gecko-dev/xpcom/io/nsBinaryStream.cpp

989 строки
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* This file contains implementations of the nsIBinaryInputStream and
* nsIBinaryOutputStream interfaces. Together, these interfaces allows reading
* and writing of primitive data types (integers, floating-point values,
* booleans, etc.) to a stream in a binary, untagged, fixed-endianness format.
* This might be used, for example, to implement network protocols or to
* produce architecture-neutral binary disk files, i.e. ones that can be read
* and written by both big-endian and little-endian platforms. Output is
* written in big-endian order (high-order byte first), as this is traditional
* network order.
*
* @See nsIBinaryInputStream
* @See nsIBinaryOutputStream
*/
#include <algorithm>
#include <string.h>
#include "nsBinaryStream.h"
#include "mozilla/Endian.h"
#include "mozilla/PodOperations.h"
#include "mozilla/UniquePtr.h"
#include "nsCRT.h"
#include "nsString.h"
#include "nsISerializable.h"
#include "nsIClassInfo.h"
#include "nsComponentManagerUtils.h"
#include "nsIURI.h" // for NS_IURI_IID
#include "jsfriendapi.h"
using mozilla::MakeUnique;
using mozilla::PodCopy;
using mozilla::UniquePtr;
NS_IMPL_ISUPPORTS(nsBinaryOutputStream,
nsIObjectOutputStream,
nsIBinaryOutputStream,
nsIOutputStream)
NS_IMETHODIMP
nsBinaryOutputStream::Flush()
{
if (NS_WARN_IF(!mOutputStream)) {
return NS_ERROR_UNEXPECTED;
}
return mOutputStream->Flush();
}
NS_IMETHODIMP
nsBinaryOutputStream::Close()
{
if (NS_WARN_IF(!mOutputStream)) {
return NS_ERROR_UNEXPECTED;
}
return mOutputStream->Close();
}
NS_IMETHODIMP
nsBinaryOutputStream::Write(const char* aBuf, uint32_t aCount,
uint32_t* aActualBytes)
{
if (NS_WARN_IF(!mOutputStream)) {
return NS_ERROR_UNEXPECTED;
}
return mOutputStream->Write(aBuf, aCount, aActualBytes);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteFrom(nsIInputStream* aInStr, uint32_t aCount,
uint32_t* aResult)
{
NS_NOTREACHED("WriteFrom");
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteSegments(nsReadSegmentFun aReader, void* aClosure,
uint32_t aCount, uint32_t* aResult)
{
NS_NOTREACHED("WriteSegments");
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsBinaryOutputStream::IsNonBlocking(bool* aNonBlocking)
{
if (NS_WARN_IF(!mOutputStream)) {
return NS_ERROR_UNEXPECTED;
}
return mOutputStream->IsNonBlocking(aNonBlocking);
}
nsresult
nsBinaryOutputStream::WriteFully(const char* aBuf, uint32_t aCount)
{
if (NS_WARN_IF(!mOutputStream)) {
return NS_ERROR_UNEXPECTED;
}
nsresult rv;
uint32_t bytesWritten;
rv = mOutputStream->Write(aBuf, aCount, &bytesWritten);
if (NS_FAILED(rv)) {
return rv;
}
if (bytesWritten != aCount) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
NS_IMETHODIMP
nsBinaryOutputStream::SetOutputStream(nsIOutputStream* aOutputStream)
{
if (NS_WARN_IF(!aOutputStream)) {
return NS_ERROR_INVALID_ARG;
}
mOutputStream = aOutputStream;
mBufferAccess = do_QueryInterface(aOutputStream);
return NS_OK;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteBoolean(bool aBoolean)
{
return Write8(aBoolean);
}
NS_IMETHODIMP
nsBinaryOutputStream::Write8(uint8_t aByte)
{
return WriteFully((const char*)&aByte, sizeof(aByte));
}
NS_IMETHODIMP
nsBinaryOutputStream::Write16(uint16_t aNum)
{
aNum = mozilla::NativeEndian::swapToBigEndian(aNum);
return WriteFully((const char*)&aNum, sizeof(aNum));
}
NS_IMETHODIMP
nsBinaryOutputStream::Write32(uint32_t aNum)
{
aNum = mozilla::NativeEndian::swapToBigEndian(aNum);
return WriteFully((const char*)&aNum, sizeof(aNum));
}
NS_IMETHODIMP
nsBinaryOutputStream::Write64(uint64_t aNum)
{
nsresult rv;
uint32_t bytesWritten;
aNum = mozilla::NativeEndian::swapToBigEndian(aNum);
rv = Write(reinterpret_cast<char*>(&aNum), sizeof(aNum), &bytesWritten);
if (NS_FAILED(rv)) {
return rv;
}
if (bytesWritten != sizeof(aNum)) {
return NS_ERROR_FAILURE;
}
return rv;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteFloat(float aFloat)
{
NS_ASSERTION(sizeof(float) == sizeof(uint32_t),
"False assumption about sizeof(float)");
return Write32(*reinterpret_cast<uint32_t*>(&aFloat));
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteDouble(double aDouble)
{
NS_ASSERTION(sizeof(double) == sizeof(uint64_t),
"False assumption about sizeof(double)");
return Write64(*reinterpret_cast<uint64_t*>(&aDouble));
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteStringZ(const char* aString)
{
uint32_t length;
nsresult rv;
length = strlen(aString);
rv = Write32(length);
if (NS_FAILED(rv)) {
return rv;
}
return WriteFully(aString, length);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteWStringZ(const char16_t* aString)
{
uint32_t length, byteCount;
nsresult rv;
length = NS_strlen(aString);
rv = Write32(length);
if (NS_FAILED(rv)) {
return rv;
}
if (length == 0) {
return NS_OK;
}
byteCount = length * sizeof(char16_t);
#ifdef IS_BIG_ENDIAN
rv = WriteBytes(reinterpret_cast<const char*>(aString), byteCount);
#else
// XXX use WriteSegments here to avoid copy!
char16_t* copy;
char16_t temp[64];
if (length <= 64) {
copy = temp;
} else {
copy = reinterpret_cast<char16_t*>(moz_malloc(byteCount));
if (!copy) {
return NS_ERROR_OUT_OF_MEMORY;
}
}
NS_ASSERTION((uintptr_t(aString) & 0x1) == 0, "aString not properly aligned");
mozilla::NativeEndian::copyAndSwapToBigEndian(copy, aString, length);
rv = WriteBytes(reinterpret_cast<const char*>(copy), byteCount);
if (copy != temp) {
moz_free(copy);
}
#endif
return rv;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteUtf8Z(const char16_t* aString)
{
return WriteStringZ(NS_ConvertUTF16toUTF8(aString).get());
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteBytes(const char* aString, uint32_t aLength)
{
nsresult rv;
uint32_t bytesWritten;
rv = Write(aString, aLength, &bytesWritten);
if (NS_FAILED(rv)) {
return rv;
}
if (bytesWritten != aLength) {
return NS_ERROR_FAILURE;
}
return rv;
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteByteArray(uint8_t* aBytes, uint32_t aLength)
{
return WriteBytes(reinterpret_cast<char*>(aBytes), aLength);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteObject(nsISupports* aObject, bool aIsStrongRef)
{
return WriteCompoundObject(aObject, NS_GET_IID(nsISupports),
aIsStrongRef);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteSingleRefObject(nsISupports* aObject)
{
return WriteCompoundObject(aObject, NS_GET_IID(nsISupports),
true);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteCompoundObject(nsISupports* aObject,
const nsIID& aIID,
bool aIsStrongRef)
{
nsCOMPtr<nsIClassInfo> classInfo = do_QueryInterface(aObject);
nsCOMPtr<nsISerializable> serializable = do_QueryInterface(aObject);
// Can't deal with weak refs
if (NS_WARN_IF(!aIsStrongRef)) {
return NS_ERROR_UNEXPECTED;
}
if (NS_WARN_IF(!classInfo) || NS_WARN_IF(!serializable)) {
return NS_ERROR_NOT_AVAILABLE;
}
nsCID cid;
nsresult rv = classInfo->GetClassIDNoAlloc(&cid);
if (NS_SUCCEEDED(rv)) {
rv = WriteID(cid);
} else {
nsCID* cidptr = nullptr;
rv = classInfo->GetClassID(&cidptr);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = WriteID(*cidptr);
NS_Free(cidptr);
}
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = WriteID(aIID);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
return serializable->Write(this);
}
NS_IMETHODIMP
nsBinaryOutputStream::WriteID(const nsIID& aIID)
{
nsresult rv = Write32(aIID.m0);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = Write16(aIID.m1);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = Write16(aIID.m2);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
for (int i = 0; i < 8; ++i) {
rv = Write8(aIID.m3[i]);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
}
return NS_OK;
}
NS_IMETHODIMP_(char*)
nsBinaryOutputStream::GetBuffer(uint32_t aLength, uint32_t aAlignMask)
{
if (mBufferAccess) {
return mBufferAccess->GetBuffer(aLength, aAlignMask);
}
return nullptr;
}
NS_IMETHODIMP_(void)
nsBinaryOutputStream::PutBuffer(char* aBuffer, uint32_t aLength)
{
if (mBufferAccess) {
mBufferAccess->PutBuffer(aBuffer, aLength);
}
}
NS_IMPL_ISUPPORTS(nsBinaryInputStream,
nsIObjectInputStream,
nsIBinaryInputStream,
nsIInputStream)
NS_IMETHODIMP
nsBinaryInputStream::Available(uint64_t* aResult)
{
if (NS_WARN_IF(!mInputStream)) {
return NS_ERROR_UNEXPECTED;
}
return mInputStream->Available(aResult);
}
NS_IMETHODIMP
nsBinaryInputStream::Read(char* aBuffer, uint32_t aCount, uint32_t* aNumRead)
{
if (NS_WARN_IF(!mInputStream)) {
return NS_ERROR_UNEXPECTED;
}
// mInputStream might give us short reads, so deal with that.
uint32_t totalRead = 0;
uint32_t bytesRead;
do {
nsresult rv = mInputStream->Read(aBuffer, aCount, &bytesRead);
if (rv == NS_BASE_STREAM_WOULD_BLOCK && totalRead != 0) {
// We already read some data. Return it.
break;
}
if (NS_FAILED(rv)) {
return rv;
}
totalRead += bytesRead;
aBuffer += bytesRead;
aCount -= bytesRead;
} while (aCount != 0 && bytesRead != 0);
*aNumRead = totalRead;
return NS_OK;
}
// when forwarding ReadSegments to mInputStream, we need to make sure
// 'this' is being passed to the writer each time. To do this, we need
// a thunking function which keeps the real input stream around.
// the closure wrapper
struct ReadSegmentsClosure
{
nsIInputStream* mRealInputStream;
void* mRealClosure;
nsWriteSegmentFun mRealWriter;
nsresult mRealResult;
uint32_t mBytesRead; // to properly implement aToOffset
};
// the thunking function
static NS_METHOD
ReadSegmentForwardingThunk(nsIInputStream* aStream,
void* aClosure,
const char* aFromSegment,
uint32_t aToOffset,
uint32_t aCount,
uint32_t* aWriteCount)
{
ReadSegmentsClosure* thunkClosure =
reinterpret_cast<ReadSegmentsClosure*>(aClosure);
NS_ASSERTION(NS_SUCCEEDED(thunkClosure->mRealResult),
"How did this get to be a failure status?");
thunkClosure->mRealResult =
thunkClosure->mRealWriter(thunkClosure->mRealInputStream,
thunkClosure->mRealClosure,
aFromSegment,
thunkClosure->mBytesRead + aToOffset,
aCount, aWriteCount);
return thunkClosure->mRealResult;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadSegments(nsWriteSegmentFun aWriter, void* aClosure,
uint32_t aCount, uint32_t* aResult)
{
if (NS_WARN_IF(!mInputStream)) {
return NS_ERROR_UNEXPECTED;
}
ReadSegmentsClosure thunkClosure = { this, aClosure, aWriter, NS_OK, 0 };
// mInputStream might give us short reads, so deal with that.
uint32_t bytesRead;
do {
nsresult rv = mInputStream->ReadSegments(ReadSegmentForwardingThunk,
&thunkClosure,
aCount, &bytesRead);
if (rv == NS_BASE_STREAM_WOULD_BLOCK && thunkClosure.mBytesRead != 0) {
// We already read some data. Return it.
break;
}
if (NS_FAILED(rv)) {
return rv;
}
thunkClosure.mBytesRead += bytesRead;
aCount -= bytesRead;
} while (aCount != 0 && bytesRead != 0 &&
NS_SUCCEEDED(thunkClosure.mRealResult));
*aResult = thunkClosure.mBytesRead;
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::IsNonBlocking(bool* aNonBlocking)
{
if (NS_WARN_IF(!mInputStream)) {
return NS_ERROR_UNEXPECTED;
}
return mInputStream->IsNonBlocking(aNonBlocking);
}
NS_IMETHODIMP
nsBinaryInputStream::Close()
{
if (NS_WARN_IF(!mInputStream)) {
return NS_ERROR_UNEXPECTED;
}
return mInputStream->Close();
}
NS_IMETHODIMP
nsBinaryInputStream::SetInputStream(nsIInputStream* aInputStream)
{
if (NS_WARN_IF(!aInputStream)) {
return NS_ERROR_INVALID_ARG;
}
mInputStream = aInputStream;
mBufferAccess = do_QueryInterface(aInputStream);
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadBoolean(bool* aBoolean)
{
uint8_t byteResult;
nsresult rv = Read8(&byteResult);
if (NS_FAILED(rv)) {
return rv;
}
*aBoolean = !!byteResult;
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::Read8(uint8_t* aByte)
{
nsresult rv;
uint32_t bytesRead;
rv = Read(reinterpret_cast<char*>(aByte), sizeof(*aByte), &bytesRead);
if (NS_FAILED(rv)) {
return rv;
}
if (bytesRead != 1) {
return NS_ERROR_FAILURE;
}
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::Read16(uint16_t* aNum)
{
uint32_t bytesRead;
nsresult rv = Read(reinterpret_cast<char*>(aNum), sizeof(*aNum), &bytesRead);
if (NS_FAILED(rv)) {
return rv;
}
if (bytesRead != sizeof(*aNum)) {
return NS_ERROR_FAILURE;
}
*aNum = mozilla::NativeEndian::swapFromBigEndian(*aNum);
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::Read32(uint32_t* aNum)
{
uint32_t bytesRead;
nsresult rv = Read(reinterpret_cast<char*>(aNum), sizeof(*aNum), &bytesRead);
if (NS_FAILED(rv)) {
return rv;
}
if (bytesRead != sizeof(*aNum)) {
return NS_ERROR_FAILURE;
}
*aNum = mozilla::NativeEndian::swapFromBigEndian(*aNum);
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::Read64(uint64_t* aNum)
{
uint32_t bytesRead;
nsresult rv = Read(reinterpret_cast<char*>(aNum), sizeof(*aNum), &bytesRead);
if (NS_FAILED(rv)) {
return rv;
}
if (bytesRead != sizeof(*aNum)) {
return NS_ERROR_FAILURE;
}
*aNum = mozilla::NativeEndian::swapFromBigEndian(*aNum);
return rv;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadFloat(float* aFloat)
{
NS_ASSERTION(sizeof(float) == sizeof(uint32_t),
"False assumption about sizeof(float)");
return Read32(reinterpret_cast<uint32_t*>(aFloat));
}
NS_IMETHODIMP
nsBinaryInputStream::ReadDouble(double* aDouble)
{
NS_ASSERTION(sizeof(double) == sizeof(uint64_t),
"False assumption about sizeof(double)");
return Read64(reinterpret_cast<uint64_t*>(aDouble));
}
static NS_METHOD
WriteSegmentToCString(nsIInputStream* aStream,
void* aClosure,
const char* aFromSegment,
uint32_t aToOffset,
uint32_t aCount,
uint32_t* aWriteCount)
{
nsACString* outString = static_cast<nsACString*>(aClosure);
outString->Append(aFromSegment, aCount);
*aWriteCount = aCount;
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadCString(nsACString& aString)
{
nsresult rv;
uint32_t length, bytesRead;
rv = Read32(&length);
if (NS_FAILED(rv)) {
return rv;
}
aString.Truncate();
rv = ReadSegments(WriteSegmentToCString, &aString, length, &bytesRead);
if (NS_FAILED(rv)) {
return rv;
}
if (bytesRead != length) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
// sometimes, WriteSegmentToString will be handed an odd-number of
// bytes, which means we only have half of the last char16_t
struct WriteStringClosure
{
char16_t* mWriteCursor;
bool mHasCarryoverByte;
char mCarryoverByte;
};
// there are a few cases we have to account for here:
// * even length buffer, no carryover - easy, just append
// * odd length buffer, no carryover - the last byte needs to be saved
// for carryover
// * odd length buffer, with carryover - first byte needs to be used
// with the carryover byte, and
// the rest of the even length
// buffer is appended as normal
// * even length buffer, with carryover - the first byte needs to be
// used with the previous carryover byte.
// this gives you an odd length buffer,
// so you have to save the last byte for
// the next carryover
// same version of the above, but with correct casting and endian swapping
static NS_METHOD
WriteSegmentToString(nsIInputStream* aStream,
void* aClosure,
const char* aFromSegment,
uint32_t aToOffset,
uint32_t aCount,
uint32_t* aWriteCount)
{
NS_PRECONDITION(aCount > 0, "Why are we being told to write 0 bytes?");
NS_PRECONDITION(sizeof(char16_t) == 2, "We can't handle other sizes!");
WriteStringClosure* closure = static_cast<WriteStringClosure*>(aClosure);
char16_t* cursor = closure->mWriteCursor;
// we're always going to consume the whole buffer no matter what
// happens, so take care of that right now.. that allows us to
// tweak aCount later. Do NOT move this!
*aWriteCount = aCount;
// if the last Write had an odd-number of bytes read, then
if (closure->mHasCarryoverByte) {
// re-create the two-byte sequence we want to work with
char bytes[2] = { closure->mCarryoverByte, *aFromSegment };
*cursor = *(char16_t*)bytes;
// Now the little endianness dance
mozilla::NativeEndian::swapToBigEndianInPlace(cursor, 1);
++cursor;
// now skip past the first byte of the buffer.. code from here
// can assume normal operations, but should not assume aCount
// is relative to the ORIGINAL buffer
++aFromSegment;
--aCount;
closure->mHasCarryoverByte = false;
}
// this array is possibly unaligned... be careful how we access it!
const char16_t* unicodeSegment =
reinterpret_cast<const char16_t*>(aFromSegment);
// calculate number of full characters in segment (aCount could be odd!)
uint32_t segmentLength = aCount / sizeof(char16_t);
// copy all data into our aligned buffer. byte swap if necessary.
// cursor may be unaligned, so we cannot use copyAndSwapToBigEndian directly
memcpy(cursor, unicodeSegment, segmentLength * sizeof(char16_t));
char16_t* end = cursor + segmentLength;
mozilla::NativeEndian::swapToBigEndianInPlace(cursor, segmentLength);
closure->mWriteCursor = end;
// remember this is the modifed aCount and aFromSegment,
// so that will take into account the fact that we might have
// skipped the first byte in the buffer
if (aCount % sizeof(char16_t) != 0) {
// we must have had a carryover byte, that we'll need the next
// time around
closure->mCarryoverByte = aFromSegment[aCount - 1];
closure->mHasCarryoverByte = true;
}
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadString(nsAString& aString)
{
nsresult rv;
uint32_t length, bytesRead;
rv = Read32(&length);
if (NS_FAILED(rv)) {
return rv;
}
if (length == 0) {
aString.Truncate();
return NS_OK;
}
// pre-allocate output buffer, and get direct access to buffer...
if (!aString.SetLength(length, mozilla::fallible_t())) {
return NS_ERROR_OUT_OF_MEMORY;
}
nsAString::iterator start;
aString.BeginWriting(start);
WriteStringClosure closure;
closure.mWriteCursor = start.get();
closure.mHasCarryoverByte = false;
rv = ReadSegments(WriteSegmentToString, &closure,
length * sizeof(char16_t), &bytesRead);
if (NS_FAILED(rv)) {
return rv;
}
NS_ASSERTION(!closure.mHasCarryoverByte, "some strange stream corruption!");
if (bytesRead != length * sizeof(char16_t)) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadBytes(uint32_t aLength, char** aResult)
{
nsresult rv;
uint32_t bytesRead;
char* s;
s = reinterpret_cast<char*>(moz_malloc(aLength));
if (!s) {
return NS_ERROR_OUT_OF_MEMORY;
}
rv = Read(s, aLength, &bytesRead);
if (NS_FAILED(rv)) {
moz_free(s);
return rv;
}
if (bytesRead != aLength) {
moz_free(s);
return NS_ERROR_FAILURE;
}
*aResult = s;
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadByteArray(uint32_t aLength, uint8_t** aResult)
{
return ReadBytes(aLength, reinterpret_cast<char**>(aResult));
}
NS_IMETHODIMP
nsBinaryInputStream::ReadArrayBuffer(uint32_t aLength,
JS::Handle<JS::Value> aBuffer,
JSContext* aCx, uint32_t *rLength)
{
if (!aBuffer.isObject()) {
return NS_ERROR_FAILURE;
}
JS::RootedObject buffer(aCx, &aBuffer.toObject());
if (!JS_IsArrayBufferObject(buffer)) {
return NS_ERROR_FAILURE;
}
uint32_t bufferLength = JS_GetArrayBufferByteLength(buffer);
if (bufferLength < aLength) {
return NS_ERROR_FAILURE;
}
char* data = reinterpret_cast<char*>(JS_GetStableArrayBufferData(aCx, buffer));
if (!data) {
return NS_ERROR_FAILURE;
}
uint32_t bufSize = std::min<uint32_t>(aLength, 4096);
UniquePtr<char[]> buf = MakeUnique<char[]>(bufSize);
uint32_t remaining = aLength;
*rLength = 0;
do {
// Read data into temporary buffer.
uint32_t bytesRead;
uint32_t amount = std::min(remaining, bufSize);
nsresult rv = Read(buf.get(), amount, &bytesRead);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
MOZ_ASSERT(bytesRead <= amount);
if (bytesRead == 0) {
break;
}
// Copy data into actual buffer.
if (bufferLength != JS_GetArrayBufferByteLength(buffer)) {
return NS_ERROR_FAILURE;
}
*rLength += bytesRead;
PodCopy(data, buf.get(), bytesRead);
remaining -= bytesRead;
data += bytesRead;
} while (remaining > 0);
return NS_OK;
}
NS_IMETHODIMP
nsBinaryInputStream::ReadObject(bool aIsStrongRef, nsISupports** aObject)
{
nsCID cid;
nsIID iid;
nsresult rv = ReadID(&cid);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = ReadID(&iid);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
// HACK: Intercept old (pre-gecko6) nsIURI IID, and replace with
// the updated IID, so that we're QI'ing to an actual interface.
// (As soon as we drop support for upgrading from pre-gecko6, we can
// remove this chunk.)
static const nsIID oldURIiid = {
0x7a22cc0, 0xce5, 0x11d3,
{ 0x93, 0x31, 0x0, 0x10, 0x4b, 0xa0, 0xfd, 0x40 }
};
// hackaround for bug 670542
static const nsIID oldURIiid2 = {
0xd6d04c36, 0x0fa4, 0x4db3,
{ 0xbe, 0x05, 0x4a, 0x18, 0x39, 0x71, 0x03, 0xe2 }
};
// hackaround for bug 682031
static const nsIID oldURIiid3 = {
0x12120b20, 0x0929, 0x40e9,
{ 0x88, 0xcf, 0x6e, 0x08, 0x76, 0x6e, 0x8b, 0x23 }
};
if (iid.Equals(oldURIiid) ||
iid.Equals(oldURIiid2) ||
iid.Equals(oldURIiid3)) {
const nsIID newURIiid = NS_IURI_IID;
iid = newURIiid;
}
// END HACK
nsCOMPtr<nsISupports> object = do_CreateInstance(cid, &rv);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
nsCOMPtr<nsISerializable> serializable = do_QueryInterface(object);
if (NS_WARN_IF(!serializable)) {
return NS_ERROR_UNEXPECTED;
}
rv = serializable->Read(this);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
return object->QueryInterface(iid, reinterpret_cast<void**>(aObject));
}
NS_IMETHODIMP
nsBinaryInputStream::ReadID(nsID* aResult)
{
nsresult rv = Read32(&aResult->m0);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = Read16(&aResult->m1);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
rv = Read16(&aResult->m2);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
for (int i = 0; i < 8; ++i) {
rv = Read8(&aResult->m3[i]);
if (NS_WARN_IF(NS_FAILED(rv))) {
return rv;
}
}
return NS_OK;
}
NS_IMETHODIMP_(char*)
nsBinaryInputStream::GetBuffer(uint32_t aLength, uint32_t aAlignMask)
{
if (mBufferAccess) {
return mBufferAccess->GetBuffer(aLength, aAlignMask);
}
return nullptr;
}
NS_IMETHODIMP_(void)
nsBinaryInputStream::PutBuffer(char* aBuffer, uint32_t aLength)
{
if (mBufferAccess) {
mBufferAccess->PutBuffer(aBuffer, aLength);
}
}