зеркало из https://github.com/mozilla/gecko-dev.git
220 строки
7.0 KiB
Python
220 строки
7.0 KiB
Python
# This Source Code Form is subject to the terms of the Mozilla Public
|
||
# License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
||
|
||
import unittest
|
||
|
||
from gecko_taskgraph.graph import Graph
|
||
from mozunit import main
|
||
|
||
|
||
class TestGraph(unittest.TestCase):
|
||
|
||
tree = Graph(
|
||
{"a", "b", "c", "d", "e", "f", "g"},
|
||
{
|
||
("a", "b", "L"),
|
||
("a", "c", "L"),
|
||
("b", "d", "K"),
|
||
("b", "e", "K"),
|
||
("c", "f", "N"),
|
||
("c", "g", "N"),
|
||
},
|
||
)
|
||
|
||
linear = Graph(
|
||
{"1", "2", "3", "4"},
|
||
{
|
||
("1", "2", "L"),
|
||
("2", "3", "L"),
|
||
("3", "4", "L"),
|
||
},
|
||
)
|
||
|
||
diamonds = Graph(
|
||
{"A", "B", "C", "D", "E", "F", "G", "H", "I", "J"},
|
||
{
|
||
tuple(x)
|
||
for x in "AFL ADL BDL BEL CEL CHL DFL DGL EGL EHL FIL GIL GJL HJL".split()
|
||
},
|
||
)
|
||
|
||
multi_edges = Graph(
|
||
{"1", "2", "3", "4"},
|
||
{
|
||
("2", "1", "red"),
|
||
("2", "1", "blue"),
|
||
("3", "1", "red"),
|
||
("3", "2", "blue"),
|
||
("3", "2", "green"),
|
||
("4", "3", "green"),
|
||
},
|
||
)
|
||
|
||
disjoint = Graph(
|
||
{"1", "2", "3", "4", "α", "β", "γ"},
|
||
{
|
||
("2", "1", "red"),
|
||
("3", "1", "red"),
|
||
("3", "2", "green"),
|
||
("4", "3", "green"),
|
||
("α", "β", "πράσινο"),
|
||
("β", "γ", "κόκκινο"),
|
||
("α", "γ", "μπλε"),
|
||
},
|
||
)
|
||
|
||
def test_transitive_closure_empty(self):
|
||
"transitive closure of an empty set is an empty graph"
|
||
g = Graph({"a", "b", "c"}, {("a", "b", "L"), ("a", "c", "L")})
|
||
self.assertEqual(g.transitive_closure(set()), Graph(set(), set()))
|
||
|
||
def test_transitive_closure_disjoint(self):
|
||
"transitive closure of a disjoint set is a subset"
|
||
g = Graph({"a", "b", "c"}, set())
|
||
self.assertEqual(g.transitive_closure({"a", "c"}), Graph({"a", "c"}, set()))
|
||
|
||
def test_transitive_closure_trees(self):
|
||
"transitive closure of a tree, at two non-root nodes, is the two subtrees"
|
||
self.assertEqual(
|
||
self.tree.transitive_closure({"b", "c"}),
|
||
Graph(
|
||
{"b", "c", "d", "e", "f", "g"},
|
||
{
|
||
("b", "d", "K"),
|
||
("b", "e", "K"),
|
||
("c", "f", "N"),
|
||
("c", "g", "N"),
|
||
},
|
||
),
|
||
)
|
||
|
||
def test_transitive_closure_multi_edges(self):
|
||
"transitive closure of a tree with multiple edges between nodes keeps those edges"
|
||
self.assertEqual(
|
||
self.multi_edges.transitive_closure({"3"}),
|
||
Graph(
|
||
{"1", "2", "3"},
|
||
{
|
||
("2", "1", "red"),
|
||
("2", "1", "blue"),
|
||
("3", "1", "red"),
|
||
("3", "2", "blue"),
|
||
("3", "2", "green"),
|
||
},
|
||
),
|
||
)
|
||
|
||
def test_transitive_closure_disjoint_edges(self):
|
||
"transitive closure of a disjoint graph keeps those edges"
|
||
self.assertEqual(
|
||
self.disjoint.transitive_closure({"3", "β"}),
|
||
Graph(
|
||
{"1", "2", "3", "β", "γ"},
|
||
{
|
||
("2", "1", "red"),
|
||
("3", "1", "red"),
|
||
("3", "2", "green"),
|
||
("β", "γ", "κόκκινο"),
|
||
},
|
||
),
|
||
)
|
||
|
||
def test_transitive_closure_linear(self):
|
||
"transitive closure of a linear graph includes all nodes in the line"
|
||
self.assertEqual(self.linear.transitive_closure({"1"}), self.linear)
|
||
|
||
def test_visit_postorder_empty(self):
|
||
"postorder visit of an empty graph is empty"
|
||
self.assertEqual(list(Graph(set(), set()).visit_postorder()), [])
|
||
|
||
def assert_postorder(self, seq, all_nodes):
|
||
seen = set()
|
||
for e in seq:
|
||
for l, r, n in self.tree.edges:
|
||
if l == e:
|
||
self.assertTrue(r in seen)
|
||
seen.add(e)
|
||
self.assertEqual(seen, all_nodes)
|
||
|
||
def test_visit_postorder_tree(self):
|
||
"postorder visit of a tree satisfies invariant"
|
||
self.assert_postorder(self.tree.visit_postorder(), self.tree.nodes)
|
||
|
||
def test_visit_postorder_diamonds(self):
|
||
"postorder visit of a graph full of diamonds satisfies invariant"
|
||
self.assert_postorder(self.diamonds.visit_postorder(), self.diamonds.nodes)
|
||
|
||
def test_visit_postorder_multi_edges(self):
|
||
"postorder visit of a graph with duplicate edges satisfies invariant"
|
||
self.assert_postorder(
|
||
self.multi_edges.visit_postorder(), self.multi_edges.nodes
|
||
)
|
||
|
||
def test_visit_postorder_disjoint(self):
|
||
"postorder visit of a disjoint graph satisfies invariant"
|
||
self.assert_postorder(self.disjoint.visit_postorder(), self.disjoint.nodes)
|
||
|
||
def assert_preorder(self, seq, all_nodes):
|
||
seen = set()
|
||
for e in seq:
|
||
for l, r, n in self.tree.edges:
|
||
if r == e:
|
||
self.assertTrue(l in seen)
|
||
seen.add(e)
|
||
self.assertEqual(seen, all_nodes)
|
||
|
||
def test_visit_preorder_tree(self):
|
||
"preorder visit of a tree satisfies invariant"
|
||
self.assert_preorder(self.tree.visit_preorder(), self.tree.nodes)
|
||
|
||
def test_visit_preorder_diamonds(self):
|
||
"preorder visit of a graph full of diamonds satisfies invariant"
|
||
self.assert_preorder(self.diamonds.visit_preorder(), self.diamonds.nodes)
|
||
|
||
def test_visit_preorder_multi_edges(self):
|
||
"preorder visit of a graph with duplicate edges satisfies invariant"
|
||
self.assert_preorder(self.multi_edges.visit_preorder(), self.multi_edges.nodes)
|
||
|
||
def test_visit_preorder_disjoint(self):
|
||
"preorder visit of a disjoint graph satisfies invariant"
|
||
self.assert_preorder(self.disjoint.visit_preorder(), self.disjoint.nodes)
|
||
|
||
def test_links_dict(self):
|
||
"link dict for a graph with multiple edges is correct"
|
||
self.assertEqual(
|
||
self.multi_edges.links_dict(),
|
||
{
|
||
"2": {"1"},
|
||
"3": {"1", "2"},
|
||
"4": {"3"},
|
||
},
|
||
)
|
||
|
||
def test_named_links_dict(self):
|
||
"named link dict for a graph with multiple edges is correct"
|
||
self.assertEqual(
|
||
self.multi_edges.named_links_dict(),
|
||
{
|
||
"2": dict(red="1", blue="1"),
|
||
"3": dict(red="1", blue="2", green="2"),
|
||
"4": dict(green="3"),
|
||
},
|
||
)
|
||
|
||
def test_reverse_links_dict(self):
|
||
"reverse link dict for a graph with multiple edges is correct"
|
||
self.assertEqual(
|
||
self.multi_edges.reverse_links_dict(),
|
||
{
|
||
"1": {"2", "3"},
|
||
"2": {"3"},
|
||
"3": {"4"},
|
||
},
|
||
)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|