfxFont yet, test before building
gfxFontEntry *fe = ff.FontEntry();
if (fe->mIsUserFontContainer) {
// for userfonts, need to test both the unicode range map and
// the cmap of the platform font entry
gfxUserFontEntry* ufe = static_cast<gfxUserFontEntry*>(fe);
// never match a character outside the defined unicode range
if (!ufe->CharacterInUnicodeRange(aCh)) {
continue;
}
// load if not already loaded but only if no other font in similar
// range within family is loading
if (ufe->LoadState() == gfxUserFontEntry::STATUS_NOT_LOADED &&
!FontLoadingForFamily(ff.Family(), aCh)) {
ufe->Load();
ff.CheckState(mSkipDrawing);
}
gfxFontEntry* pfe = ufe->GetPlatformFontEntry();
if (pfe && pfe->HasCharacter(aCh)) {
font = GetFontAt(i, aCh);
if (font) {
*aMatchType = gfxTextRange::kFontGroup;
return font.forget();
}
}
} else if (fe->HasCharacter(aCh)) {
// for normal platform fonts, after checking the cmap
// build the font via GetFontAt
font = GetFontAt(i, aCh);
if (font) {
*aMatchType = gfxTextRange::kFontGroup;
return font.forget();
}
}
// check other family faces if needed
if (ff.CheckForFallbackFaces()) {
NS_ASSERTION(i == 0 ? true :
!mFonts[i-1].CheckForFallbackFaces() ||
!mFonts[i-1].Family()->Name().Equals(ff.Family()->Name()),
"should only do fallback once per font family");
font = FindFallbackFaceForChar(ff.Family(), aCh, aRunScript);
if (font) {
*aMatchType = gfxTextRange::kFontGroup;
return font.forget();
}
} else {
// For platform fonts, but not user fonts, consider intra-family
// fallback to handle styles with reduced character sets (see
// also above).
fe = ff.FontEntry();
if (!fe->mIsUserFontContainer && !fe->IsUserFont() &&
(!fe->IsUpright() ||
fe->Weight() != NS_FONT_WEIGHT_NORMAL ||
fe->Stretch() != NS_FONT_STRETCH_NORMAL)) {
font = FindFallbackFaceForChar(ff.Family(), aCh, aRunScript);
if (font) {
*aMatchType = gfxTextRange::kFontGroup;
return font.forget();
}
}
}
}
if (fontListLength == 0) {
RefPtr<gfxFont> defaultFont = GetDefaultFont();
if (defaultFont->HasCharacter(aCh)) {
*aMatchType = gfxTextRange::kFontGroup;
return defaultFont.forget();
}
}
// if character is in Private Use Area, don't do matching against pref or system fonts
if ((aCh >= 0xE000 && aCh <= 0xF8FF) || (aCh >= 0xF0000 && aCh <= 0x10FFFD))
return nullptr;
// 2. search pref fonts
RefPtr<gfxFont> font = WhichPrefFontSupportsChar(aCh);
if (font) {
*aMatchType = gfxTextRange::kPrefsFallback;
return font.forget();
}
// 3. use fallback fonts
// -- before searching for something else check the font used for the previous character
if (aPrevMatchedFont && aPrevMatchedFont->HasCharacter(aCh)) {
*aMatchType = gfxTextRange::kSystemFallback;
RefPtr<gfxFont> ret = aPrevMatchedFont;
return ret.forget();
}
// for known "space" characters, don't do a full system-fallback search;
// we'll synthesize appropriate-width spaces instead of missing-glyph boxes
if (GetGeneralCategory(aCh) ==
HB_UNICODE_GENERAL_CATEGORY_SPACE_SEPARATOR &&
GetFirstValidFont()->SynthesizeSpaceWidth(aCh) >= 0.0)
{
return nullptr;
}
// -- otherwise look for other stuff
*aMatchType = gfxTextRange::kSystemFallback;
font = WhichSystemFontSupportsChar(aCh, aNextCh, aRunScript);
return font.forget();
}
template<typename T>
void gfxFontGroup::ComputeRanges(nsTArray<gfxTextRange>& aRanges,
const T *aString, uint32_t aLength,
Script aRunScript,
gfx::ShapedTextFlags aOrientation)
{
NS_ASSERTION(aRanges.Length() == 0, "aRanges must be initially empty");
NS_ASSERTION(aLength > 0, "don't call ComputeRanges for zero-length text");
uint32_t prevCh = 0;
uint32_t nextCh = aString[0];
if (sizeof(T) == sizeof(char16_t)) {
if (aLength > 1 && NS_IS_HIGH_SURROGATE(nextCh) &&
NS_IS_LOW_SURROGATE(aString[1])) {
nextCh = SURROGATE_TO_UCS4(nextCh, aString[1]);
}
}
int32_t lastRangeIndex = -1;
// initialize prevFont to the group's primary font, so that this will be
// used for string-initial control chars, etc rather than risk hitting font
// fallback for these (bug 716229)
gfxFont *prevFont = GetFirstValidFont();
// if we use the initial value of prevFont, we treat this as a match from
// the font group; fixes bug 978313
uint8_t matchType = gfxTextRange::kFontGroup;
for (uint32_t i = 0; i < aLength; i++) {
const uint32_t origI = i; // save off in case we increase for surrogate
// set up current ch
uint32_t ch = nextCh;
// Get next char (if any) so that FindFontForChar can look ahead
// for a possible variation selector.
if (sizeof(T) == sizeof(char16_t)) {
// In 16-bit case only, check for surrogate pairs.
if (ch > 0xffffu) {
i++;
}
if (i < aLength - 1) {
nextCh = aString[i + 1];
if ((i + 2 < aLength) && NS_IS_HIGH_SURROGATE(nextCh) &&
NS_IS_LOW_SURROGATE(aString[i + 2])) {
nextCh = SURROGATE_TO_UCS4(nextCh, aString[i + 2]);
}
} else {
nextCh = 0;
}
} else {
// 8-bit case is trivial.
nextCh = i < aLength - 1 ? aString[i + 1] : 0;
}
if (ch == 0xa0) {
ch = ' ';
}
// find the font for this char
RefPtr<gfxFont> font =
FindFontForChar(ch, prevCh, nextCh, aRunScript, prevFont,
&matchType);
#ifndef RELEASE_OR_BETA
if (MOZ_UNLIKELY(mTextPerf)) {
if (matchType == gfxTextRange::kPrefsFallback) {
mTextPerf->current.fallbackPrefs++;
} else if (matchType == gfxTextRange::kSystemFallback) {
mTextPerf->current.fallbackSystem++;
}
}
#endif
prevCh = ch;
ShapedTextFlags orient = aOrientation;
if (aOrientation == ShapedTextFlags::TEXT_ORIENT_VERTICAL_MIXED) {
// For CSS text-orientation:mixed, we need to resolve orientation
// on a per-character basis using the UTR50 orientation property.
switch (GetVerticalOrientation(ch)) {
case VERTICAL_ORIENTATION_U:
case VERTICAL_ORIENTATION_Tr:
case VERTICAL_ORIENTATION_Tu:
orient = ShapedTextFlags::TEXT_ORIENT_VERTICAL_UPRIGHT;
break;
case VERTICAL_ORIENTATION_R:
orient = ShapedTextFlags::TEXT_ORIENT_VERTICAL_SIDEWAYS_RIGHT;
break;
}
}
if (lastRangeIndex == -1) {
// first char ==> make a new range
aRanges.AppendElement(gfxTextRange(0, 1, font, matchType, orient));
lastRangeIndex++;
prevFont = font;
} else {
// if font or orientation has changed, make a new range...
// unless ch is a variation selector (bug 1248248)
gfxTextRange& prevRange = aRanges[lastRangeIndex];
if (prevRange.font != font || prevRange.matchType != matchType ||
(prevRange.orientation != orient && !IsClusterExtender(ch))) {
// close out the previous range
prevRange.end = origI;
aRanges.AppendElement(gfxTextRange(origI, i + 1,
font, matchType, orient));
lastRangeIndex++;
// update prevFont for the next match, *unless* we switched
// fonts on a ZWJ, in which case propagating the changed font
// is probably not a good idea (see bug 619511)
if (sizeof(T) == sizeof(uint8_t) ||
!gfxFontUtils::IsJoinCauser(ch))
{
prevFont = font;
}
}
}
}
aRanges[lastRangeIndex].end = aLength;
#ifndef RELEASE_OR_BETA
LogModule* log = mStyle.systemFont
? gfxPlatform::GetLog(eGfxLog_textrunui)
: gfxPlatform::GetLog(eGfxLog_textrun);
if (MOZ_UNLIKELY(MOZ_LOG_TEST(log, LogLevel::Debug))) {
nsAutoCString lang;
mStyle.language->ToUTF8String(lang);
nsAutoString families;
mFamilyList.ToString(families);
// collect the font matched for each range
nsAutoCString fontMatches;
for (size_t i = 0, i_end = aRanges.Length(); i < i_end; i++) {
const gfxTextRange& r = aRanges[i];
fontMatches.AppendPrintf(" [%u:%u] %.200s (%s)", r.start, r.end,
(r.font.get() ?
NS_ConvertUTF16toUTF8(r.font->GetName()).get() : "<null>"),
(r.matchType == gfxTextRange::kFontGroup ?
"list" :
(r.matchType == gfxTextRange::kPrefsFallback) ?
"prefs" : "sys"));
}
MOZ_LOG(log, LogLevel::Debug,\
("(%s-fontmatching) fontgroup: [%s] default: %s lang: %s script: %d"
"%s\n",
(mStyle.systemFont ? "textrunui" : "textrun"),
NS_ConvertUTF16toUTF8(families).get(),
(mFamilyList.GetDefaultFontType() == eFamily_serif ?
"serif" :
(mFamilyList.GetDefaultFontType() == eFamily_sans_serif ?
"sans-serif" : "none")),
lang.get(), static_cast<int>(aRunScript),
fontMatches.get()));
}
#endif
}
gfxUserFontSet*
gfxFontGroup::GetUserFontSet()
{
return mUserFontSet;
}
void
gfxFontGroup::SetUserFontSet(gfxUserFontSet *aUserFontSet)
{
if (aUserFontSet == mUserFontSet) {
return;
}
mUserFontSet = aUserFontSet;
mCurrGeneration = GetGeneration() - 1;
UpdateUserFonts();
}
uint64_t
gfxFontGroup::GetGeneration()
{
if (!mUserFontSet)
return 0;
return mUserFontSet->GetGeneration();
}
uint64_t
gfxFontGroup::GetRebuildGeneration()
{
if (!mUserFontSet)
return 0;
return mUserFontSet->GetRebuildGeneration();
}
void
gfxFontGroup::UpdateUserFonts()
{
if (mCurrGeneration < GetRebuildGeneration()) {
// fonts in userfont set changed, need to redo the fontlist
mFonts.Clear();
ClearCachedData();
BuildFontList();
mCurrGeneration = GetGeneration();
} else if (mCurrGeneration != GetGeneration()) {
// load state change occurred, verify load state and validity of fonts
ClearCachedData();
uint32_t len = mFonts.Length();
for (uint32_t i = 0; i < len; i++) {
FamilyFace& ff = mFonts[i];
if (ff.Font() || !ff.IsUserFontContainer()) {
continue;
}
ff.CheckState(mSkipDrawing);
}
mCurrGeneration = GetGeneration();
}
}
bool
gfxFontGroup::ContainsUserFont(const gfxUserFontEntry* aUserFont)
{
UpdateUserFonts();
// search through the fonts list for a specific user font
uint32_t len = mFonts.Length();
for (uint32_t i = 0; i < len; i++) {
FamilyFace& ff = mFonts[i];
if (ff.EqualsUserFont(aUserFont)) {
return true;
}
}
return false;
}
already_AddRefed<gfxFont>
gfxFontGroup::WhichPrefFontSupportsChar(uint32_t aCh)
{
RefPtr<gfxFont> font;
// get the pref font list if it hasn't been set up already
uint32_t unicodeRange = FindCharUnicodeRange(aCh);
gfxPlatformFontList* pfl = gfxPlatformFontList::PlatformFontList();
eFontPrefLang charLang = pfl->GetFontPrefLangFor(unicodeRange);
// if the last pref font was the first family in the pref list, no need to recheck through a list of families
if (mLastPrefFont && charLang == mLastPrefLang &&
mLastPrefFirstFont && mLastPrefFont->HasCharacter(aCh)) {
font = mLastPrefFont;
return font.forget();
}
// based on char lang and page lang, set up list of pref lang fonts to check
eFontPrefLang prefLangs[kMaxLenPrefLangList];
uint32_t i, numLangs = 0;
pfl->GetLangPrefs(prefLangs, numLangs, charLang, mPageLang);
for (i = 0; i < numLangs; i++) {
eFontPrefLang currentLang = prefLangs[i];
mozilla::FontFamilyType defaultGeneric =
pfl->GetDefaultGeneric(currentLang);
nsTArray<RefPtr<gfxFontFamily>>* families =
pfl->GetPrefFontsLangGroup(defaultGeneric, currentLang);
NS_ASSERTION(families, "no pref font families found");
// find the first pref font that includes the character
uint32_t j, numPrefs;
numPrefs = families->Length();
for (j = 0; j < numPrefs; j++) {
// look up the appropriate face
gfxFontFamily *family = (*families)[j];
if (!family) continue;
// if a pref font is used, it's likely to be used again in the same text run.
// the style doesn't change so the face lookup can be cached rather than calling
// FindOrMakeFont repeatedly. speeds up FindFontForChar lookup times for subsequent
// pref font lookups
if (family == mLastPrefFamily && mLastPrefFont->HasCharacter(aCh)) {
font = mLastPrefFont;
return font.forget();
}
bool needsBold;
gfxFontEntry *fe = family->FindFontForStyle(mStyle, needsBold);
// if ch in cmap, create and return a gfxFont
if (fe && fe->HasCharacter(aCh)) {
RefPtr<gfxFont> prefFont = fe->FindOrMakeFont(&mStyle, needsBold);
if (!prefFont) continue;
mLastPrefFamily = family;
mLastPrefFont = prefFont;
mLastPrefLang = charLang;
mLastPrefFirstFont = (i == 0 && j == 0);
return prefFont.forget();
}
}
}
return nullptr;
}
already_AddRefed<gfxFont>
gfxFontGroup::WhichSystemFontSupportsChar(uint32_t aCh, uint32_t aNextCh,
Script aRunScript)
{
gfxFontEntry *fe =
gfxPlatformFontList::PlatformFontList()->
SystemFindFontForChar(aCh, aNextCh, aRunScript, &mStyle);
if (fe) {
bool wantBold = mStyle.ComputeWeight() >= 6;
RefPtr<gfxFont> font =
fe->FindOrMakeFont(&mStyle, wantBold && !fe->IsBold());
return font.forget();
}
return nullptr;
}
/*static*/ void
gfxFontGroup::Shutdown()
{
NS_IF_RELEASE(gLangService);
}
nsILanguageAtomService* gfxFontGroup::gLangService = nullptr;
void
gfxMissingFontRecorder::Flush()
{
static bool mNotifiedFontsInitialized = false;
static uint32_t mNotifiedFonts[gfxMissingFontRecorder::kNumScriptBitsWords];
if (!mNotifiedFontsInitialized) {
memset(&mNotifiedFonts, 0, sizeof(mNotifiedFonts));
mNotifiedFontsInitialized = true;
}
nsAutoString fontNeeded;
for (uint32_t i = 0; i < kNumScriptBitsWords; ++i) {
mMissingFonts[i] &= ~mNotifiedFonts[i];
if (!mMissingFonts[i]) {
continue;
}
for (uint32_t j = 0; j < 32; ++j) {
if (!(mMissingFonts[i] & (1 << j))) {
continue;
}
mNotifiedFonts[i] |= (1 << j);
if (!fontNeeded.IsEmpty()) {
fontNeeded.Append(char16_t(','));
}
uint32_t sc = i * 32 + j;
MOZ_ASSERT(sc < static_cast<uint32_t>(Script::NUM_SCRIPT_CODES),
"how did we set the bit for an invalid script code?");
uint32_t tag = GetScriptTagForCode(static_cast<Script>(sc));
fontNeeded.Append(char16_t(tag >> 24));
fontNeeded.Append(char16_t((tag >> 16) & 0xff));
fontNeeded.Append(char16_t((tag >> 8) & 0xff));
fontNeeded.Append(char16_t(tag & 0xff));
}
mMissingFonts[i] = 0;
}
if (!fontNeeded.IsEmpty()) {
nsCOMPtr<nsIObserverService> service = GetObserverService();
service->NotifyObservers(nullptr, "font-needed", fontNeeded.get());
}
}