зеркало из https://github.com/mozilla/gecko-dev.git
518 строки
16 KiB
C++
518 строки
16 KiB
C++
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/gfx/Blur.h"
|
|
|
|
#include <algorithm>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include "mozilla/CheckedInt.h"
|
|
#include "mozilla/Constants.h"
|
|
#include "mozilla/Util.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
/**
|
|
* Box blur involves looking at one pixel, and setting its value to the average
|
|
* of its neighbouring pixels.
|
|
* @param aInput The input buffer.
|
|
* @param aOutput The output buffer.
|
|
* @param aLeftLobe The number of pixels to blend on the left.
|
|
* @param aRightLobe The number of pixels to blend on the right.
|
|
* @param aWidth The number of columns in the buffers.
|
|
* @param aRows The number of rows in the buffers.
|
|
* @param aSkipRect An area to skip blurring in.
|
|
* XXX shouldn't we pass stride in separately here?
|
|
*/
|
|
static void
|
|
BoxBlurHorizontal(unsigned char* aInput,
|
|
unsigned char* aOutput,
|
|
int32_t aLeftLobe,
|
|
int32_t aRightLobe,
|
|
int32_t aWidth,
|
|
int32_t aRows,
|
|
const IntRect& aSkipRect)
|
|
{
|
|
MOZ_ASSERT(aWidth > 0);
|
|
|
|
int32_t boxSize = aLeftLobe + aRightLobe + 1;
|
|
bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
|
|
aWidth <= aSkipRect.XMost();
|
|
if (boxSize == 1) {
|
|
memcpy(aOutput, aInput, aWidth*aRows);
|
|
return;
|
|
}
|
|
uint32_t reciprocal = (uint64_t(1) << 32) / boxSize;
|
|
|
|
for (int32_t y = 0; y < aRows; y++) {
|
|
// Check whether the skip rect intersects this row. If the skip
|
|
// rect covers the whole surface in this row, we can avoid
|
|
// this row entirely (and any others along the skip rect).
|
|
bool inSkipRectY = y >= aSkipRect.y &&
|
|
y < aSkipRect.YMost();
|
|
if (inSkipRectY && skipRectCoversWholeRow) {
|
|
y = aSkipRect.YMost() - 1;
|
|
continue;
|
|
}
|
|
|
|
uint32_t alphaSum = 0;
|
|
for (int32_t i = 0; i < boxSize; i++) {
|
|
int32_t pos = i - aLeftLobe;
|
|
// See assertion above; if aWidth is zero, then we would have no
|
|
// valid position to clamp to.
|
|
pos = max(pos, 0);
|
|
pos = min(pos, aWidth - 1);
|
|
alphaSum += aInput[aWidth * y + pos];
|
|
}
|
|
for (int32_t x = 0; x < aWidth; x++) {
|
|
// Check whether we are within the skip rect. If so, go
|
|
// to the next point outside the skip rect.
|
|
if (inSkipRectY && x >= aSkipRect.x &&
|
|
x < aSkipRect.XMost()) {
|
|
x = aSkipRect.XMost();
|
|
if (x >= aWidth)
|
|
break;
|
|
|
|
// Recalculate the neighbouring alpha values for
|
|
// our new point on the surface.
|
|
alphaSum = 0;
|
|
for (int32_t i = 0; i < boxSize; i++) {
|
|
int32_t pos = x + i - aLeftLobe;
|
|
// See assertion above; if aWidth is zero, then we would have no
|
|
// valid position to clamp to.
|
|
pos = max(pos, 0);
|
|
pos = min(pos, aWidth - 1);
|
|
alphaSum += aInput[aWidth * y + pos];
|
|
}
|
|
}
|
|
int32_t tmp = x - aLeftLobe;
|
|
int32_t last = max(tmp, 0);
|
|
int32_t next = min(tmp + boxSize, aWidth - 1);
|
|
|
|
aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32;
|
|
|
|
alphaSum += aInput[aWidth * y + next] -
|
|
aInput[aWidth * y + last];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Identical to BoxBlurHorizontal, except it blurs top and bottom instead of
|
|
* left and right.
|
|
* XXX shouldn't we pass stride in separately here?
|
|
*/
|
|
static void
|
|
BoxBlurVertical(unsigned char* aInput,
|
|
unsigned char* aOutput,
|
|
int32_t aTopLobe,
|
|
int32_t aBottomLobe,
|
|
int32_t aWidth,
|
|
int32_t aRows,
|
|
const IntRect& aSkipRect)
|
|
{
|
|
MOZ_ASSERT(aRows > 0);
|
|
|
|
int32_t boxSize = aTopLobe + aBottomLobe + 1;
|
|
bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
|
|
aRows <= aSkipRect.YMost();
|
|
if (boxSize == 1) {
|
|
memcpy(aOutput, aInput, aWidth*aRows);
|
|
return;
|
|
}
|
|
uint32_t reciprocal = (uint64_t(1) << 32) / boxSize;
|
|
|
|
for (int32_t x = 0; x < aWidth; x++) {
|
|
bool inSkipRectX = x >= aSkipRect.x &&
|
|
x < aSkipRect.XMost();
|
|
if (inSkipRectX && skipRectCoversWholeColumn) {
|
|
x = aSkipRect.XMost() - 1;
|
|
continue;
|
|
}
|
|
|
|
uint32_t alphaSum = 0;
|
|
for (int32_t i = 0; i < boxSize; i++) {
|
|
int32_t pos = i - aTopLobe;
|
|
// See assertion above; if aRows is zero, then we would have no
|
|
// valid position to clamp to.
|
|
pos = max(pos, 0);
|
|
pos = min(pos, aRows - 1);
|
|
alphaSum += aInput[aWidth * pos + x];
|
|
}
|
|
for (int32_t y = 0; y < aRows; y++) {
|
|
if (inSkipRectX && y >= aSkipRect.y &&
|
|
y < aSkipRect.YMost()) {
|
|
y = aSkipRect.YMost();
|
|
if (y >= aRows)
|
|
break;
|
|
|
|
alphaSum = 0;
|
|
for (int32_t i = 0; i < boxSize; i++) {
|
|
int32_t pos = y + i - aTopLobe;
|
|
// See assertion above; if aRows is zero, then we would have no
|
|
// valid position to clamp to.
|
|
pos = max(pos, 0);
|
|
pos = min(pos, aRows - 1);
|
|
alphaSum += aInput[aWidth * pos + x];
|
|
}
|
|
}
|
|
int32_t tmp = y - aTopLobe;
|
|
int32_t last = max(tmp, 0);
|
|
int32_t next = min(tmp + boxSize, aRows - 1);
|
|
|
|
aOutput[aWidth * y + x] = (uint64_t(alphaSum) * reciprocal) >> 32;
|
|
|
|
alphaSum += aInput[aWidth * next + x] -
|
|
aInput[aWidth * last + x];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ComputeLobes(int32_t aRadius, int32_t aLobes[3][2])
|
|
{
|
|
int32_t major, minor, final;
|
|
|
|
/* See http://www.w3.org/TR/SVG/filters.html#feGaussianBlur for
|
|
* some notes about approximating the Gaussian blur with box-blurs.
|
|
* The comments below are in the terminology of that page.
|
|
*/
|
|
int32_t z = aRadius / 3;
|
|
switch (aRadius % 3) {
|
|
case 0:
|
|
// aRadius = z*3; choose d = 2*z + 1
|
|
major = minor = final = z;
|
|
break;
|
|
case 1:
|
|
// aRadius = z*3 + 1
|
|
// This is a tricky case since there is no value of d which will
|
|
// yield a radius of exactly aRadius. If d is odd, i.e. d=2*k + 1
|
|
// for some integer k, then the radius will be 3*k. If d is even,
|
|
// i.e. d=2*k, then the radius will be 3*k - 1.
|
|
// So we have to choose values that don't match the standard
|
|
// algorithm.
|
|
major = z + 1;
|
|
minor = final = z;
|
|
break;
|
|
case 2:
|
|
// aRadius = z*3 + 2; choose d = 2*z + 2
|
|
major = final = z + 1;
|
|
minor = z;
|
|
break;
|
|
default:
|
|
// Mathematical impossibility!
|
|
MOZ_ASSERT(false);
|
|
major = minor = final = 0;
|
|
}
|
|
MOZ_ASSERT(major + minor + final == aRadius);
|
|
|
|
aLobes[0][0] = major;
|
|
aLobes[0][1] = minor;
|
|
aLobes[1][0] = minor;
|
|
aLobes[1][1] = major;
|
|
aLobes[2][0] = final;
|
|
aLobes[2][1] = final;
|
|
}
|
|
|
|
static void
|
|
SpreadHorizontal(unsigned char* aInput,
|
|
unsigned char* aOutput,
|
|
int32_t aRadius,
|
|
int32_t aWidth,
|
|
int32_t aRows,
|
|
int32_t aStride,
|
|
const IntRect& aSkipRect)
|
|
{
|
|
if (aRadius == 0) {
|
|
memcpy(aOutput, aInput, aStride * aRows);
|
|
return;
|
|
}
|
|
|
|
bool skipRectCoversWholeRow = 0 >= aSkipRect.x &&
|
|
aWidth <= aSkipRect.XMost();
|
|
for (int32_t y = 0; y < aRows; y++) {
|
|
// Check whether the skip rect intersects this row. If the skip
|
|
// rect covers the whole surface in this row, we can avoid
|
|
// this row entirely (and any others along the skip rect).
|
|
bool inSkipRectY = y >= aSkipRect.y &&
|
|
y < aSkipRect.YMost();
|
|
if (inSkipRectY && skipRectCoversWholeRow) {
|
|
y = aSkipRect.YMost() - 1;
|
|
continue;
|
|
}
|
|
|
|
for (int32_t x = 0; x < aWidth; x++) {
|
|
// Check whether we are within the skip rect. If so, go
|
|
// to the next point outside the skip rect.
|
|
if (inSkipRectY && x >= aSkipRect.x &&
|
|
x < aSkipRect.XMost()) {
|
|
x = aSkipRect.XMost();
|
|
if (x >= aWidth)
|
|
break;
|
|
}
|
|
|
|
int32_t sMin = max(x - aRadius, 0);
|
|
int32_t sMax = min(x + aRadius, aWidth - 1);
|
|
int32_t v = 0;
|
|
for (int32_t s = sMin; s <= sMax; ++s) {
|
|
v = max<int32_t>(v, aInput[aStride * y + s]);
|
|
}
|
|
aOutput[aStride * y + x] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
SpreadVertical(unsigned char* aInput,
|
|
unsigned char* aOutput,
|
|
int32_t aRadius,
|
|
int32_t aWidth,
|
|
int32_t aRows,
|
|
int32_t aStride,
|
|
const IntRect& aSkipRect)
|
|
{
|
|
if (aRadius == 0) {
|
|
memcpy(aOutput, aInput, aStride * aRows);
|
|
return;
|
|
}
|
|
|
|
bool skipRectCoversWholeColumn = 0 >= aSkipRect.y &&
|
|
aRows <= aSkipRect.YMost();
|
|
for (int32_t x = 0; x < aWidth; x++) {
|
|
bool inSkipRectX = x >= aSkipRect.x &&
|
|
x < aSkipRect.XMost();
|
|
if (inSkipRectX && skipRectCoversWholeColumn) {
|
|
x = aSkipRect.XMost() - 1;
|
|
continue;
|
|
}
|
|
|
|
for (int32_t y = 0; y < aRows; y++) {
|
|
// Check whether we are within the skip rect. If so, go
|
|
// to the next point outside the skip rect.
|
|
if (inSkipRectX && y >= aSkipRect.y &&
|
|
y < aSkipRect.YMost()) {
|
|
y = aSkipRect.YMost();
|
|
if (y >= aRows)
|
|
break;
|
|
}
|
|
|
|
int32_t sMin = max(y - aRadius, 0);
|
|
int32_t sMax = min(y + aRadius, aRows - 1);
|
|
int32_t v = 0;
|
|
for (int32_t s = sMin; s <= sMax; ++s) {
|
|
v = max<int32_t>(v, aInput[aStride * s + x]);
|
|
}
|
|
aOutput[aStride * y + x] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
static CheckedInt<int32_t>
|
|
RoundUpToMultipleOf4(int32_t aVal)
|
|
{
|
|
CheckedInt<int32_t> val(aVal);
|
|
|
|
val += 3;
|
|
val /= 4;
|
|
val *= 4;
|
|
|
|
return val;
|
|
}
|
|
|
|
AlphaBoxBlur::AlphaBoxBlur(const Rect& aRect,
|
|
const IntSize& aSpreadRadius,
|
|
const IntSize& aBlurRadius,
|
|
const Rect* aDirtyRect,
|
|
const Rect* aSkipRect)
|
|
: mSpreadRadius(aSpreadRadius),
|
|
mBlurRadius(aBlurRadius),
|
|
mData(nullptr),
|
|
mFreeData(true)
|
|
{
|
|
Rect rect(aRect);
|
|
rect.Inflate(Size(aBlurRadius + aSpreadRadius));
|
|
rect.RoundOut();
|
|
|
|
if (aDirtyRect) {
|
|
// If we get passed a dirty rect from layout, we can minimize the
|
|
// shadow size and make painting faster.
|
|
mHasDirtyRect = true;
|
|
mDirtyRect = *aDirtyRect;
|
|
Rect requiredBlurArea = mDirtyRect.Intersect(rect);
|
|
requiredBlurArea.Inflate(Size(aBlurRadius + aSpreadRadius));
|
|
rect = requiredBlurArea.Intersect(rect);
|
|
} else {
|
|
mHasDirtyRect = false;
|
|
}
|
|
|
|
mRect = IntRect(rect.x, rect.y, rect.width, rect.height);
|
|
if (mRect.IsEmpty()) {
|
|
return;
|
|
}
|
|
|
|
if (aSkipRect) {
|
|
// If we get passed a skip rect, we can lower the amount of
|
|
// blurring/spreading we need to do. We convert it to IntRect to avoid
|
|
// expensive int<->float conversions if we were to use Rect instead.
|
|
Rect skipRect = *aSkipRect;
|
|
skipRect.RoundIn();
|
|
skipRect.Deflate(Size(aBlurRadius + aSpreadRadius));
|
|
mSkipRect = IntRect(skipRect.x, skipRect.y, skipRect.width, skipRect.height);
|
|
|
|
mSkipRect = mSkipRect.Intersect(mRect);
|
|
if (mSkipRect.IsEqualInterior(mRect))
|
|
return;
|
|
|
|
mSkipRect -= mRect.TopLeft();
|
|
} else {
|
|
mSkipRect = IntRect(0, 0, 0, 0);
|
|
}
|
|
|
|
CheckedInt<int32_t> stride = RoundUpToMultipleOf4(mRect.width);
|
|
if (stride.isValid()) {
|
|
mStride = stride.value();
|
|
|
|
CheckedInt<int32_t> size = CheckedInt<int32_t>(mStride) * mRect.height *
|
|
sizeof(unsigned char);
|
|
if (size.isValid()) {
|
|
mData = static_cast<unsigned char*>(malloc(size.value()));
|
|
memset(mData, 0, size.value());
|
|
}
|
|
}
|
|
}
|
|
|
|
AlphaBoxBlur::AlphaBoxBlur(uint8_t* aData,
|
|
const Rect& aRect,
|
|
int32_t aStride,
|
|
float aSigma)
|
|
: mSpreadRadius(),
|
|
mBlurRadius(CalculateBlurRadius(Point(aSigma, aSigma))),
|
|
mData(aData),
|
|
mFreeData(false),
|
|
mStride(aStride),
|
|
mRect(aRect.x, aRect.y, aRect.width, aRect.height)
|
|
{
|
|
}
|
|
|
|
|
|
AlphaBoxBlur::~AlphaBoxBlur()
|
|
{
|
|
if (mFreeData) {
|
|
delete mData;
|
|
}
|
|
}
|
|
|
|
unsigned char*
|
|
AlphaBoxBlur::GetData()
|
|
{
|
|
return mData;
|
|
}
|
|
|
|
IntSize
|
|
AlphaBoxBlur::GetSize()
|
|
{
|
|
IntSize size(mRect.width, mRect.height);
|
|
return size;
|
|
}
|
|
|
|
int32_t
|
|
AlphaBoxBlur::GetStride()
|
|
{
|
|
return mStride;
|
|
}
|
|
|
|
IntRect
|
|
AlphaBoxBlur::GetRect()
|
|
{
|
|
return mRect;
|
|
}
|
|
|
|
Rect*
|
|
AlphaBoxBlur::GetDirtyRect()
|
|
{
|
|
if (mHasDirtyRect) {
|
|
return &mDirtyRect;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void
|
|
AlphaBoxBlur::Blur()
|
|
{
|
|
if (!mData) {
|
|
return;
|
|
}
|
|
|
|
// no need to do all this if not blurring or spreading
|
|
if (mBlurRadius != IntSize(0,0) || mSpreadRadius != IntSize(0,0)) {
|
|
int32_t stride = GetStride();
|
|
|
|
// No need to use CheckedInt here - we have validated it in the constructor.
|
|
size_t szB = stride * GetSize().height * sizeof(unsigned char);
|
|
unsigned char* tmpData = static_cast<unsigned char*>(malloc(szB));
|
|
if (!tmpData)
|
|
return; // OOM
|
|
|
|
memset(tmpData, 0, szB);
|
|
|
|
if (mSpreadRadius.width > 0 || mSpreadRadius.height > 0) {
|
|
SpreadHorizontal(mData, tmpData, mSpreadRadius.width, GetSize().width, GetSize().height, stride, mSkipRect);
|
|
SpreadVertical(tmpData, mData, mSpreadRadius.height, GetSize().width, GetSize().height, stride, mSkipRect);
|
|
}
|
|
|
|
if (mBlurRadius.width > 0) {
|
|
int32_t lobes[3][2];
|
|
ComputeLobes(mBlurRadius.width, lobes);
|
|
BoxBlurHorizontal(mData, tmpData, lobes[0][0], lobes[0][1], stride, GetSize().height, mSkipRect);
|
|
BoxBlurHorizontal(tmpData, mData, lobes[1][0], lobes[1][1], stride, GetSize().height, mSkipRect);
|
|
BoxBlurHorizontal(mData, tmpData, lobes[2][0], lobes[2][1], stride, GetSize().height, mSkipRect);
|
|
} else {
|
|
memcpy(tmpData, mData, stride * GetSize().height);
|
|
}
|
|
|
|
if (mBlurRadius.height > 0) {
|
|
int32_t lobes[3][2];
|
|
ComputeLobes(mBlurRadius.height, lobes);
|
|
BoxBlurVertical(tmpData, mData, lobes[0][0], lobes[0][1], stride, GetSize().height, mSkipRect);
|
|
BoxBlurVertical(mData, tmpData, lobes[1][0], lobes[1][1], stride, GetSize().height, mSkipRect);
|
|
BoxBlurVertical(tmpData, mData, lobes[2][0], lobes[2][1], stride, GetSize().height, mSkipRect);
|
|
} else {
|
|
memcpy(mData, tmpData, stride * GetSize().height);
|
|
}
|
|
|
|
free(tmpData);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Compute the box blur size (which we're calling the blur radius) from
|
|
* the standard deviation.
|
|
*
|
|
* Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
|
|
* approximating a Gaussian using box blurs. This yields quite a good
|
|
* approximation for a Gaussian. Then we multiply this by 1.5 since our
|
|
* code wants the radius of the entire triple-box-blur kernel instead of
|
|
* the diameter of an individual box blur. For more details, see:
|
|
* http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
|
|
* https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
|
|
*/
|
|
static const Float GAUSSIAN_SCALE_FACTOR = (3 * sqrt(2 * M_PI) / 4) * 1.5;
|
|
|
|
IntSize
|
|
AlphaBoxBlur::CalculateBlurRadius(const Point& aStd)
|
|
{
|
|
IntSize size(static_cast<int32_t>(floor(aStd.x * GAUSSIAN_SCALE_FACTOR + 0.5)),
|
|
static_cast<int32_t>(floor(aStd.y * GAUSSIAN_SCALE_FACTOR + 0.5)));
|
|
|
|
return size;
|
|
}
|
|
|
|
}
|
|
}
|