gecko-dev/gfx/layers/AnimationHelper.cpp

723 строки
28 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AnimationHelper.h"
#include "mozilla/ComputedTimingFunction.h" // for ComputedTimingFunction
#include "mozilla/dom/AnimationEffectBinding.h" // for dom::FillMode
#include "mozilla/dom/KeyframeEffectBinding.h" // for dom::IterationComposite
#include "mozilla/dom/KeyframeEffect.h" // for dom::KeyFrameEffectReadOnly
#include "mozilla/dom/Nullable.h" // for dom::Nullable
#include "mozilla/layers/CompositorThread.h" // for CompositorThreadHolder
#include "mozilla/layers/LayerAnimationUtils.h" // for TimingFunctionToComputedTimingFunction
#include "mozilla/ServoBindings.h" // for Servo_ComposeAnimationSegment, etc
#include "mozilla/StyleAnimationValue.h" // for StyleAnimationValue, etc
#include "nsDeviceContext.h" // for AppUnitsPerCSSPixel
#include "nsDisplayList.h" // for nsDisplayTransform, etc
namespace mozilla {
namespace layers {
void
CompositorAnimationStorage::Clear()
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
mAnimatedValues.Clear();
mAnimations.Clear();
}
void
CompositorAnimationStorage::ClearById(const uint64_t& aId)
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
mAnimatedValues.Remove(aId);
mAnimations.Remove(aId);
}
AnimatedValue*
CompositorAnimationStorage::GetAnimatedValue(const uint64_t& aId) const
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
return mAnimatedValues.Get(aId);
}
OMTAValue
CompositorAnimationStorage::GetOMTAValue(const uint64_t& aId) const
{
OMTAValue omtaValue = mozilla::null_t();
auto animatedValue = GetAnimatedValue(aId);
if (!animatedValue) {
return omtaValue;
}
switch (animatedValue->mType) {
case AnimatedValue::OPACITY:
omtaValue = animatedValue->mOpacity;
break;
case AnimatedValue::TRANSFORM: {
gfx::Matrix4x4 transform = animatedValue->mTransform.mFrameTransform;
const TransformData& data = animatedValue->mTransform.mData;
float scale = data.appUnitsPerDevPixel();
gfx::Point3D transformOrigin = data.transformOrigin();
// Undo the rebasing applied by
// nsDisplayTransform::GetResultingTransformMatrixInternal
transform.ChangeBasis(-transformOrigin);
// Convert to CSS pixels (this undoes the operations performed by
// nsStyleTransformMatrix::ProcessTranslatePart which is called from
// nsDisplayTransform::GetResultingTransformMatrix)
double devPerCss =
double(scale) / double(AppUnitsPerCSSPixel());
transform._41 *= devPerCss;
transform._42 *= devPerCss;
transform._43 *= devPerCss;
omtaValue = transform;
break;
}
case AnimatedValue::NONE:
break;
}
return omtaValue;
}
void
CompositorAnimationStorage::SetAnimatedValue(uint64_t aId,
gfx::Matrix4x4&& aTransformInDevSpace,
gfx::Matrix4x4&& aFrameTransform,
const TransformData& aData)
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
auto count = mAnimatedValues.Count();
AnimatedValue* value = mAnimatedValues.LookupOrAdd(aId,
std::move(aTransformInDevSpace),
std::move(aFrameTransform),
aData);
if (count == mAnimatedValues.Count()) {
MOZ_ASSERT(value->mType == AnimatedValue::TRANSFORM);
value->mTransform.mTransformInDevSpace = std::move(aTransformInDevSpace);
value->mTransform.mFrameTransform = std::move(aFrameTransform);
value->mTransform.mData = aData;
}
}
void
CompositorAnimationStorage::SetAnimatedValue(uint64_t aId,
gfx::Matrix4x4&& aTransformInDevSpace)
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
const TransformData dontCare = {};
SetAnimatedValue(aId,
std::move(aTransformInDevSpace),
gfx::Matrix4x4(),
dontCare);
}
void
CompositorAnimationStorage::SetAnimatedValue(uint64_t aId,
const float& aOpacity)
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
auto count = mAnimatedValues.Count();
AnimatedValue* value = mAnimatedValues.LookupOrAdd(aId, aOpacity);
if (count == mAnimatedValues.Count()) {
MOZ_ASSERT(value->mType == AnimatedValue::OPACITY);
value->mOpacity = aOpacity;
}
}
AnimationArray*
CompositorAnimationStorage::GetAnimations(const uint64_t& aId) const
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
return mAnimations.Get(aId);
}
void
CompositorAnimationStorage::SetAnimations(uint64_t aId, const AnimationArray& aValue)
{
MOZ_ASSERT(CompositorThreadHolder::IsInCompositorThread());
AnimationArray* value = new AnimationArray(aValue);
mAnimations.Put(aId, value);
}
AnimationHelper::SampleResult
AnimationHelper::SampleAnimationForEachNode(
TimeStamp aPreviousFrameTime,
TimeStamp aCurrentFrameTime,
AnimationArray& aAnimations,
InfallibleTArray<AnimData>& aAnimationData,
RefPtr<RawServoAnimationValue>& aAnimationValue,
const AnimatedValue* aPreviousValue)
{
MOZ_ASSERT(!aAnimations.IsEmpty(), "Should be called with animations");
bool hasInEffectAnimations = false;
#ifdef DEBUG
// In cases where this function returns a SampleResult::Skipped, we actually
// do populate aAnimationValue in debug mode, so that we can MOZ_ASSERT at the
// call site that the value that would have been computed matches the stored
// value that we end up using. This flag is used to ensure we populate
// aAnimationValue in this scenario.
bool shouldBeSkipped = false;
#endif
// Process in order, since later aAnimations override earlier ones.
for (size_t i = 0, iEnd = aAnimations.Length(); i < iEnd; ++i) {
Animation& animation = aAnimations[i];
AnimData& animData = aAnimationData[i];
MOZ_ASSERT((!animation.originTime().IsNull() &&
animation.startTime().type() ==
MaybeTimeDuration::TTimeDuration) ||
animation.isNotPlaying(),
"If we are playing, we should have an origin time and a start"
" time");
// Determine if the animation was play-pending and used a ready time later
// than the previous frame time.
//
// To determine this, _all_ of the following consitions need to hold:
//
// * There was no previous animation value (i.e. this is the first frame for
// the animation since it was sent to the compositor), and
// * The animation is playing, and
// * There is a previous frame time, and
// * The ready time of the animation is ahead of the previous frame time.
//
bool hasFutureReadyTime = false;
if (!aPreviousValue &&
!animation.isNotPlaying() &&
!aPreviousFrameTime.IsNull()) {
// This is the inverse of the calculation performed in
// AnimationInfo::StartPendingAnimations to calculate the start time of
// play-pending animations.
// Note that we have to calculate (TimeStamp + TimeDuration) last to avoid
// underflow in the middle of the calulation.
const TimeStamp readyTime =
animation.originTime() +
(animation.startTime().get_TimeDuration() +
animation.holdTime().MultDouble(1.0 / animation.playbackRate()));
hasFutureReadyTime =
!readyTime.IsNull() && readyTime > aPreviousFrameTime;
}
// Use the previous vsync time to make main thread animations and compositor
// more closely aligned.
//
// On the first frame where we have animations the previous timestamp will
// not be set so we simply use the current timestamp. As a result we will
// end up painting the first frame twice. That doesn't appear to be
// noticeable, however.
//
// Likewise, if the animation is play-pending, it may have a ready time that
// is *after* |aPreviousFrameTime| (but *before* |aCurrentFrameTime|).
// To avoid flicker we need to use |aCurrentFrameTime| to avoid temporarily
// jumping backwards into the range prior to when the animation starts.
const TimeStamp& timeStamp =
aPreviousFrameTime.IsNull() || hasFutureReadyTime
? aCurrentFrameTime
: aPreviousFrameTime;
// If the animation is not currently playing, e.g. paused or
// finished, then use the hold time to stay at the same position.
TimeDuration elapsedDuration =
animation.isNotPlaying() ||
animation.startTime().type() != MaybeTimeDuration::TTimeDuration
? animation.holdTime()
: (timeStamp - animation.originTime() -
animation.startTime().get_TimeDuration())
.MultDouble(animation.playbackRate());
ComputedTiming computedTiming =
dom::AnimationEffect::GetComputedTimingAt(
dom::Nullable<TimeDuration>(elapsedDuration), animData.mTiming,
animation.playbackRate());
if (computedTiming.mProgress.IsNull()) {
continue;
}
dom::IterationCompositeOperation iterCompositeOperation =
static_cast<dom::IterationCompositeOperation>(
animation.iterationComposite());
// Skip caluculation if the progress hasn't changed since the last
// calculation.
// Note that we don't skip calculate this animation if there is another
// animation since the other animation might be 'accumulate' or 'add', or
// might have a missing keyframe (i.e. this animation value will be used in
// the missing keyframe).
// FIXME Bug 1455476: We should do this optimizations for the case where
// the layer has multiple animations.
if (iEnd == 1 &&
!dom::KeyframeEffect::HasComputedTimingChanged(
computedTiming,
iterCompositeOperation,
animData.mProgressOnLastCompose,
animData.mCurrentIterationOnLastCompose)) {
#ifdef DEBUG
shouldBeSkipped = true;
#else
return SampleResult::Skipped;
#endif
}
uint32_t segmentIndex = 0;
size_t segmentSize = animation.segments().Length();
AnimationSegment* segment = animation.segments().Elements();
while (segment->endPortion() < computedTiming.mProgress.Value() &&
segmentIndex < segmentSize - 1) {
++segment;
++segmentIndex;
}
double positionInSegment =
(computedTiming.mProgress.Value() - segment->startPortion()) /
(segment->endPortion() - segment->startPortion());
double portion =
ComputedTimingFunction::GetPortion(animData.mFunctions[segmentIndex],
positionInSegment,
computedTiming.mBeforeFlag);
// Like above optimization, skip caluculation if the target segment isn't
// changed and if the portion in the segment isn't changed.
// This optimization is needed for CSS animations/transitions with step
// timing functions (e.g. the throbber animation on tab or frame based
// animations).
// FIXME Bug 1455476: Like the above optimization, we should apply this
// optimizations for multiple animation cases as well.
if (iEnd == 1 &&
animData.mSegmentIndexOnLastCompose == segmentIndex &&
!animData.mPortionInSegmentOnLastCompose.IsNull() &&
animData.mPortionInSegmentOnLastCompose.Value() == portion) {
#ifdef DEBUG
shouldBeSkipped = true;
#else
return SampleResult::Skipped;
#endif
}
AnimationPropertySegment animSegment;
animSegment.mFromKey = 0.0;
animSegment.mToKey = 1.0;
animSegment.mFromValue =
AnimationValue(animData.mStartValues[segmentIndex]);
animSegment.mToValue =
AnimationValue(animData.mEndValues[segmentIndex]);
animSegment.mFromComposite =
static_cast<dom::CompositeOperation>(segment->startComposite());
animSegment.mToComposite =
static_cast<dom::CompositeOperation>(segment->endComposite());
// interpolate the property
aAnimationValue =
Servo_ComposeAnimationSegment(
&animSegment,
aAnimationValue,
animData.mEndValues.LastElement(),
iterCompositeOperation,
portion,
computedTiming.mCurrentIteration).Consume();
#ifdef DEBUG
if (shouldBeSkipped) {
return SampleResult::Skipped;
}
#endif
hasInEffectAnimations = true;
animData.mProgressOnLastCompose = computedTiming.mProgress;
animData.mCurrentIterationOnLastCompose = computedTiming.mCurrentIteration;
animData.mSegmentIndexOnLastCompose = segmentIndex;
animData.mPortionInSegmentOnLastCompose.SetValue(portion);
}
#ifdef DEBUG
// Sanity check that all of animation data are the same.
const AnimationData& lastData = aAnimations.LastElement().data();
for (const Animation& animation : aAnimations) {
const AnimationData& data = animation.data();
MOZ_ASSERT(data.type() == lastData.type(),
"The type of AnimationData should be the same");
if (data.type() == AnimationData::Tnull_t) {
continue;
}
MOZ_ASSERT(data.type() == AnimationData::TTransformData);
const TransformData& transformData = data.get_TransformData();
const TransformData& lastTransformData = lastData.get_TransformData();
MOZ_ASSERT(transformData.origin() == lastTransformData.origin() &&
transformData.transformOrigin() ==
lastTransformData.transformOrigin() &&
transformData.bounds() == lastTransformData.bounds() &&
transformData.appUnitsPerDevPixel() ==
lastTransformData.appUnitsPerDevPixel(),
"All of members of TransformData should be the same");
}
#endif
return hasInEffectAnimations ? SampleResult::Sampled : SampleResult::None;
}
struct BogusAnimation {};
static inline Result<Ok, BogusAnimation>
SetCSSAngle(const CSSAngle& aAngle, nsCSSValue& aValue)
{
aValue.SetFloatValue(aAngle.value(), nsCSSUnit(aAngle.unit()));
if (!aValue.IsAngularUnit()) {
NS_ERROR("Bogus animation from IPC");
return Err(BogusAnimation { });
}
return Ok();
}
static Result<nsCSSValueSharedList*, BogusAnimation>
CreateCSSValueList(const InfallibleTArray<TransformFunction>& aFunctions)
{
nsAutoPtr<nsCSSValueList> result;
nsCSSValueList** resultTail = getter_Transfers(result);
for (uint32_t i = 0; i < aFunctions.Length(); i++) {
RefPtr<nsCSSValue::Array> arr;
switch (aFunctions[i].type()) {
case TransformFunction::TRotationX:
{
const CSSAngle& angle = aFunctions[i].get_RotationX().angle();
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_rotatex,
resultTail);
MOZ_TRY(SetCSSAngle(angle, arr->Item(1)));
break;
}
case TransformFunction::TRotationY:
{
const CSSAngle& angle = aFunctions[i].get_RotationY().angle();
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_rotatey,
resultTail);
MOZ_TRY(SetCSSAngle(angle, arr->Item(1)));
break;
}
case TransformFunction::TRotationZ:
{
const CSSAngle& angle = aFunctions[i].get_RotationZ().angle();
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_rotatez,
resultTail);
MOZ_TRY(SetCSSAngle(angle, arr->Item(1)));
break;
}
case TransformFunction::TRotation:
{
const CSSAngle& angle = aFunctions[i].get_Rotation().angle();
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_rotate,
resultTail);
MOZ_TRY(SetCSSAngle(angle, arr->Item(1)));
break;
}
case TransformFunction::TRotation3D:
{
float x = aFunctions[i].get_Rotation3D().x();
float y = aFunctions[i].get_Rotation3D().y();
float z = aFunctions[i].get_Rotation3D().z();
const CSSAngle& angle = aFunctions[i].get_Rotation3D().angle();
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_rotate3d,
resultTail);
arr->Item(1).SetFloatValue(x, eCSSUnit_Number);
arr->Item(2).SetFloatValue(y, eCSSUnit_Number);
arr->Item(3).SetFloatValue(z, eCSSUnit_Number);
MOZ_TRY(SetCSSAngle(angle, arr->Item(4)));
break;
}
case TransformFunction::TScale:
{
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_scale3d,
resultTail);
arr->Item(1).SetFloatValue(aFunctions[i].get_Scale().x(), eCSSUnit_Number);
arr->Item(2).SetFloatValue(aFunctions[i].get_Scale().y(), eCSSUnit_Number);
arr->Item(3).SetFloatValue(aFunctions[i].get_Scale().z(), eCSSUnit_Number);
break;
}
case TransformFunction::TTranslation:
{
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_translate3d,
resultTail);
arr->Item(1).SetFloatValue(aFunctions[i].get_Translation().x(), eCSSUnit_Pixel);
arr->Item(2).SetFloatValue(aFunctions[i].get_Translation().y(), eCSSUnit_Pixel);
arr->Item(3).SetFloatValue(aFunctions[i].get_Translation().z(), eCSSUnit_Pixel);
break;
}
case TransformFunction::TSkewX:
{
const CSSAngle& x = aFunctions[i].get_SkewX().x();
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_skewx,
resultTail);
MOZ_TRY(SetCSSAngle(x, arr->Item(1)));
break;
}
case TransformFunction::TSkewY:
{
const CSSAngle& y = aFunctions[i].get_SkewY().y();
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_skewy,
resultTail);
MOZ_TRY(SetCSSAngle(y, arr->Item(1)));
break;
}
case TransformFunction::TSkew:
{
const CSSAngle& x = aFunctions[i].get_Skew().x();
const CSSAngle& y = aFunctions[i].get_Skew().y();
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_skew,
resultTail);
MOZ_TRY(SetCSSAngle(x, arr->Item(1)));
MOZ_TRY(SetCSSAngle(y, arr->Item(2)));
break;
}
case TransformFunction::TTransformMatrix:
{
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_matrix3d,
resultTail);
const gfx::Matrix4x4& matrix = aFunctions[i].get_TransformMatrix().value();
arr->Item(1).SetFloatValue(matrix._11, eCSSUnit_Number);
arr->Item(2).SetFloatValue(matrix._12, eCSSUnit_Number);
arr->Item(3).SetFloatValue(matrix._13, eCSSUnit_Number);
arr->Item(4).SetFloatValue(matrix._14, eCSSUnit_Number);
arr->Item(5).SetFloatValue(matrix._21, eCSSUnit_Number);
arr->Item(6).SetFloatValue(matrix._22, eCSSUnit_Number);
arr->Item(7).SetFloatValue(matrix._23, eCSSUnit_Number);
arr->Item(8).SetFloatValue(matrix._24, eCSSUnit_Number);
arr->Item(9).SetFloatValue(matrix._31, eCSSUnit_Number);
arr->Item(10).SetFloatValue(matrix._32, eCSSUnit_Number);
arr->Item(11).SetFloatValue(matrix._33, eCSSUnit_Number);
arr->Item(12).SetFloatValue(matrix._34, eCSSUnit_Number);
arr->Item(13).SetFloatValue(matrix._41, eCSSUnit_Number);
arr->Item(14).SetFloatValue(matrix._42, eCSSUnit_Number);
arr->Item(15).SetFloatValue(matrix._43, eCSSUnit_Number);
arr->Item(16).SetFloatValue(matrix._44, eCSSUnit_Number);
break;
}
case TransformFunction::TPerspective:
{
float perspective = aFunctions[i].get_Perspective().value();
arr = AnimationValue::AppendTransformFunction(eCSSKeyword_perspective,
resultTail);
arr->Item(1).SetFloatValue(perspective, eCSSUnit_Pixel);
break;
}
default:
NS_ASSERTION(false, "All functions should be implemented?");
}
}
if (aFunctions.Length() == 0) {
result = new nsCSSValueList();
result->mValue.SetNoneValue();
}
return new nsCSSValueSharedList(result.forget());
}
static already_AddRefed<RawServoAnimationValue>
ToAnimationValue(const Animatable& aAnimatable)
{
RefPtr<RawServoAnimationValue> result;
switch (aAnimatable.type()) {
case Animatable::Tnull_t:
break;
case Animatable::TArrayOfTransformFunction: {
const InfallibleTArray<TransformFunction>& transforms =
aAnimatable.get_ArrayOfTransformFunction();
auto listOrError = CreateCSSValueList(transforms);
if (listOrError.isOk()) {
RefPtr<nsCSSValueSharedList> list = listOrError.unwrap();
MOZ_ASSERT(list, "Transform list should be non null");
result = Servo_AnimationValue_Transform(*list).Consume();
}
break;
}
case Animatable::Tfloat:
result = Servo_AnimationValue_Opacity(aAnimatable.get_float()).Consume();
break;
default:
MOZ_ASSERT_UNREACHABLE("Unsupported type");
}
return result.forget();
}
void
AnimationHelper::SetAnimations(
AnimationArray& aAnimations,
InfallibleTArray<AnimData>& aAnimData,
RefPtr<RawServoAnimationValue>& aBaseAnimationStyle)
{
for (uint32_t i = 0; i < aAnimations.Length(); i++) {
Animation& animation = aAnimations[i];
// Adjust fill mode so that if the main thread is delayed in clearing
// this animation we don't introduce flicker by jumping back to the old
// underlying value.
switch (static_cast<dom::FillMode>(animation.fillMode())) {
case dom::FillMode::None:
if (animation.playbackRate() > 0) {
animation.fillMode() = static_cast<uint8_t>(dom::FillMode::Forwards);
} else if (animation.playbackRate() < 0) {
animation.fillMode() = static_cast<uint8_t>(dom::FillMode::Backwards);
}
break;
case dom::FillMode::Backwards:
if (animation.playbackRate() > 0) {
animation.fillMode() = static_cast<uint8_t>(dom::FillMode::Both);
}
break;
case dom::FillMode::Forwards:
if (animation.playbackRate() < 0) {
animation.fillMode() = static_cast<uint8_t>(dom::FillMode::Both);
}
break;
default:
break;
}
if (animation.baseStyle().type() != Animatable::Tnull_t) {
aBaseAnimationStyle = ToAnimationValue(animation.baseStyle());
}
AnimData* data = aAnimData.AppendElement();
data->mTiming = TimingParams {
animation.duration(),
animation.delay(),
animation.endDelay(),
animation.iterations(),
animation.iterationStart(),
static_cast<dom::PlaybackDirection>(animation.direction()),
static_cast<dom::FillMode>(animation.fillMode()),
AnimationUtils::TimingFunctionToComputedTimingFunction(
animation.easingFunction())
};
InfallibleTArray<Maybe<ComputedTimingFunction>>& functions =
data->mFunctions;
InfallibleTArray<RefPtr<RawServoAnimationValue>>& startValues =
data->mStartValues;
InfallibleTArray<RefPtr<RawServoAnimationValue>>& endValues =
data->mEndValues;
const InfallibleTArray<AnimationSegment>& segments = animation.segments();
for (const AnimationSegment& segment : segments) {
startValues.AppendElement(ToAnimationValue(segment.startState()));
endValues.AppendElement(ToAnimationValue(segment.endState()));
TimingFunction tf = segment.sampleFn();
Maybe<ComputedTimingFunction> ctf =
AnimationUtils::TimingFunctionToComputedTimingFunction(tf);
functions.AppendElement(ctf);
}
}
}
uint64_t
AnimationHelper::GetNextCompositorAnimationsId()
{
static uint32_t sNextId = 0;
++sNextId;
uint32_t procId = static_cast<uint32_t>(base::GetCurrentProcId());
uint64_t nextId = procId;
nextId = nextId << 32 | sNextId;
return nextId;
}
bool
AnimationHelper::SampleAnimations(CompositorAnimationStorage* aStorage,
TimeStamp aPreviousFrameTime,
TimeStamp aCurrentFrameTime)
{
MOZ_ASSERT(aStorage);
bool isAnimating = false;
// Do nothing if there are no compositor animations
if (!aStorage->AnimationsCount()) {
return isAnimating;
}
//Sample the animations in CompositorAnimationStorage
for (auto iter = aStorage->ConstAnimationsTableIter();
!iter.Done(); iter.Next()) {
AnimationArray* animations = iter.UserData();
if (animations->IsEmpty()) {
continue;
}
isAnimating = true;
RefPtr<RawServoAnimationValue> animationValue;
InfallibleTArray<AnimData> animationData;
AnimationHelper::SetAnimations(*animations,
animationData,
animationValue);
AnimatedValue* previousValue = aStorage->GetAnimatedValue(iter.Key());
AnimationHelper::SampleResult sampleResult =
AnimationHelper::SampleAnimationForEachNode(aPreviousFrameTime,
aCurrentFrameTime,
*animations,
animationData,
animationValue,
previousValue);
if (sampleResult != AnimationHelper::SampleResult::Sampled) {
continue;
}
// Store the AnimatedValue
Animation& animation = animations->LastElement();
switch (animation.property()) {
case eCSSProperty_opacity: {
aStorage->SetAnimatedValue(
iter.Key(),
Servo_AnimationValue_GetOpacity(animationValue));
break;
}
case eCSSProperty_transform: {
RefPtr<nsCSSValueSharedList> list;
Servo_AnimationValue_GetTransform(animationValue, &list);
const TransformData& transformData = animation.data().get_TransformData();
nsPoint origin = transformData.origin();
// we expect all our transform data to arrive in device pixels
gfx::Point3D transformOrigin = transformData.transformOrigin();
nsDisplayTransform::FrameTransformProperties props(std::move(list),
transformOrigin);
gfx::Matrix4x4 transform =
nsDisplayTransform::GetResultingTransformMatrix(props, origin,
transformData.appUnitsPerDevPixel(),
0, &transformData.bounds());
gfx::Matrix4x4 frameTransform = transform;
// If the parent has perspective transform, then the offset into reference
// frame coordinates is already on this transform. If not, then we need to ask
// for it to be added here.
if (!transformData.hasPerspectiveParent()) {
nsLayoutUtils::PostTranslate(transform, origin,
transformData.appUnitsPerDevPixel(),
true);
}
transform.PostScale(transformData.inheritedXScale(),
transformData.inheritedYScale(),
1);
aStorage->SetAnimatedValue(iter.Key(),
std::move(transform), std::move(frameTransform),
transformData);
break;
}
default:
MOZ_ASSERT_UNREACHABLE("Unhandled animated property");
}
}
return isAnimating;
}
} // namespace layers
} // namespace mozilla