зеркало из https://github.com/mozilla/gecko-dev.git
327 строки
10 KiB
C++
327 строки
10 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "Matrix.h"
|
|
#include "Quaternion.h"
|
|
#include "Tools.h"
|
|
#include <algorithm>
|
|
#include <ostream>
|
|
#include <math.h>
|
|
|
|
#include "mozilla/FloatingPoint.h" // for UnspecifiedNaN
|
|
|
|
using namespace std;
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
std::ostream&
|
|
operator<<(std::ostream& aStream, const Matrix& aMatrix)
|
|
{
|
|
return aStream << "[ " << aMatrix._11
|
|
<< " " << aMatrix._12
|
|
<< "; " << aMatrix._21
|
|
<< " " << aMatrix._22
|
|
<< "; " << aMatrix._31
|
|
<< " " << aMatrix._32
|
|
<< "; ]";
|
|
}
|
|
|
|
std::ostream&
|
|
operator<<(std::ostream& aStream, const Matrix4x4& aMatrix)
|
|
{
|
|
const Float *f = &aMatrix._11;
|
|
aStream << "[ " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4;
|
|
aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4;
|
|
aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ;" << std::endl; f += 4;
|
|
aStream << " " << f[0] << " " << f[1] << " " << f[2] << " " << f[3] << " ]" << std::endl;
|
|
return aStream;
|
|
}
|
|
|
|
Matrix
|
|
Matrix::Rotation(Float aAngle)
|
|
{
|
|
Matrix newMatrix;
|
|
|
|
Float s = sin(aAngle);
|
|
Float c = cos(aAngle);
|
|
|
|
newMatrix._11 = c;
|
|
newMatrix._12 = s;
|
|
newMatrix._21 = -s;
|
|
newMatrix._22 = c;
|
|
|
|
return newMatrix;
|
|
}
|
|
|
|
Rect
|
|
Matrix::TransformBounds(const Rect &aRect) const
|
|
{
|
|
int i;
|
|
Point quad[4];
|
|
Float min_x, max_x;
|
|
Float min_y, max_y;
|
|
|
|
quad[0] = *this * aRect.TopLeft();
|
|
quad[1] = *this * aRect.TopRight();
|
|
quad[2] = *this * aRect.BottomLeft();
|
|
quad[3] = *this * aRect.BottomRight();
|
|
|
|
min_x = max_x = quad[0].x;
|
|
min_y = max_y = quad[0].y;
|
|
|
|
for (i = 1; i < 4; i++) {
|
|
if (quad[i].x < min_x)
|
|
min_x = quad[i].x;
|
|
if (quad[i].x > max_x)
|
|
max_x = quad[i].x;
|
|
|
|
if (quad[i].y < min_y)
|
|
min_y = quad[i].y;
|
|
if (quad[i].y > max_y)
|
|
max_y = quad[i].y;
|
|
}
|
|
|
|
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
|
|
}
|
|
|
|
Matrix&
|
|
Matrix::NudgeToIntegers()
|
|
{
|
|
NudgeToInteger(&_11);
|
|
NudgeToInteger(&_12);
|
|
NudgeToInteger(&_21);
|
|
NudgeToInteger(&_22);
|
|
NudgeToInteger(&_31);
|
|
NudgeToInteger(&_32);
|
|
return *this;
|
|
}
|
|
|
|
Rect
|
|
Matrix4x4::TransformBounds(const Rect& aRect) const
|
|
{
|
|
Point quad[4];
|
|
Float min_x, max_x;
|
|
Float min_y, max_y;
|
|
|
|
quad[0] = *this * aRect.TopLeft();
|
|
quad[1] = *this * aRect.TopRight();
|
|
quad[2] = *this * aRect.BottomLeft();
|
|
quad[3] = *this * aRect.BottomRight();
|
|
|
|
min_x = max_x = quad[0].x;
|
|
min_y = max_y = quad[0].y;
|
|
|
|
for (int i = 1; i < 4; i++) {
|
|
if (quad[i].x < min_x) {
|
|
min_x = quad[i].x;
|
|
}
|
|
if (quad[i].x > max_x) {
|
|
max_x = quad[i].x;
|
|
}
|
|
|
|
if (quad[i].y < min_y) {
|
|
min_y = quad[i].y;
|
|
}
|
|
if (quad[i].y > max_y) {
|
|
max_y = quad[i].y;
|
|
}
|
|
}
|
|
|
|
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
|
|
}
|
|
|
|
Point4D ComputePerspectivePlaneIntercept(const Point4D& aFirst,
|
|
const Point4D& aSecond)
|
|
{
|
|
// This function will always return a point with a w value of 0.
|
|
// The X, Y, and Z components will point towards an infinite vanishing
|
|
// point.
|
|
|
|
// We want to interpolate aFirst and aSecond to find the point intersecting
|
|
// with the w=0 plane.
|
|
|
|
// Since we know what we want the w component to be, we can rearrange the
|
|
// interpolation equation and solve for t.
|
|
float t = -aFirst.w / (aSecond.w - aFirst.w);
|
|
|
|
// Use t to find the remainder of the components
|
|
return aFirst + (aSecond - aFirst) * t;
|
|
}
|
|
|
|
Rect Matrix4x4::ProjectRectBounds(const Rect& aRect, const Rect &aClip) const
|
|
{
|
|
// This function must never return std::numeric_limits<Float>::max() or any
|
|
// other arbitrary large value in place of inifinity. This often occurs when
|
|
// aRect is an inversed projection matrix or when aRect is transformed to be
|
|
// partly behind and in front of the camera (w=0 plane in homogenous
|
|
// coordinates) - See Bug 1035611
|
|
|
|
// Some call-sites will call RoundGfxRectToAppRect which clips both the
|
|
// extents and dimensions of the rect to be bounded by nscoord_MAX.
|
|
// If we return a Rect that, when converted to nscoords, has a width or height
|
|
// greater than nscoord_MAX, RoundGfxRectToAppRect will clip the overflow
|
|
// off both the min and max end of the rect after clipping the extents of the
|
|
// rect, resulting in a translation of the rect towards the infinite end.
|
|
|
|
// The bounds returned by ProjectRectBounds are expected to be clipped only on
|
|
// the edges beyond the bounds of the coordinate system; otherwise, the
|
|
// clipped bounding box would be smaller than the correct one and result
|
|
// bugs such as incorrect culling (eg. Bug 1073056)
|
|
|
|
// To address this without requiring all code to work in homogenous
|
|
// coordinates or interpret infinite values correctly, a specialized
|
|
// clipping function is integrated into ProjectRectBounds.
|
|
|
|
// Callers should pass an aClip value that represents the extents to clip
|
|
// the result to, in the same coordinate system as aRect.
|
|
Point4D points[4];
|
|
|
|
points[0] = ProjectPoint(aRect.TopLeft());
|
|
points[1] = ProjectPoint(aRect.TopRight());
|
|
points[2] = ProjectPoint(aRect.BottomRight());
|
|
points[3] = ProjectPoint(aRect.BottomLeft());
|
|
|
|
Float min_x = std::numeric_limits<Float>::max();
|
|
Float min_y = std::numeric_limits<Float>::max();
|
|
Float max_x = -std::numeric_limits<Float>::max();
|
|
Float max_y = -std::numeric_limits<Float>::max();
|
|
|
|
for (int i=0; i<4; i++) {
|
|
// Only use points that exist above the w=0 plane
|
|
if (points[i].HasPositiveWCoord()) {
|
|
Point point2d = aClip.ClampPoint(points[i].As2DPoint());
|
|
min_x = std::min<Float>(point2d.x, min_x);
|
|
max_x = std::max<Float>(point2d.x, max_x);
|
|
min_y = std::min<Float>(point2d.y, min_y);
|
|
max_y = std::max<Float>(point2d.y, max_y);
|
|
}
|
|
|
|
int next = (i == 3) ? 0 : i + 1;
|
|
if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) {
|
|
// If the line between two points crosses the w=0 plane, then interpolate
|
|
// to find the point of intersection with the w=0 plane and use that
|
|
// instead.
|
|
Point4D intercept = ComputePerspectivePlaneIntercept(points[i], points[next]);
|
|
// Since intercept.w will always be 0 here, we interpret x,y,z as a
|
|
// direction towards an infinite vanishing point.
|
|
if (intercept.x < 0.0f) {
|
|
min_x = aClip.x;
|
|
} else if (intercept.x > 0.0f) {
|
|
max_x = aClip.XMost();
|
|
}
|
|
if (intercept.y < 0.0f) {
|
|
min_y = aClip.y;
|
|
} else if (intercept.y > 0.0f) {
|
|
max_y = aClip.YMost();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (max_x < min_x || max_y < min_y) {
|
|
return Rect(0, 0, 0, 0);
|
|
}
|
|
|
|
return Rect(min_x, min_y, max_x - min_x, max_y - min_y);
|
|
}
|
|
|
|
bool
|
|
Matrix4x4::Invert()
|
|
{
|
|
Float det = Determinant();
|
|
if (!det) {
|
|
return false;
|
|
}
|
|
|
|
Matrix4x4 result;
|
|
result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 - _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44;
|
|
result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 + _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44;
|
|
result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 - _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44;
|
|
result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 + _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34;
|
|
result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 + _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44;
|
|
result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 - _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44;
|
|
result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 + _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44;
|
|
result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 - _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34;
|
|
result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 - _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44;
|
|
result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 + _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44;
|
|
result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 - _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
|
|
result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 + _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34;
|
|
result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 + _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43;
|
|
result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 - _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43;
|
|
result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 + _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43;
|
|
result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 - _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33;
|
|
|
|
result._11 /= det;
|
|
result._12 /= det;
|
|
result._13 /= det;
|
|
result._14 /= det;
|
|
result._21 /= det;
|
|
result._22 /= det;
|
|
result._23 /= det;
|
|
result._24 /= det;
|
|
result._31 /= det;
|
|
result._32 /= det;
|
|
result._33 /= det;
|
|
result._34 /= det;
|
|
result._41 /= det;
|
|
result._42 /= det;
|
|
result._43 /= det;
|
|
result._44 /= det;
|
|
*this = result;
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
Matrix4x4::SetNAN()
|
|
{
|
|
_11 = UnspecifiedNaN<Float>();
|
|
_21 = UnspecifiedNaN<Float>();
|
|
_31 = UnspecifiedNaN<Float>();
|
|
_41 = UnspecifiedNaN<Float>();
|
|
_12 = UnspecifiedNaN<Float>();
|
|
_22 = UnspecifiedNaN<Float>();
|
|
_32 = UnspecifiedNaN<Float>();
|
|
_42 = UnspecifiedNaN<Float>();
|
|
_13 = UnspecifiedNaN<Float>();
|
|
_23 = UnspecifiedNaN<Float>();
|
|
_33 = UnspecifiedNaN<Float>();
|
|
_43 = UnspecifiedNaN<Float>();
|
|
_14 = UnspecifiedNaN<Float>();
|
|
_24 = UnspecifiedNaN<Float>();
|
|
_34 = UnspecifiedNaN<Float>();
|
|
_44 = UnspecifiedNaN<Float>();
|
|
}
|
|
|
|
void
|
|
Matrix4x4::SetRotationFromQuaternion(const Quaternion& q)
|
|
{
|
|
const Float x2 = q.x + q.x, y2 = q.y + q.y, z2 = q.z + q.z;
|
|
const Float xx = q.x * x2, xy = q.x * y2, xz = q.x * z2;
|
|
const Float yy = q.y * y2, yz = q.y * z2, zz = q.z * z2;
|
|
const Float wx = q.w * x2, wy = q.w * y2, wz = q.w * z2;
|
|
|
|
_11 = 1.0f - (yy + zz);
|
|
_21 = xy + wz;
|
|
_31 = xz - wy;
|
|
_41 = 0.0f;
|
|
|
|
_12 = xy - wz;
|
|
_22 = 1.0f - (xx + zz);
|
|
_32 = yz + wx;
|
|
_42 = 0.0f;
|
|
|
|
_13 = xz + wy;
|
|
_23 = yz - wx;
|
|
_33 = 1.0f - (xx + yy);
|
|
_43 = 0.0f;
|
|
|
|
_14 = _42 = _43 = 0.0f;
|
|
_44 = 1.0f;
|
|
}
|
|
|
|
}
|
|
}
|