gecko-dev/image/Decoder.cpp

540 строки
16 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Decoder.h"
#include "DecodePool.h"
#include "GeckoProfiler.h"
#include "IDecodingTask.h"
#include "ISurfaceProvider.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Point.h"
#include "mozilla/Telemetry.h"
#include "nsComponentManagerUtils.h"
#include "nsProxyRelease.h"
#include "nsServiceManagerUtils.h"
using mozilla::gfx::IntPoint;
using mozilla::gfx::IntSize;
using mozilla::gfx::IntRect;
using mozilla::gfx::SurfaceFormat;
namespace mozilla {
namespace image {
class MOZ_STACK_CLASS AutoRecordDecoderTelemetry final
{
public:
explicit AutoRecordDecoderTelemetry(Decoder* aDecoder)
: mDecoder(aDecoder)
{
MOZ_ASSERT(mDecoder);
// Begin recording telemetry data.
mStartTime = TimeStamp::Now();
}
~AutoRecordDecoderTelemetry()
{
// Finish telemetry.
mDecoder->mDecodeTime += (TimeStamp::Now() - mStartTime);
}
private:
Decoder* mDecoder;
TimeStamp mStartTime;
};
Decoder::Decoder(RasterImage* aImage)
: mImageData(nullptr)
, mImageDataLength(0)
, mColormap(nullptr)
, mColormapSize(0)
, mImage(aImage)
, mProgress(NoProgress)
, mFrameCount(0)
, mLoopLength(FrameTimeout::Zero())
, mDecoderFlags(DefaultDecoderFlags())
, mSurfaceFlags(DefaultSurfaceFlags())
, mInitialized(false)
, mMetadataDecode(false)
, mHaveExplicitOutputSize(false)
, mInFrame(false)
, mFinishedNewFrame(false)
, mReachedTerminalState(false)
, mDecodeDone(false)
, mError(false)
, mShouldReportError(false)
, mFinalizeFrames(true)
{ }
Decoder::~Decoder()
{
MOZ_ASSERT(mProgress == NoProgress || !mImage,
"Destroying Decoder without taking all its progress changes");
MOZ_ASSERT(mInvalidRect.IsEmpty() || !mImage,
"Destroying Decoder without taking all its invalidations");
mInitialized = false;
if (mImage && !NS_IsMainThread()) {
// Dispatch mImage to main thread to prevent it from being destructed by the
// decode thread.
NS_ReleaseOnMainThreadSystemGroup(mImage.forget());
}
}
/*
* Common implementation of the decoder interface.
*/
nsresult
Decoder::Init()
{
// No re-initializing
MOZ_ASSERT(!mInitialized, "Can't re-initialize a decoder!");
// All decoders must have a SourceBufferIterator.
MOZ_ASSERT(mIterator);
// Metadata decoders must not set an output size.
MOZ_ASSERT_IF(mMetadataDecode, !mHaveExplicitOutputSize);
// All decoders must be anonymous except for metadata decoders.
// XXX(seth): Soon that exception will be removed.
MOZ_ASSERT_IF(mImage, IsMetadataDecode());
// Implementation-specific initialization.
nsresult rv = InitInternal();
mInitialized = true;
return rv;
}
LexerResult
Decoder::Decode(IResumable* aOnResume /* = nullptr */)
{
MOZ_ASSERT(mInitialized, "Should be initialized here");
MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator");
// If we're already done, don't attempt to keep decoding.
if (GetDecodeDone()) {
return LexerResult(HasError() ? TerminalState::FAILURE
: TerminalState::SUCCESS);
}
LexerResult lexerResult(TerminalState::FAILURE);
{
AUTO_PROFILER_LABEL("Decoder::Decode", GRAPHICS);
AutoRecordDecoderTelemetry telemetry(this);
lexerResult = DoDecode(*mIterator, aOnResume);
};
if (lexerResult.is<Yield>()) {
// We either need more data to continue (in which case either @aOnResume or
// the caller will reschedule us to run again later), or the decoder is
// yielding to allow the caller access to some intermediate output.
return lexerResult;
}
// We reached a terminal state; we're now done decoding.
MOZ_ASSERT(lexerResult.is<TerminalState>());
mReachedTerminalState = true;
// If decoding failed, record that fact.
if (lexerResult.as<TerminalState>() == TerminalState::FAILURE) {
PostError();
}
// Perform final cleanup.
CompleteDecode();
return LexerResult(HasError() ? TerminalState::FAILURE
: TerminalState::SUCCESS);
}
LexerResult
Decoder::TerminateFailure()
{
PostError();
// Perform final cleanup if need be.
if (!mReachedTerminalState) {
mReachedTerminalState = true;
CompleteDecode();
}
return LexerResult(TerminalState::FAILURE);
}
bool
Decoder::ShouldSyncDecode(size_t aByteLimit)
{
MOZ_ASSERT(aByteLimit > 0);
MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator");
return mIterator->RemainingBytesIsNoMoreThan(aByteLimit);
}
void
Decoder::CompleteDecode()
{
// Implementation-specific finalization.
nsresult rv = BeforeFinishInternal();
if (NS_FAILED(rv)) {
PostError();
}
rv = HasError() ? FinishWithErrorInternal()
: FinishInternal();
if (NS_FAILED(rv)) {
PostError();
}
if (IsMetadataDecode()) {
// If this was a metadata decode and we never got a size, the decode failed.
if (!HasSize()) {
PostError();
}
return;
}
// If the implementation left us mid-frame, finish that up. Note that it may
// have left us transparent.
if (mInFrame) {
PostHasTransparency();
PostFrameStop();
}
// If PostDecodeDone() has not been called, we may need to send teardown
// notifications if it is unrecoverable.
if (!mDecodeDone) {
// We should always report an error to the console in this case.
mShouldReportError = true;
if (GetCompleteFrameCount() > 0) {
// We're usable if we have at least one complete frame, so do exactly
// what we should have when the decoder completed.
PostHasTransparency();
PostDecodeDone();
} else {
// We're not usable. Record some final progress indicating the error.
mProgress |= FLAG_DECODE_COMPLETE | FLAG_HAS_ERROR;
}
}
if (mDecodeDone) {
MOZ_ASSERT(HasError() || mCurrentFrame, "Should have an error or a frame");
// If this image wasn't animated and isn't a transient image, mark its frame
// as optimizable. We don't support optimizing animated images and
// optimizing transient images isn't worth it.
if (!HasAnimation() &&
!(mDecoderFlags & DecoderFlags::IMAGE_IS_TRANSIENT) &&
mCurrentFrame) {
mCurrentFrame->SetOptimizable();
}
}
}
void
Decoder::SetOutputSize(const gfx::IntSize& aSize)
{
mOutputSize = Some(aSize);
mHaveExplicitOutputSize = true;
}
Maybe<gfx::IntSize>
Decoder::ExplicitOutputSize() const
{
MOZ_ASSERT_IF(mHaveExplicitOutputSize, mOutputSize);
return mHaveExplicitOutputSize ? mOutputSize : Nothing();
}
Maybe<uint32_t>
Decoder::TakeCompleteFrameCount()
{
const bool finishedNewFrame = mFinishedNewFrame;
mFinishedNewFrame = false;
return finishedNewFrame ? Some(GetCompleteFrameCount()) : Nothing();
}
DecoderFinalStatus
Decoder::FinalStatus() const
{
return DecoderFinalStatus(IsMetadataDecode(),
GetDecodeDone(),
HasError(),
ShouldReportError());
}
DecoderTelemetry
Decoder::Telemetry() const
{
MOZ_ASSERT(mIterator);
return DecoderTelemetry(SpeedHistogram(),
mIterator->ByteCount(),
mIterator->ChunkCount(),
mDecodeTime);
}
nsresult
Decoder::AllocateFrame(uint32_t aFrameNum,
const gfx::IntSize& aOutputSize,
const gfx::IntRect& aFrameRect,
gfx::SurfaceFormat aFormat,
uint8_t aPaletteDepth)
{
mCurrentFrame = AllocateFrameInternal(aFrameNum, aOutputSize, aFrameRect,
aFormat, aPaletteDepth,
mCurrentFrame.get());
if (mCurrentFrame) {
// Gather the raw pointers the decoders will use.
mCurrentFrame->GetImageData(&mImageData, &mImageDataLength);
mCurrentFrame->GetPaletteData(&mColormap, &mColormapSize);
// We should now be on |aFrameNum|. (Note that we're comparing the frame
// number, which is zero-based, with the frame count, which is one-based.)
MOZ_ASSERT(aFrameNum + 1 == mFrameCount);
// If we're past the first frame, PostIsAnimated() should've been called.
MOZ_ASSERT_IF(mFrameCount > 1, HasAnimation());
// Update our state to reflect the new frame.
MOZ_ASSERT(!mInFrame, "Starting new frame but not done with old one!");
mInFrame = true;
}
return mCurrentFrame ? NS_OK : NS_ERROR_FAILURE;
}
RawAccessFrameRef
Decoder::AllocateFrameInternal(uint32_t aFrameNum,
const gfx::IntSize& aOutputSize,
const gfx::IntRect& aFrameRect,
SurfaceFormat aFormat,
uint8_t aPaletteDepth,
imgFrame* aPreviousFrame)
{
if (HasError()) {
return RawAccessFrameRef();
}
if (aFrameNum != mFrameCount) {
MOZ_ASSERT_UNREACHABLE("Allocating frames out of order");
return RawAccessFrameRef();
}
if (aOutputSize.width <= 0 || aOutputSize.height <= 0 ||
aFrameRect.Width() <= 0 || aFrameRect.Height() <= 0) {
NS_WARNING("Trying to add frame with zero or negative size");
return RawAccessFrameRef();
}
auto frame = MakeNotNull<RefPtr<imgFrame>>();
bool nonPremult = bool(mSurfaceFlags & SurfaceFlags::NO_PREMULTIPLY_ALPHA);
if (NS_FAILED(frame->InitForDecoder(aOutputSize, aFrameRect, aFormat,
aPaletteDepth, nonPremult,
aFrameNum > 0))) {
NS_WARNING("imgFrame::Init should succeed");
return RawAccessFrameRef();
}
RawAccessFrameRef ref = frame->RawAccessRef();
if (!ref) {
frame->Abort();
return RawAccessFrameRef();
}
if (aFrameNum == 1) {
MOZ_ASSERT(aPreviousFrame, "Must provide a previous frame when animated");
aPreviousFrame->SetRawAccessOnly();
// If we dispose of the first frame by clearing it, then the first frame's
// refresh area is all of itself.
// RESTORE_PREVIOUS is invalid (assumed to be DISPOSE_CLEAR).
AnimationData previousFrameData = aPreviousFrame->GetAnimationData();
if (previousFrameData.mDisposalMethod == DisposalMethod::CLEAR ||
previousFrameData.mDisposalMethod == DisposalMethod::CLEAR_ALL ||
previousFrameData.mDisposalMethod == DisposalMethod::RESTORE_PREVIOUS) {
mFirstFrameRefreshArea = previousFrameData.mRect;
}
}
if (aFrameNum > 0) {
ref->SetRawAccessOnly();
// Some GIFs are huge but only have a small area that they animate. We only
// need to refresh that small area when frame 0 comes around again.
mFirstFrameRefreshArea.UnionRect(mFirstFrameRefreshArea, frame->GetRect());
}
mFrameCount++;
return ref;
}
/*
* Hook stubs. Override these as necessary in decoder implementations.
*/
nsresult Decoder::InitInternal() { return NS_OK; }
nsresult Decoder::BeforeFinishInternal() { return NS_OK; }
nsresult Decoder::FinishInternal() { return NS_OK; }
nsresult Decoder::FinishWithErrorInternal()
{
MOZ_ASSERT(!mInFrame);
return NS_OK;
}
/*
* Progress Notifications
*/
void
Decoder::PostSize(int32_t aWidth,
int32_t aHeight,
Orientation aOrientation /* = Orientation()*/)
{
// Validate.
MOZ_ASSERT(aWidth >= 0, "Width can't be negative!");
MOZ_ASSERT(aHeight >= 0, "Height can't be negative!");
// Set our intrinsic size.
mImageMetadata.SetSize(aWidth, aHeight, aOrientation);
// Verify it is the expected size, if given. Note that this is only used by
// the ICO decoder for embedded image types, so only its subdecoders are
// required to handle failures in PostSize.
if (!IsExpectedSize()) {
PostError();
return;
}
// Set our output size if it's not already set.
if (!mOutputSize) {
mOutputSize = Some(IntSize(aWidth, aHeight));
}
MOZ_ASSERT(mOutputSize->width <= aWidth && mOutputSize->height <= aHeight,
"Output size will result in upscaling");
// Create a downscaler if we need to downscale. This is used by legacy
// decoders that haven't been converted to use SurfacePipe yet.
// XXX(seth): Obviously, we'll remove this once all decoders use SurfacePipe.
if (mOutputSize->width < aWidth || mOutputSize->height < aHeight) {
mDownscaler.emplace(*mOutputSize);
}
// Record this notification.
mProgress |= FLAG_SIZE_AVAILABLE;
}
void
Decoder::PostHasTransparency()
{
mProgress |= FLAG_HAS_TRANSPARENCY;
}
void
Decoder::PostIsAnimated(FrameTimeout aFirstFrameTimeout)
{
mProgress |= FLAG_IS_ANIMATED;
mImageMetadata.SetHasAnimation();
mImageMetadata.SetFirstFrameTimeout(aFirstFrameTimeout);
}
void
Decoder::PostFrameStop(Opacity aFrameOpacity
/* = Opacity::SOME_TRANSPARENCY */,
DisposalMethod aDisposalMethod
/* = DisposalMethod::KEEP */,
FrameTimeout aTimeout /* = FrameTimeout::Forever() */,
BlendMethod aBlendMethod /* = BlendMethod::OVER */,
const Maybe<nsIntRect>& aBlendRect /* = Nothing() */)
{
// We should be mid-frame
MOZ_ASSERT(!IsMetadataDecode(), "Stopping frame during metadata decode");
MOZ_ASSERT(mInFrame, "Stopping frame when we didn't start one");
MOZ_ASSERT(mCurrentFrame, "Stopping frame when we don't have one");
// Update our state.
mInFrame = false;
mFinishedNewFrame = true;
mCurrentFrame->Finish(aFrameOpacity, aDisposalMethod, aTimeout,
aBlendMethod, aBlendRect, mFinalizeFrames);
mProgress |= FLAG_FRAME_COMPLETE;
mLoopLength += aTimeout;
// If we're not sending partial invalidations, then we send an invalidation
// here when the first frame is complete.
if (!ShouldSendPartialInvalidations() && mFrameCount == 1) {
mInvalidRect.UnionRect(mInvalidRect,
IntRect(IntPoint(), Size()));
}
}
void
Decoder::PostInvalidation(const gfx::IntRect& aRect,
const Maybe<gfx::IntRect>& aRectAtOutputSize
/* = Nothing() */)
{
// We should be mid-frame
MOZ_ASSERT(mInFrame, "Can't invalidate when not mid-frame!");
MOZ_ASSERT(mCurrentFrame, "Can't invalidate when not mid-frame!");
// Record this invalidation, unless we're not sending partial invalidations
// or we're past the first frame.
if (ShouldSendPartialInvalidations() && mFrameCount == 1) {
mInvalidRect.UnionRect(mInvalidRect, aRect);
mCurrentFrame->ImageUpdated(aRectAtOutputSize.valueOr(aRect));
}
}
void
Decoder::PostDecodeDone(int32_t aLoopCount /* = 0 */)
{
MOZ_ASSERT(!IsMetadataDecode(), "Done with decoding in metadata decode");
MOZ_ASSERT(!mInFrame, "Can't be done decoding if we're mid-frame!");
MOZ_ASSERT(!mDecodeDone, "Decode already done!");
mDecodeDone = true;
mImageMetadata.SetLoopCount(aLoopCount);
// Some metadata that we track should take into account every frame in the
// image. If this is a first-frame-only decode, our accumulated loop length
// and first frame refresh area only includes the first frame, so it's not
// correct and we don't record it.
if (!IsFirstFrameDecode()) {
mImageMetadata.SetLoopLength(mLoopLength);
mImageMetadata.SetFirstFrameRefreshArea(mFirstFrameRefreshArea);
}
mProgress |= FLAG_DECODE_COMPLETE;
}
void
Decoder::PostError()
{
mError = true;
if (mInFrame) {
MOZ_ASSERT(mCurrentFrame);
MOZ_ASSERT(mFrameCount > 0);
mCurrentFrame->Abort();
mInFrame = false;
--mFrameCount;
}
}
} // namespace image
} // namespace mozilla