зеркало из https://github.com/mozilla/gecko-dev.git
745 строки
23 KiB
C++
745 строки
23 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
// Portions of this file were originally under the following license:
|
|
//
|
|
// Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
// 1. Redistributions of source code must retain the above copyright
|
|
// notice(s), this list of conditions and the following disclaimer
|
|
// unmodified other than the allowable addition of one or more
|
|
// copyright notices.
|
|
// 2. Redistributions in binary form must reproduce the above copyright
|
|
// notice(s), this list of conditions and the following disclaimer in
|
|
// the documentation and/or other materials provided with the
|
|
// distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// ****************************************************************************
|
|
//
|
|
// C++ template implementation of left-leaning red-black trees.
|
|
//
|
|
// All operations are done non-recursively. Parent pointers are not used, and
|
|
// color bits are stored in the least significant bit of right-child pointers,
|
|
// thus making node linkage as compact as is possible for red-black trees.
|
|
//
|
|
// The RedBlackTree template expects two type arguments: the type of the nodes,
|
|
// containing a RedBlackTreeNode, and a trait providing two methods:
|
|
// - a GetTreeNode method that returns a reference to the RedBlackTreeNode
|
|
// corresponding to a given node with the following signature:
|
|
// static RedBlackTreeNode<T>& GetTreeNode(T*)
|
|
// - a Compare function with the following signature:
|
|
// static Order Compare(T* aNode, T* aOther)
|
|
// ^^^^^
|
|
// or aKey
|
|
//
|
|
// Interpretation of comparision function return values:
|
|
//
|
|
// Order::eLess: aNode < aOther
|
|
// Order::eEqual: aNode == aOther
|
|
// Order::eGreater: aNode > aOther
|
|
//
|
|
// In all cases, the aNode or aKey argument is the first argument to the
|
|
// comparison function, which makes it possible to write comparison functions
|
|
// that treat the first argument specially.
|
|
//
|
|
// ***************************************************************************
|
|
|
|
#ifndef RB_H_
|
|
#define RB_H_
|
|
|
|
#include "mozilla/Alignment.h"
|
|
#include "mozilla/Assertions.h"
|
|
#include "Utils.h"
|
|
|
|
enum NodeColor
|
|
{
|
|
Black = 0,
|
|
Red = 1,
|
|
};
|
|
|
|
// Node structure.
|
|
template<typename T>
|
|
class RedBlackTreeNode
|
|
{
|
|
T* mLeft;
|
|
// The lowest bit is the color
|
|
T* mRightAndColor;
|
|
|
|
public:
|
|
T* Left() { return mLeft; }
|
|
|
|
void SetLeft(T* aValue) { mLeft = aValue; }
|
|
|
|
T* Right()
|
|
{
|
|
return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(mRightAndColor) &
|
|
uintptr_t(~1));
|
|
}
|
|
|
|
void SetRight(T* aValue)
|
|
{
|
|
mRightAndColor = reinterpret_cast<T*>(
|
|
(reinterpret_cast<uintptr_t>(aValue) & uintptr_t(~1)) | Color());
|
|
}
|
|
|
|
NodeColor Color()
|
|
{
|
|
return static_cast<NodeColor>(reinterpret_cast<uintptr_t>(mRightAndColor) &
|
|
1);
|
|
}
|
|
|
|
bool IsBlack() { return Color() == NodeColor::Black; }
|
|
|
|
bool IsRed() { return Color() == NodeColor::Red; }
|
|
|
|
void SetColor(NodeColor aColor)
|
|
{
|
|
mRightAndColor = reinterpret_cast<T*>(
|
|
(reinterpret_cast<uintptr_t>(mRightAndColor) & uintptr_t(~1)) | aColor);
|
|
}
|
|
};
|
|
|
|
// Tree structure.
|
|
template<typename T, typename Trait>
|
|
class RedBlackTree
|
|
{
|
|
public:
|
|
void Init() { mRoot = nullptr; }
|
|
|
|
T* First(T* aStart = nullptr)
|
|
{
|
|
return First(reinterpret_cast<TreeNode*>(aStart));
|
|
}
|
|
|
|
T* Last(T* aStart = nullptr)
|
|
{
|
|
return Last(reinterpret_cast<TreeNode*>(aStart));
|
|
}
|
|
|
|
T* Next(T* aNode) { return Next(reinterpret_cast<TreeNode*>(aNode)); }
|
|
|
|
T* Prev(T* aNode) { return Prev(reinterpret_cast<TreeNode*>(aNode)); }
|
|
|
|
T* Search(T* aKey) { return Search(reinterpret_cast<TreeNode*>(aKey)); }
|
|
|
|
// Find a match if it exists. Otherwise, find the next greater node, if one
|
|
// exists.
|
|
T* SearchOrNext(T* aKey)
|
|
{
|
|
return SearchOrNext(reinterpret_cast<TreeNode*>(aKey));
|
|
}
|
|
|
|
void Insert(T* aNode) { Insert(reinterpret_cast<TreeNode*>(aNode)); }
|
|
|
|
void Remove(T* aNode) { return Remove(reinterpret_cast<TreeNode*>(aNode)); }
|
|
|
|
// Helper class to avoid having all the tree traversal code further below
|
|
// have to use Trait::GetTreeNode, adding visual noise.
|
|
struct TreeNode : public T
|
|
{
|
|
TreeNode* Left() { return (TreeNode*)Trait::GetTreeNode(this).Left(); }
|
|
|
|
void SetLeft(T* aValue) { Trait::GetTreeNode(this).SetLeft(aValue); }
|
|
|
|
TreeNode* Right() { return (TreeNode*)Trait::GetTreeNode(this).Right(); }
|
|
|
|
void SetRight(T* aValue) { Trait::GetTreeNode(this).SetRight(aValue); }
|
|
|
|
NodeColor Color() { return Trait::GetTreeNode(this).Color(); }
|
|
|
|
bool IsRed() { return Trait::GetTreeNode(this).IsRed(); }
|
|
|
|
bool IsBlack() { return Trait::GetTreeNode(this).IsBlack(); }
|
|
|
|
void SetColor(NodeColor aColor)
|
|
{
|
|
Trait::GetTreeNode(this).SetColor(aColor);
|
|
}
|
|
};
|
|
|
|
private:
|
|
TreeNode* mRoot;
|
|
|
|
TreeNode* First(TreeNode* aStart)
|
|
{
|
|
TreeNode* ret;
|
|
for (ret = aStart ? aStart : mRoot; ret && ret->Left(); ret = ret->Left()) {
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
TreeNode* Last(TreeNode* aStart)
|
|
{
|
|
TreeNode* ret;
|
|
for (ret = aStart ? aStart : mRoot; ret && ret->Right();
|
|
ret = ret->Right()) {
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
TreeNode* Next(TreeNode* aNode)
|
|
{
|
|
TreeNode* ret;
|
|
if (aNode->Right()) {
|
|
ret = First(aNode->Right());
|
|
} else {
|
|
TreeNode* rbp_n_t = mRoot;
|
|
MOZ_ASSERT(rbp_n_t);
|
|
ret = nullptr;
|
|
while (true) {
|
|
Order rbp_n_cmp = Trait::Compare(aNode, rbp_n_t);
|
|
if (rbp_n_cmp == Order::eLess) {
|
|
ret = rbp_n_t;
|
|
rbp_n_t = rbp_n_t->Left();
|
|
} else if (rbp_n_cmp == Order::eGreater) {
|
|
rbp_n_t = rbp_n_t->Right();
|
|
} else {
|
|
break;
|
|
}
|
|
MOZ_ASSERT(rbp_n_t);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
TreeNode* Prev(TreeNode* aNode)
|
|
{
|
|
TreeNode* ret;
|
|
if (aNode->Left()) {
|
|
ret = Last(aNode->Left());
|
|
} else {
|
|
TreeNode* rbp_p_t = mRoot;
|
|
MOZ_ASSERT(rbp_p_t);
|
|
ret = nullptr;
|
|
while (true) {
|
|
Order rbp_p_cmp = Trait::Compare(aNode, rbp_p_t);
|
|
if (rbp_p_cmp == Order::eLess) {
|
|
rbp_p_t = rbp_p_t->Left();
|
|
} else if (rbp_p_cmp == Order::eGreater) {
|
|
ret = rbp_p_t;
|
|
rbp_p_t = rbp_p_t->Right();
|
|
} else {
|
|
break;
|
|
}
|
|
MOZ_ASSERT(rbp_p_t);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
TreeNode* Search(TreeNode* aKey)
|
|
{
|
|
TreeNode* ret = mRoot;
|
|
Order rbp_se_cmp;
|
|
while (ret && (rbp_se_cmp = Trait::Compare(aKey, ret)) != Order::eEqual) {
|
|
if (rbp_se_cmp == Order::eLess) {
|
|
ret = ret->Left();
|
|
} else {
|
|
ret = ret->Right();
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
TreeNode* SearchOrNext(TreeNode* aKey)
|
|
{
|
|
TreeNode* ret = nullptr;
|
|
TreeNode* rbp_ns_t = mRoot;
|
|
while (rbp_ns_t) {
|
|
Order rbp_ns_cmp = Trait::Compare(aKey, rbp_ns_t);
|
|
if (rbp_ns_cmp == Order::eLess) {
|
|
ret = rbp_ns_t;
|
|
rbp_ns_t = rbp_ns_t->Left();
|
|
} else if (rbp_ns_cmp == Order::eGreater) {
|
|
rbp_ns_t = rbp_ns_t->Right();
|
|
} else {
|
|
ret = rbp_ns_t;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void Insert(TreeNode* aNode)
|
|
{
|
|
// rbp_i_s is only used as a placeholder for its RedBlackTreeNode. Use
|
|
// AlignedStorage2 to avoid running the TreeNode base class constructor.
|
|
mozilla::AlignedStorage2<TreeNode> rbp_i_s;
|
|
TreeNode *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u;
|
|
Order rbp_i_cmp = Order::eEqual;
|
|
rbp_i_g = nullptr;
|
|
rbp_i_p = rbp_i_s.addr();
|
|
rbp_i_p->SetLeft(mRoot);
|
|
rbp_i_p->SetRight(nullptr);
|
|
rbp_i_p->SetColor(NodeColor::Black);
|
|
rbp_i_c = mRoot;
|
|
// Iteratively search down the tree for the insertion point,
|
|
// splitting 4-nodes as they are encountered. At the end of each
|
|
// iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down
|
|
// the tree, assuming a sufficiently deep tree.
|
|
while (rbp_i_c) {
|
|
rbp_i_t = rbp_i_c->Left();
|
|
rbp_i_u = rbp_i_t ? rbp_i_t->Left() : nullptr;
|
|
if (rbp_i_t && rbp_i_u && rbp_i_t->IsRed() && rbp_i_u->IsRed()) {
|
|
// rbp_i_c is the top of a logical 4-node, so split it.
|
|
// This iteration does not move down the tree, due to the
|
|
// disruptiveness of node splitting.
|
|
//
|
|
// Rotate right.
|
|
rbp_i_t = RotateRight(rbp_i_c);
|
|
// Pass red links up one level.
|
|
rbp_i_u = rbp_i_t->Left();
|
|
rbp_i_u->SetColor(NodeColor::Black);
|
|
if (rbp_i_p->Left() == rbp_i_c) {
|
|
rbp_i_p->SetLeft(rbp_i_t);
|
|
rbp_i_c = rbp_i_t;
|
|
} else {
|
|
// rbp_i_c was the right child of rbp_i_p, so rotate
|
|
// left in order to maintain the left-leaning invariant.
|
|
MOZ_ASSERT(rbp_i_p->Right() == rbp_i_c);
|
|
rbp_i_p->SetRight(rbp_i_t);
|
|
rbp_i_u = LeanLeft(rbp_i_p);
|
|
if (rbp_i_g->Left() == rbp_i_p) {
|
|
rbp_i_g->SetLeft(rbp_i_u);
|
|
} else {
|
|
MOZ_ASSERT(rbp_i_g->Right() == rbp_i_p);
|
|
rbp_i_g->SetRight(rbp_i_u);
|
|
}
|
|
rbp_i_p = rbp_i_u;
|
|
rbp_i_cmp = Trait::Compare(aNode, rbp_i_p);
|
|
if (rbp_i_cmp == Order::eLess) {
|
|
rbp_i_c = rbp_i_p->Left();
|
|
} else {
|
|
MOZ_ASSERT(rbp_i_cmp == Order::eGreater);
|
|
rbp_i_c = rbp_i_p->Right();
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
rbp_i_g = rbp_i_p;
|
|
rbp_i_p = rbp_i_c;
|
|
rbp_i_cmp = Trait::Compare(aNode, rbp_i_c);
|
|
if (rbp_i_cmp == Order::eLess) {
|
|
rbp_i_c = rbp_i_c->Left();
|
|
} else {
|
|
MOZ_ASSERT(rbp_i_cmp == Order::eGreater);
|
|
rbp_i_c = rbp_i_c->Right();
|
|
}
|
|
}
|
|
// rbp_i_p now refers to the node under which to insert.
|
|
aNode->SetLeft(nullptr);
|
|
aNode->SetRight(nullptr);
|
|
aNode->SetColor(NodeColor::Red);
|
|
if (rbp_i_cmp == Order::eGreater) {
|
|
rbp_i_p->SetRight(aNode);
|
|
rbp_i_t = LeanLeft(rbp_i_p);
|
|
if (rbp_i_g->Left() == rbp_i_p) {
|
|
rbp_i_g->SetLeft(rbp_i_t);
|
|
} else if (rbp_i_g->Right() == rbp_i_p) {
|
|
rbp_i_g->SetRight(rbp_i_t);
|
|
}
|
|
} else {
|
|
rbp_i_p->SetLeft(aNode);
|
|
}
|
|
// Update the root and make sure that it is black.
|
|
mRoot = rbp_i_s.addr()->Left();
|
|
mRoot->SetColor(NodeColor::Black);
|
|
}
|
|
|
|
void Remove(TreeNode* aNode)
|
|
{
|
|
// rbp_r_s is only used as a placeholder for its RedBlackTreeNode. Use
|
|
// AlignedStorage2 to avoid running the TreeNode base class constructor.
|
|
mozilla::AlignedStorage2<TreeNode> rbp_r_s;
|
|
TreeNode *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u;
|
|
Order rbp_r_cmp;
|
|
rbp_r_p = rbp_r_s.addr();
|
|
rbp_r_p->SetLeft(mRoot);
|
|
rbp_r_p->SetRight(nullptr);
|
|
rbp_r_p->SetColor(NodeColor::Black);
|
|
rbp_r_c = mRoot;
|
|
rbp_r_xp = nullptr;
|
|
// Iterate down the tree, but always transform 2-nodes to 3- or
|
|
// 4-nodes in order to maintain the invariant that the current
|
|
// node is not a 2-node. This allows simple deletion once a leaf
|
|
// is reached. Handle the root specially though, since there may
|
|
// be no way to convert it from a 2-node to a 3-node.
|
|
rbp_r_cmp = Trait::Compare(aNode, rbp_r_c);
|
|
if (rbp_r_cmp == Order::eLess) {
|
|
rbp_r_t = rbp_r_c->Left();
|
|
rbp_r_u = rbp_r_t ? rbp_r_t->Left() : nullptr;
|
|
if ((!rbp_r_t || rbp_r_t->IsBlack()) &&
|
|
(!rbp_r_u || rbp_r_u->IsBlack())) {
|
|
// Apply standard transform to prepare for left move.
|
|
rbp_r_t = MoveRedLeft(rbp_r_c);
|
|
rbp_r_t->SetColor(NodeColor::Black);
|
|
rbp_r_p->SetLeft(rbp_r_t);
|
|
rbp_r_c = rbp_r_t;
|
|
} else {
|
|
// Move left.
|
|
rbp_r_p = rbp_r_c;
|
|
rbp_r_c = rbp_r_c->Left();
|
|
}
|
|
} else {
|
|
if (rbp_r_cmp == Order::eEqual) {
|
|
MOZ_ASSERT(aNode == rbp_r_c);
|
|
if (!rbp_r_c->Right()) {
|
|
// Delete root node (which is also a leaf node).
|
|
if (rbp_r_c->Left()) {
|
|
rbp_r_t = LeanRight(rbp_r_c);
|
|
rbp_r_t->SetRight(nullptr);
|
|
} else {
|
|
rbp_r_t = nullptr;
|
|
}
|
|
rbp_r_p->SetLeft(rbp_r_t);
|
|
} else {
|
|
// This is the node we want to delete, but we will
|
|
// instead swap it with its successor and delete the
|
|
// successor. Record enough information to do the
|
|
// swap later. rbp_r_xp is the aNode's parent.
|
|
rbp_r_xp = rbp_r_p;
|
|
rbp_r_cmp = Order::eGreater; // Note that deletion is incomplete.
|
|
}
|
|
}
|
|
if (rbp_r_cmp == Order::eGreater) {
|
|
if (!rbp_r_c->Right() || !rbp_r_c->Right()->Left() ||
|
|
rbp_r_c->Right()->Left()->IsBlack()) {
|
|
rbp_r_t = rbp_r_c->Left();
|
|
if (rbp_r_t->IsRed()) {
|
|
// Standard transform.
|
|
rbp_r_t = MoveRedRight(rbp_r_c);
|
|
} else {
|
|
// Root-specific transform.
|
|
rbp_r_c->SetColor(NodeColor::Red);
|
|
rbp_r_u = rbp_r_t->Left();
|
|
if (rbp_r_u && rbp_r_u->IsRed()) {
|
|
rbp_r_u->SetColor(NodeColor::Black);
|
|
rbp_r_t = RotateRight(rbp_r_c);
|
|
rbp_r_u = RotateLeft(rbp_r_c);
|
|
rbp_r_t->SetRight(rbp_r_u);
|
|
} else {
|
|
rbp_r_t->SetColor(NodeColor::Red);
|
|
rbp_r_t = RotateLeft(rbp_r_c);
|
|
}
|
|
}
|
|
rbp_r_p->SetLeft(rbp_r_t);
|
|
rbp_r_c = rbp_r_t;
|
|
} else {
|
|
// Move right.
|
|
rbp_r_p = rbp_r_c;
|
|
rbp_r_c = rbp_r_c->Right();
|
|
}
|
|
}
|
|
}
|
|
if (rbp_r_cmp != Order::eEqual) {
|
|
while (true) {
|
|
MOZ_ASSERT(rbp_r_p);
|
|
rbp_r_cmp = Trait::Compare(aNode, rbp_r_c);
|
|
if (rbp_r_cmp == Order::eLess) {
|
|
rbp_r_t = rbp_r_c->Left();
|
|
if (!rbp_r_t) {
|
|
// rbp_r_c now refers to the successor node to
|
|
// relocate, and rbp_r_xp/aNode refer to the
|
|
// context for the relocation.
|
|
if (rbp_r_xp->Left() == aNode) {
|
|
rbp_r_xp->SetLeft(rbp_r_c);
|
|
} else {
|
|
MOZ_ASSERT(rbp_r_xp->Right() == (aNode));
|
|
rbp_r_xp->SetRight(rbp_r_c);
|
|
}
|
|
rbp_r_c->SetLeft(aNode->Left());
|
|
rbp_r_c->SetRight(aNode->Right());
|
|
rbp_r_c->SetColor(aNode->Color());
|
|
if (rbp_r_p->Left() == rbp_r_c) {
|
|
rbp_r_p->SetLeft(nullptr);
|
|
} else {
|
|
MOZ_ASSERT(rbp_r_p->Right() == rbp_r_c);
|
|
rbp_r_p->SetRight(nullptr);
|
|
}
|
|
break;
|
|
}
|
|
rbp_r_u = rbp_r_t->Left();
|
|
if (rbp_r_t->IsBlack() && (!rbp_r_u || rbp_r_u->IsBlack())) {
|
|
rbp_r_t = MoveRedLeft(rbp_r_c);
|
|
if (rbp_r_p->Left() == rbp_r_c) {
|
|
rbp_r_p->SetLeft(rbp_r_t);
|
|
} else {
|
|
rbp_r_p->SetRight(rbp_r_t);
|
|
}
|
|
rbp_r_c = rbp_r_t;
|
|
} else {
|
|
rbp_r_p = rbp_r_c;
|
|
rbp_r_c = rbp_r_c->Left();
|
|
}
|
|
} else {
|
|
// Check whether to delete this node (it has to be
|
|
// the correct node and a leaf node).
|
|
if (rbp_r_cmp == Order::eEqual) {
|
|
MOZ_ASSERT(aNode == rbp_r_c);
|
|
if (!rbp_r_c->Right()) {
|
|
// Delete leaf node.
|
|
if (rbp_r_c->Left()) {
|
|
rbp_r_t = LeanRight(rbp_r_c);
|
|
rbp_r_t->SetRight(nullptr);
|
|
} else {
|
|
rbp_r_t = nullptr;
|
|
}
|
|
if (rbp_r_p->Left() == rbp_r_c) {
|
|
rbp_r_p->SetLeft(rbp_r_t);
|
|
} else {
|
|
rbp_r_p->SetRight(rbp_r_t);
|
|
}
|
|
break;
|
|
}
|
|
// This is the node we want to delete, but we
|
|
// will instead swap it with its successor
|
|
// and delete the successor. Record enough
|
|
// information to do the swap later.
|
|
// rbp_r_xp is aNode's parent.
|
|
rbp_r_xp = rbp_r_p;
|
|
}
|
|
rbp_r_t = rbp_r_c->Right();
|
|
rbp_r_u = rbp_r_t->Left();
|
|
if (!rbp_r_u || rbp_r_u->IsBlack()) {
|
|
rbp_r_t = MoveRedRight(rbp_r_c);
|
|
if (rbp_r_p->Left() == rbp_r_c) {
|
|
rbp_r_p->SetLeft(rbp_r_t);
|
|
} else {
|
|
rbp_r_p->SetRight(rbp_r_t);
|
|
}
|
|
rbp_r_c = rbp_r_t;
|
|
} else {
|
|
rbp_r_p = rbp_r_c;
|
|
rbp_r_c = rbp_r_c->Right();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Update root.
|
|
mRoot = rbp_r_s.addr()->Left();
|
|
}
|
|
|
|
TreeNode* RotateLeft(TreeNode* aNode)
|
|
{
|
|
TreeNode* node = aNode->Right();
|
|
aNode->SetRight(node->Left());
|
|
node->SetLeft(aNode);
|
|
return node;
|
|
}
|
|
|
|
TreeNode* RotateRight(TreeNode* aNode)
|
|
{
|
|
TreeNode* node = aNode->Left();
|
|
aNode->SetLeft(node->Right());
|
|
node->SetRight(aNode);
|
|
return node;
|
|
}
|
|
|
|
TreeNode* LeanLeft(TreeNode* aNode)
|
|
{
|
|
TreeNode* node = RotateLeft(aNode);
|
|
NodeColor color = aNode->Color();
|
|
node->SetColor(color);
|
|
aNode->SetColor(NodeColor::Red);
|
|
return node;
|
|
}
|
|
|
|
TreeNode* LeanRight(TreeNode* aNode)
|
|
{
|
|
TreeNode* node = RotateRight(aNode);
|
|
NodeColor color = aNode->Color();
|
|
node->SetColor(color);
|
|
aNode->SetColor(NodeColor::Red);
|
|
return node;
|
|
}
|
|
|
|
TreeNode* MoveRedLeft(TreeNode* aNode)
|
|
{
|
|
TreeNode* node;
|
|
TreeNode *rbp_mrl_t, *rbp_mrl_u;
|
|
rbp_mrl_t = aNode->Left();
|
|
rbp_mrl_t->SetColor(NodeColor::Red);
|
|
rbp_mrl_t = aNode->Right();
|
|
rbp_mrl_u = rbp_mrl_t ? rbp_mrl_t->Left() : nullptr;
|
|
if (rbp_mrl_u && rbp_mrl_u->IsRed()) {
|
|
rbp_mrl_u = RotateRight(rbp_mrl_t);
|
|
aNode->SetRight(rbp_mrl_u);
|
|
node = RotateLeft(aNode);
|
|
rbp_mrl_t = aNode->Right();
|
|
if (rbp_mrl_t && rbp_mrl_t->IsRed()) {
|
|
rbp_mrl_t->SetColor(NodeColor::Black);
|
|
aNode->SetColor(NodeColor::Red);
|
|
rbp_mrl_t = RotateLeft(aNode);
|
|
node->SetLeft(rbp_mrl_t);
|
|
} else {
|
|
aNode->SetColor(NodeColor::Black);
|
|
}
|
|
} else {
|
|
aNode->SetColor(NodeColor::Red);
|
|
node = RotateLeft(aNode);
|
|
}
|
|
return node;
|
|
}
|
|
|
|
TreeNode* MoveRedRight(TreeNode* aNode)
|
|
{
|
|
TreeNode* node;
|
|
TreeNode* rbp_mrr_t;
|
|
rbp_mrr_t = aNode->Left();
|
|
if (rbp_mrr_t && rbp_mrr_t->IsRed()) {
|
|
TreeNode *rbp_mrr_u, *rbp_mrr_v;
|
|
rbp_mrr_u = rbp_mrr_t->Right();
|
|
rbp_mrr_v = rbp_mrr_u ? rbp_mrr_u->Left() : nullptr;
|
|
if (rbp_mrr_v && rbp_mrr_v->IsRed()) {
|
|
rbp_mrr_u->SetColor(aNode->Color());
|
|
rbp_mrr_v->SetColor(NodeColor::Black);
|
|
rbp_mrr_u = RotateLeft(rbp_mrr_t);
|
|
aNode->SetLeft(rbp_mrr_u);
|
|
node = RotateRight(aNode);
|
|
rbp_mrr_t = RotateLeft(aNode);
|
|
node->SetRight(rbp_mrr_t);
|
|
} else {
|
|
rbp_mrr_t->SetColor(aNode->Color());
|
|
rbp_mrr_u->SetColor(NodeColor::Red);
|
|
node = RotateRight(aNode);
|
|
rbp_mrr_t = RotateLeft(aNode);
|
|
node->SetRight(rbp_mrr_t);
|
|
}
|
|
aNode->SetColor(NodeColor::Red);
|
|
} else {
|
|
rbp_mrr_t->SetColor(NodeColor::Red);
|
|
rbp_mrr_t = rbp_mrr_t->Left();
|
|
if (rbp_mrr_t && rbp_mrr_t->IsRed()) {
|
|
rbp_mrr_t->SetColor(NodeColor::Black);
|
|
node = RotateRight(aNode);
|
|
rbp_mrr_t = RotateLeft(aNode);
|
|
node->SetRight(rbp_mrr_t);
|
|
} else {
|
|
node = RotateLeft(aNode);
|
|
}
|
|
}
|
|
return node;
|
|
}
|
|
|
|
// The iterator simulates recursion via an array of pointers that store the
|
|
// current path. This is critical to performance, since a series of calls to
|
|
// rb_{next,prev}() would require time proportional to (n lg n), whereas this
|
|
// implementation only requires time proportional to (n).
|
|
//
|
|
// Since the iterator caches a path down the tree, any tree modification may
|
|
// cause the cached path to become invalid. Don't modify the tree during an
|
|
// iteration.
|
|
|
|
// Size the path arrays such that they are always large enough, even if a
|
|
// tree consumes all of memory. Since each node must contain a minimum of
|
|
// two pointers, there can never be more nodes than:
|
|
//
|
|
// 1 << ((sizeof(void*)<<3) - (log2(sizeof(void*))+1))
|
|
//
|
|
// Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
|
|
// is:
|
|
//
|
|
// (3 * ((sizeof(void*)<<3) - (log2(sizeof(void*))+1)))
|
|
//
|
|
// This works out to a maximum depth of 87 and 180 for 32- and 64-bit
|
|
// systems, respectively (approximately 348 and 1440 bytes, respectively).
|
|
public:
|
|
class Iterator
|
|
{
|
|
TreeNode* mPath[3 * ((sizeof(void*) << 3) - (LOG2(sizeof(void*)) + 1))];
|
|
unsigned mDepth;
|
|
|
|
public:
|
|
explicit Iterator(RedBlackTree<T, Trait>* aTree)
|
|
: mDepth(0)
|
|
{
|
|
// Initialize the path to contain the left spine.
|
|
if (aTree->mRoot) {
|
|
TreeNode* node;
|
|
mPath[mDepth++] = aTree->mRoot;
|
|
while ((node = mPath[mDepth - 1]->Left())) {
|
|
mPath[mDepth++] = node;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename Iterator>
|
|
class Item
|
|
{
|
|
Iterator* mIterator;
|
|
T* mItem;
|
|
|
|
public:
|
|
Item(Iterator* aIterator, T* aItem)
|
|
: mIterator(aIterator)
|
|
, mItem(aItem)
|
|
{
|
|
}
|
|
|
|
bool operator!=(const Item& aOther) const
|
|
{
|
|
return (mIterator != aOther.mIterator) || (mItem != aOther.mItem);
|
|
}
|
|
|
|
T* operator*() const { return mItem; }
|
|
|
|
const Item& operator++()
|
|
{
|
|
mItem = mIterator->Next();
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
Item<Iterator> begin()
|
|
{
|
|
return Item<Iterator>(this, mDepth > 0 ? mPath[mDepth - 1] : nullptr);
|
|
}
|
|
|
|
Item<Iterator> end() { return Item<Iterator>(this, nullptr); }
|
|
|
|
TreeNode* Next()
|
|
{
|
|
TreeNode* node;
|
|
if ((node = mPath[mDepth - 1]->Right())) {
|
|
// The successor is the left-most node in the right subtree.
|
|
mPath[mDepth++] = node;
|
|
while ((node = mPath[mDepth - 1]->Left())) {
|
|
mPath[mDepth++] = node;
|
|
}
|
|
} else {
|
|
// The successor is above the current node. Unwind until a
|
|
// left-leaning edge is removed from the path, of the path is empty.
|
|
for (mDepth--; mDepth > 0; mDepth--) {
|
|
if (mPath[mDepth - 1]->Left() == mPath[mDepth]) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return mDepth > 0 ? mPath[mDepth - 1] : nullptr;
|
|
}
|
|
};
|
|
|
|
Iterator iter() { return Iterator(this); }
|
|
};
|
|
|
|
#endif // RB_H_
|