зеркало из https://github.com/mozilla/gecko-dev.git
1117 строки
36 KiB
C
1117 строки
36 KiB
C
/* Copyright 2013 Google Inc. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "./bit_reader.h"
|
|
#include "./context.h"
|
|
#include "./decode.h"
|
|
#include "./dictionary.h"
|
|
#include "./transform.h"
|
|
#include "./huffman.h"
|
|
#include "./prefix.h"
|
|
#include "./safe_malloc.h"
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
#ifdef BROTLI_DECODE_DEBUG
|
|
#define BROTLI_LOG_UINT(name) \
|
|
printf("[%s] %s = %lu\n", __func__, #name, (unsigned long)(name))
|
|
#define BROTLI_LOG_ARRAY_INDEX(array_name, idx) \
|
|
printf("[%s] %s[%lu] = %lu\n", __func__, #array_name, \
|
|
(unsigned long)(idx), (unsigned long)array_name[idx])
|
|
#else
|
|
#define BROTLI_LOG_UINT(name)
|
|
#define BROTLI_LOG_ARRAY_INDEX(array_name, idx)
|
|
#endif
|
|
|
|
static const uint8_t kDefaultCodeLength = 8;
|
|
static const uint8_t kCodeLengthRepeatCode = 16;
|
|
static const int kNumLiteralCodes = 256;
|
|
static const int kNumInsertAndCopyCodes = 704;
|
|
static const int kNumBlockLengthCodes = 26;
|
|
static const int kLiteralContextBits = 6;
|
|
static const int kDistanceContextBits = 2;
|
|
|
|
#define HUFFMAN_TABLE_BITS 8
|
|
#define HUFFMAN_TABLE_MASK 0xff
|
|
/* This is a rough estimate, not an exact bound. */
|
|
#define HUFFMAN_MAX_TABLE_SIZE 2048
|
|
|
|
#define CODE_LENGTH_CODES 18
|
|
static const uint8_t kCodeLengthCodeOrder[CODE_LENGTH_CODES] = {
|
|
1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
};
|
|
|
|
#define NUM_DISTANCE_SHORT_CODES 16
|
|
static const int kDistanceShortCodeIndexOffset[NUM_DISTANCE_SHORT_CODES] = {
|
|
3, 2, 1, 0, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2
|
|
};
|
|
|
|
static const int kDistanceShortCodeValueOffset[NUM_DISTANCE_SHORT_CODES] = {
|
|
0, 0, 0, 0, -1, 1, -2, 2, -3, 3, -1, 1, -2, 2, -3, 3
|
|
};
|
|
|
|
static BROTLI_INLINE int DecodeWindowBits(BrotliBitReader* br) {
|
|
if (BrotliReadBits(br, 1)) {
|
|
return 17 + (int)BrotliReadBits(br, 3);
|
|
} else {
|
|
return 16;
|
|
}
|
|
}
|
|
|
|
/* Decodes a number in the range [0..255], by reading 1 - 11 bits. */
|
|
static BROTLI_INLINE int DecodeVarLenUint8(BrotliBitReader* br) {
|
|
if (BrotliReadBits(br, 1)) {
|
|
int nbits = (int)BrotliReadBits(br, 3);
|
|
if (nbits == 0) {
|
|
return 1;
|
|
} else {
|
|
return (int)BrotliReadBits(br, nbits) + (1 << nbits);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void DecodeMetaBlockLength(BrotliBitReader* br,
|
|
int* meta_block_length,
|
|
int* input_end,
|
|
int* is_uncompressed) {
|
|
int size_nibbles;
|
|
int i;
|
|
*input_end = (int)BrotliReadBits(br, 1);
|
|
*meta_block_length = 0;
|
|
*is_uncompressed = 0;
|
|
if (*input_end && BrotliReadBits(br, 1)) {
|
|
return;
|
|
}
|
|
size_nibbles = (int)BrotliReadBits(br, 2) + 4;
|
|
for (i = 0; i < size_nibbles; ++i) {
|
|
*meta_block_length |= (int)BrotliReadBits(br, 4) << (i * 4);
|
|
}
|
|
++(*meta_block_length);
|
|
if (!*input_end) {
|
|
*is_uncompressed = (int)BrotliReadBits(br, 1);
|
|
}
|
|
}
|
|
|
|
/* Decodes the next Huffman code from bit-stream. */
|
|
static BROTLI_INLINE int ReadSymbol(const HuffmanCode* table,
|
|
BrotliBitReader* br) {
|
|
int nbits;
|
|
BrotliFillBitWindow(br);
|
|
table += (int)(br->val_ >> br->bit_pos_) & HUFFMAN_TABLE_MASK;
|
|
nbits = table->bits - HUFFMAN_TABLE_BITS;
|
|
if (nbits > 0) {
|
|
br->bit_pos_ += HUFFMAN_TABLE_BITS;
|
|
table += table->value;
|
|
table += (int)(br->val_ >> br->bit_pos_) & ((1 << nbits) - 1);
|
|
}
|
|
br->bit_pos_ += table->bits;
|
|
return table->value;
|
|
}
|
|
|
|
static void PrintUcharVector(const uint8_t* v, int len) {
|
|
while (len-- > 0) printf(" %d", *v++);
|
|
printf("\n");
|
|
}
|
|
|
|
static int ReadHuffmanCodeLengths(
|
|
const uint8_t* code_length_code_lengths,
|
|
int num_symbols, uint8_t* code_lengths,
|
|
BrotliBitReader* br) {
|
|
int symbol = 0;
|
|
uint8_t prev_code_len = kDefaultCodeLength;
|
|
int repeat = 0;
|
|
uint8_t repeat_code_len = 0;
|
|
int space = 32768;
|
|
HuffmanCode table[32];
|
|
|
|
if (!BrotliBuildHuffmanTable(table, 5,
|
|
code_length_code_lengths,
|
|
CODE_LENGTH_CODES)) {
|
|
printf("[ReadHuffmanCodeLengths] Building code length tree failed: ");
|
|
PrintUcharVector(code_length_code_lengths, CODE_LENGTH_CODES);
|
|
return 0;
|
|
}
|
|
|
|
while (symbol < num_symbols && space > 0) {
|
|
const HuffmanCode* p = table;
|
|
uint8_t code_len;
|
|
if (!BrotliReadMoreInput(br)) {
|
|
printf("[ReadHuffmanCodeLengths] Unexpected end of input.\n");
|
|
return 0;
|
|
}
|
|
BrotliFillBitWindow(br);
|
|
p += (br->val_ >> br->bit_pos_) & 31;
|
|
br->bit_pos_ += p->bits;
|
|
code_len = (uint8_t)p->value;
|
|
if (code_len < kCodeLengthRepeatCode) {
|
|
repeat = 0;
|
|
code_lengths[symbol++] = code_len;
|
|
if (code_len != 0) {
|
|
prev_code_len = code_len;
|
|
space -= 32768 >> code_len;
|
|
}
|
|
} else {
|
|
const int extra_bits = code_len - 14;
|
|
int old_repeat;
|
|
int repeat_delta;
|
|
uint8_t new_len = 0;
|
|
if (code_len == kCodeLengthRepeatCode) {
|
|
new_len = prev_code_len;
|
|
}
|
|
if (repeat_code_len != new_len) {
|
|
repeat = 0;
|
|
repeat_code_len = new_len;
|
|
}
|
|
old_repeat = repeat;
|
|
if (repeat > 0) {
|
|
repeat -= 2;
|
|
repeat <<= extra_bits;
|
|
}
|
|
repeat += (int)BrotliReadBits(br, extra_bits) + 3;
|
|
repeat_delta = repeat - old_repeat;
|
|
if (symbol + repeat_delta > num_symbols) {
|
|
return 0;
|
|
}
|
|
memset(&code_lengths[symbol], repeat_code_len, (size_t)repeat_delta);
|
|
symbol += repeat_delta;
|
|
if (repeat_code_len != 0) {
|
|
space -= repeat_delta << (15 - repeat_code_len);
|
|
}
|
|
}
|
|
}
|
|
if (space != 0) {
|
|
printf("[ReadHuffmanCodeLengths] space = %d\n", space);
|
|
return 0;
|
|
}
|
|
memset(&code_lengths[symbol], 0, (size_t)(num_symbols - symbol));
|
|
return 1;
|
|
}
|
|
|
|
static int ReadHuffmanCode(int alphabet_size,
|
|
HuffmanCode* table,
|
|
BrotliBitReader* br) {
|
|
int ok = 1;
|
|
int table_size = 0;
|
|
int simple_code_or_skip;
|
|
uint8_t* code_lengths = NULL;
|
|
|
|
code_lengths =
|
|
(uint8_t*)BrotliSafeMalloc((uint64_t)alphabet_size,
|
|
sizeof(*code_lengths));
|
|
if (code_lengths == NULL) {
|
|
return 0;
|
|
}
|
|
if (!BrotliReadMoreInput(br)) {
|
|
printf("[ReadHuffmanCode] Unexpected end of input.\n");
|
|
return 0;
|
|
}
|
|
/* simple_code_or_skip is used as follows:
|
|
1 for simple code;
|
|
0 for no skipping, 2 skips 2 code lengths, 3 skips 3 code lengths */
|
|
simple_code_or_skip = (int)BrotliReadBits(br, 2);
|
|
BROTLI_LOG_UINT(simple_code_or_skip);
|
|
if (simple_code_or_skip == 1) {
|
|
/* Read symbols, codes & code lengths directly. */
|
|
int i;
|
|
int max_bits_counter = alphabet_size - 1;
|
|
int max_bits = 0;
|
|
int symbols[4] = { 0 };
|
|
const int num_symbols = (int)BrotliReadBits(br, 2) + 1;
|
|
while (max_bits_counter) {
|
|
max_bits_counter >>= 1;
|
|
++max_bits;
|
|
}
|
|
memset(code_lengths, 0, (size_t)alphabet_size);
|
|
for (i = 0; i < num_symbols; ++i) {
|
|
symbols[i] = (int)BrotliReadBits(br, max_bits) % alphabet_size;
|
|
code_lengths[symbols[i]] = 2;
|
|
}
|
|
code_lengths[symbols[0]] = 1;
|
|
switch (num_symbols) {
|
|
case 1:
|
|
break;
|
|
case 3:
|
|
ok = ((symbols[0] != symbols[1]) &&
|
|
(symbols[0] != symbols[2]) &&
|
|
(symbols[1] != symbols[2]));
|
|
break;
|
|
case 2:
|
|
ok = (symbols[0] != symbols[1]);
|
|
code_lengths[symbols[1]] = 1;
|
|
break;
|
|
case 4:
|
|
ok = ((symbols[0] != symbols[1]) &&
|
|
(symbols[0] != symbols[2]) &&
|
|
(symbols[0] != symbols[3]) &&
|
|
(symbols[1] != symbols[2]) &&
|
|
(symbols[1] != symbols[3]) &&
|
|
(symbols[2] != symbols[3]));
|
|
if (BrotliReadBits(br, 1)) {
|
|
code_lengths[symbols[2]] = 3;
|
|
code_lengths[symbols[3]] = 3;
|
|
} else {
|
|
code_lengths[symbols[0]] = 2;
|
|
}
|
|
break;
|
|
}
|
|
BROTLI_LOG_UINT(num_symbols);
|
|
} else { /* Decode Huffman-coded code lengths. */
|
|
int i;
|
|
uint8_t code_length_code_lengths[CODE_LENGTH_CODES] = { 0 };
|
|
int space = 32;
|
|
int num_codes = 0;
|
|
/* Static Huffman code for the code length code lengths */
|
|
static const HuffmanCode huff[16] = {
|
|
{2, 0}, {2, 4}, {2, 3}, {3, 2}, {2, 0}, {2, 4}, {2, 3}, {4, 1},
|
|
{2, 0}, {2, 4}, {2, 3}, {3, 2}, {2, 0}, {2, 4}, {2, 3}, {4, 5},
|
|
};
|
|
for (i = simple_code_or_skip; i < CODE_LENGTH_CODES && space > 0; ++i) {
|
|
const int code_len_idx = kCodeLengthCodeOrder[i];
|
|
const HuffmanCode* p = huff;
|
|
uint8_t v;
|
|
BrotliFillBitWindow(br);
|
|
p += (br->val_ >> br->bit_pos_) & 15;
|
|
br->bit_pos_ += p->bits;
|
|
v = (uint8_t)p->value;
|
|
code_length_code_lengths[code_len_idx] = v;
|
|
BROTLI_LOG_ARRAY_INDEX(code_length_code_lengths, code_len_idx);
|
|
if (v != 0) {
|
|
space -= (32 >> v);
|
|
++num_codes;
|
|
}
|
|
}
|
|
ok = (num_codes == 1 || space == 0) &&
|
|
ReadHuffmanCodeLengths(code_length_code_lengths,
|
|
alphabet_size, code_lengths, br);
|
|
}
|
|
if (ok) {
|
|
table_size = BrotliBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
|
|
code_lengths, alphabet_size);
|
|
if (table_size == 0) {
|
|
printf("[ReadHuffmanCode] BuildHuffmanTable failed: ");
|
|
PrintUcharVector(code_lengths, alphabet_size);
|
|
}
|
|
}
|
|
free(code_lengths);
|
|
return table_size;
|
|
}
|
|
|
|
static BROTLI_INLINE int ReadBlockLength(const HuffmanCode* table,
|
|
BrotliBitReader* br) {
|
|
int code;
|
|
int nbits;
|
|
code = ReadSymbol(table, br);
|
|
nbits = kBlockLengthPrefixCode[code].nbits;
|
|
return kBlockLengthPrefixCode[code].offset + (int)BrotliReadBits(br, nbits);
|
|
}
|
|
|
|
static int TranslateShortCodes(int code, int* ringbuffer, int index) {
|
|
int val;
|
|
if (code < NUM_DISTANCE_SHORT_CODES) {
|
|
index += kDistanceShortCodeIndexOffset[code];
|
|
index &= 3;
|
|
val = ringbuffer[index] + kDistanceShortCodeValueOffset[code];
|
|
} else {
|
|
val = code - NUM_DISTANCE_SHORT_CODES + 1;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void MoveToFront(uint8_t* v, uint8_t index) {
|
|
uint8_t value = v[index];
|
|
uint8_t i = index;
|
|
for (; i; --i) v[i] = v[i - 1];
|
|
v[0] = value;
|
|
}
|
|
|
|
static void InverseMoveToFrontTransform(uint8_t* v, int v_len) {
|
|
uint8_t mtf[256];
|
|
int i;
|
|
for (i = 0; i < 256; ++i) {
|
|
mtf[i] = (uint8_t)i;
|
|
}
|
|
for (i = 0; i < v_len; ++i) {
|
|
uint8_t index = v[i];
|
|
v[i] = mtf[index];
|
|
if (index) MoveToFront(mtf, index);
|
|
}
|
|
}
|
|
|
|
/* Contains a collection of huffman trees with the same alphabet size. */
|
|
typedef struct {
|
|
int alphabet_size;
|
|
int num_htrees;
|
|
HuffmanCode* codes;
|
|
HuffmanCode** htrees;
|
|
} HuffmanTreeGroup;
|
|
|
|
static void HuffmanTreeGroupInit(HuffmanTreeGroup* group, int alphabet_size,
|
|
int ntrees) {
|
|
group->alphabet_size = alphabet_size;
|
|
group->num_htrees = ntrees;
|
|
group->codes = (HuffmanCode*)malloc(
|
|
sizeof(HuffmanCode) * (size_t)(ntrees * HUFFMAN_MAX_TABLE_SIZE));
|
|
group->htrees = (HuffmanCode**)malloc(sizeof(HuffmanCode*) * (size_t)ntrees);
|
|
}
|
|
|
|
static void HuffmanTreeGroupRelease(HuffmanTreeGroup* group) {
|
|
if (group->codes) {
|
|
free(group->codes);
|
|
}
|
|
if (group->htrees) {
|
|
free(group->htrees);
|
|
}
|
|
}
|
|
|
|
static int HuffmanTreeGroupDecode(HuffmanTreeGroup* group,
|
|
BrotliBitReader* br) {
|
|
int i;
|
|
int table_size;
|
|
HuffmanCode* next = group->codes;
|
|
for (i = 0; i < group->num_htrees; ++i) {
|
|
group->htrees[i] = next;
|
|
table_size = ReadHuffmanCode(group->alphabet_size, next, br);
|
|
next += table_size;
|
|
if (table_size == 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int DecodeContextMap(int context_map_size,
|
|
int* num_htrees,
|
|
uint8_t** context_map,
|
|
BrotliBitReader* br) {
|
|
int ok = 1;
|
|
int use_rle_for_zeros;
|
|
int max_run_length_prefix = 0;
|
|
HuffmanCode* table;
|
|
int i;
|
|
if (!BrotliReadMoreInput(br)) {
|
|
printf("[DecodeContextMap] Unexpected end of input.\n");
|
|
return 0;
|
|
}
|
|
*num_htrees = DecodeVarLenUint8(br) + 1;
|
|
|
|
BROTLI_LOG_UINT(context_map_size);
|
|
BROTLI_LOG_UINT(*num_htrees);
|
|
|
|
*context_map = (uint8_t*)malloc((size_t)context_map_size);
|
|
if (*context_map == 0) {
|
|
return 0;
|
|
}
|
|
if (*num_htrees <= 1) {
|
|
memset(*context_map, 0, (size_t)context_map_size);
|
|
return 1;
|
|
}
|
|
|
|
use_rle_for_zeros = (int)BrotliReadBits(br, 1);
|
|
if (use_rle_for_zeros) {
|
|
max_run_length_prefix = (int)BrotliReadBits(br, 4) + 1;
|
|
}
|
|
table = (HuffmanCode*)malloc(HUFFMAN_MAX_TABLE_SIZE * sizeof(*table));
|
|
if (table == NULL) {
|
|
return 0;
|
|
}
|
|
if (!ReadHuffmanCode(*num_htrees + max_run_length_prefix, table, br)) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
for (i = 0; i < context_map_size;) {
|
|
int code;
|
|
if (!BrotliReadMoreInput(br)) {
|
|
printf("[DecodeContextMap] Unexpected end of input.\n");
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
code = ReadSymbol(table, br);
|
|
if (code == 0) {
|
|
(*context_map)[i] = 0;
|
|
++i;
|
|
} else if (code <= max_run_length_prefix) {
|
|
int reps = 1 + (1 << code) + (int)BrotliReadBits(br, code);
|
|
while (--reps) {
|
|
if (i >= context_map_size) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
(*context_map)[i] = 0;
|
|
++i;
|
|
}
|
|
} else {
|
|
(*context_map)[i] = (uint8_t)(code - max_run_length_prefix);
|
|
++i;
|
|
}
|
|
}
|
|
if (BrotliReadBits(br, 1)) {
|
|
InverseMoveToFrontTransform(*context_map, context_map_size);
|
|
}
|
|
End:
|
|
free(table);
|
|
return ok;
|
|
}
|
|
|
|
static BROTLI_INLINE void DecodeBlockType(const int max_block_type,
|
|
const HuffmanCode* trees,
|
|
int tree_type,
|
|
int* block_types,
|
|
int* ringbuffers,
|
|
int* indexes,
|
|
BrotliBitReader* br) {
|
|
int* ringbuffer = ringbuffers + tree_type * 2;
|
|
int* index = indexes + tree_type;
|
|
int type_code = ReadSymbol(&trees[tree_type * HUFFMAN_MAX_TABLE_SIZE], br);
|
|
int block_type;
|
|
if (type_code == 0) {
|
|
block_type = ringbuffer[*index & 1];
|
|
} else if (type_code == 1) {
|
|
block_type = ringbuffer[(*index - 1) & 1] + 1;
|
|
} else {
|
|
block_type = type_code - 2;
|
|
}
|
|
if (block_type >= max_block_type) {
|
|
block_type -= max_block_type;
|
|
}
|
|
block_types[tree_type] = block_type;
|
|
ringbuffer[(*index) & 1] = block_type;
|
|
++(*index);
|
|
}
|
|
|
|
/* Copy len bytes from src to dst. It can write up to ten extra bytes
|
|
after the end of the copy.
|
|
|
|
The main part of this loop is a simple copy of eight bytes at a time until
|
|
we've copied (at least) the requested amount of bytes. However, if dst and
|
|
src are less than eight bytes apart (indicating a repeating pattern of
|
|
length < 8), we first need to expand the pattern in order to get the correct
|
|
results. For instance, if the buffer looks like this, with the eight-byte
|
|
<src> and <dst> patterns marked as intervals:
|
|
|
|
abxxxxxxxxxxxx
|
|
[------] src
|
|
[------] dst
|
|
|
|
a single eight-byte copy from <src> to <dst> will repeat the pattern once,
|
|
after which we can move <dst> two bytes without moving <src>:
|
|
|
|
ababxxxxxxxxxx
|
|
[------] src
|
|
[------] dst
|
|
|
|
and repeat the exercise until the two no longer overlap.
|
|
|
|
This allows us to do very well in the special case of one single byte
|
|
repeated many times, without taking a big hit for more general cases.
|
|
|
|
The worst case of extra writing past the end of the match occurs when
|
|
dst - src == 1 and len == 1; the last copy will read from byte positions
|
|
[0..7] and write to [4..11], whereas it was only supposed to write to
|
|
position 1. Thus, ten excess bytes.
|
|
*/
|
|
static BROTLI_INLINE void IncrementalCopyFastPath(
|
|
uint8_t* dst, const uint8_t* src, int len) {
|
|
if (src < dst) {
|
|
while (dst - src < 8) {
|
|
UNALIGNED_COPY64(dst, src);
|
|
len -= (int)(dst - src);
|
|
dst += dst - src;
|
|
}
|
|
}
|
|
while (len > 0) {
|
|
UNALIGNED_COPY64(dst, src);
|
|
src += 8;
|
|
dst += 8;
|
|
len -= 8;
|
|
}
|
|
}
|
|
|
|
int CopyUncompressedBlockToOutput(BrotliOutput output, int len, int pos,
|
|
uint8_t* ringbuffer, int ringbuffer_mask,
|
|
BrotliBitReader* br) {
|
|
const int rb_size = ringbuffer_mask + 1;
|
|
uint8_t* ringbuffer_end = ringbuffer + rb_size;
|
|
int rb_pos = pos & ringbuffer_mask;
|
|
int br_pos = br->pos_ & BROTLI_IBUF_MASK;
|
|
int nbytes;
|
|
|
|
/* For short lengths copy byte-by-byte */
|
|
if (len < 8 || br->bit_pos_ + (uint32_t)(len << 3) < br->bit_end_pos_) {
|
|
while (len-- > 0) {
|
|
if (!BrotliReadMoreInput(br)) {
|
|
return 0;
|
|
}
|
|
ringbuffer[rb_pos++]= (uint8_t)BrotliReadBits(br, 8);
|
|
if (rb_pos == rb_size) {
|
|
if (BrotliWrite(output, ringbuffer, (size_t)rb_size) < rb_size) {
|
|
return 0;
|
|
}
|
|
rb_pos = 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (br->bit_end_pos_ < 64) {
|
|
return 0;
|
|
}
|
|
|
|
/* Copy remaining 0-8 bytes from br->val_ to ringbuffer. */
|
|
while (br->bit_pos_ < 64) {
|
|
ringbuffer[rb_pos] = (uint8_t)(br->val_ >> br->bit_pos_);
|
|
br->bit_pos_ += 8;
|
|
++rb_pos;
|
|
--len;
|
|
}
|
|
|
|
/* Copy remaining bytes from br->buf_ to ringbuffer. */
|
|
nbytes = (int)(br->bit_end_pos_ - br->bit_pos_) >> 3;
|
|
if (br_pos + nbytes > BROTLI_IBUF_MASK) {
|
|
int tail = BROTLI_IBUF_MASK + 1 - br_pos;
|
|
memcpy(&ringbuffer[rb_pos], &br->buf_[br_pos], (size_t)tail);
|
|
nbytes -= tail;
|
|
rb_pos += tail;
|
|
len -= tail;
|
|
br_pos = 0;
|
|
}
|
|
memcpy(&ringbuffer[rb_pos], &br->buf_[br_pos], (size_t)nbytes);
|
|
rb_pos += nbytes;
|
|
len -= nbytes;
|
|
|
|
/* If we wrote past the logical end of the ringbuffer, copy the tail of the
|
|
ringbuffer to its beginning and flush the ringbuffer to the output. */
|
|
if (rb_pos >= rb_size) {
|
|
if (BrotliWrite(output, ringbuffer, (size_t)rb_size) < rb_size) {
|
|
return 0;
|
|
}
|
|
rb_pos -= rb_size;
|
|
memcpy(ringbuffer, ringbuffer_end, (size_t)rb_pos);
|
|
}
|
|
|
|
/* If we have more to copy than the remaining size of the ringbuffer, then we
|
|
first fill the ringbuffer from the input and then flush the ringbuffer to
|
|
the output */
|
|
while (rb_pos + len >= rb_size) {
|
|
nbytes = rb_size - rb_pos;
|
|
if (BrotliRead(br->input_, &ringbuffer[rb_pos], (size_t)nbytes) < nbytes ||
|
|
BrotliWrite(output, ringbuffer, (size_t)rb_size) < nbytes) {
|
|
return 0;
|
|
}
|
|
len -= nbytes;
|
|
rb_pos = 0;
|
|
}
|
|
|
|
/* Copy straight from the input onto the ringbuffer. The ringbuffer will be
|
|
flushed to the output at a later time. */
|
|
if (BrotliRead(br->input_, &ringbuffer[rb_pos], (size_t)len) < len) {
|
|
return 0;
|
|
}
|
|
|
|
/* Restore the state of the bit reader. */
|
|
BrotliInitBitReader(br, br->input_);
|
|
return 1;
|
|
}
|
|
|
|
int BrotliDecompressedSize(size_t encoded_size,
|
|
const uint8_t* encoded_buffer,
|
|
size_t* decoded_size) {
|
|
BrotliMemInput memin;
|
|
BrotliInput input = BrotliInitMemInput(encoded_buffer, encoded_size, &memin);
|
|
BrotliBitReader br;
|
|
int meta_block_len;
|
|
int input_end;
|
|
int is_uncompressed;
|
|
if (!BrotliInitBitReader(&br, input)) {
|
|
return 0;
|
|
}
|
|
DecodeWindowBits(&br);
|
|
DecodeMetaBlockLength(&br, &meta_block_len, &input_end, &is_uncompressed);
|
|
if (!input_end) {
|
|
return 0;
|
|
}
|
|
*decoded_size = (size_t)meta_block_len;
|
|
return 1;
|
|
}
|
|
|
|
int BrotliDecompressBuffer(size_t encoded_size,
|
|
const uint8_t* encoded_buffer,
|
|
size_t* decoded_size,
|
|
uint8_t* decoded_buffer) {
|
|
BrotliMemInput memin;
|
|
BrotliInput in = BrotliInitMemInput(encoded_buffer, encoded_size, &memin);
|
|
BrotliMemOutput mout;
|
|
BrotliOutput out = BrotliInitMemOutput(decoded_buffer, *decoded_size, &mout);
|
|
int success = BrotliDecompress(in, out);
|
|
*decoded_size = mout.pos;
|
|
return success;
|
|
}
|
|
|
|
int BrotliDecompress(BrotliInput input, BrotliOutput output) {
|
|
int ok = 1;
|
|
int i;
|
|
int pos = 0;
|
|
int input_end = 0;
|
|
int window_bits = 0;
|
|
int max_backward_distance;
|
|
int max_distance = 0;
|
|
int ringbuffer_size;
|
|
int ringbuffer_mask;
|
|
uint8_t* ringbuffer;
|
|
uint8_t* ringbuffer_end;
|
|
/* This ring buffer holds a few past copy distances that will be used by */
|
|
/* some special distance codes. */
|
|
int dist_rb[4] = { 16, 15, 11, 4 };
|
|
int dist_rb_idx = 0;
|
|
/* The previous 2 bytes used for context. */
|
|
uint8_t prev_byte1 = 0;
|
|
uint8_t prev_byte2 = 0;
|
|
HuffmanTreeGroup hgroup[3];
|
|
HuffmanCode* block_type_trees = NULL;
|
|
HuffmanCode* block_len_trees = NULL;
|
|
BrotliBitReader br;
|
|
|
|
/* We need the slack region for the following reasons:
|
|
- always doing two 8-byte copies for fast backward copying
|
|
- transforms
|
|
- flushing the input ringbuffer when decoding uncompressed blocks */
|
|
static const int kRingBufferWriteAheadSlack = 128 + BROTLI_READ_SIZE;
|
|
|
|
if (!BrotliInitBitReader(&br, input)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Decode window size. */
|
|
window_bits = DecodeWindowBits(&br);
|
|
max_backward_distance = (1 << window_bits) - 16;
|
|
|
|
ringbuffer_size = 1 << window_bits;
|
|
ringbuffer_mask = ringbuffer_size - 1;
|
|
ringbuffer = (uint8_t*)malloc((size_t)(ringbuffer_size +
|
|
kRingBufferWriteAheadSlack +
|
|
kMaxDictionaryWordLength));
|
|
if (!ringbuffer) {
|
|
ok = 0;
|
|
}
|
|
ringbuffer_end = ringbuffer + ringbuffer_size;
|
|
|
|
if (ok) {
|
|
block_type_trees = (HuffmanCode*)malloc(
|
|
3 * HUFFMAN_MAX_TABLE_SIZE * sizeof(HuffmanCode));
|
|
block_len_trees = (HuffmanCode*)malloc(
|
|
3 * HUFFMAN_MAX_TABLE_SIZE * sizeof(HuffmanCode));
|
|
if (block_type_trees == NULL || block_len_trees == NULL) {
|
|
ok = 0;
|
|
}
|
|
}
|
|
|
|
while (!input_end && ok) {
|
|
int meta_block_remaining_len = 0;
|
|
int is_uncompressed;
|
|
int block_length[3] = { 1 << 28, 1 << 28, 1 << 28 };
|
|
int block_type[3] = { 0 };
|
|
int num_block_types[3] = { 1, 1, 1 };
|
|
int block_type_rb[6] = { 0, 1, 0, 1, 0, 1 };
|
|
int block_type_rb_index[3] = { 0 };
|
|
int distance_postfix_bits;
|
|
int num_direct_distance_codes;
|
|
int distance_postfix_mask;
|
|
int num_distance_codes;
|
|
uint8_t* context_map = NULL;
|
|
uint8_t* context_modes = NULL;
|
|
int num_literal_htrees;
|
|
uint8_t* dist_context_map = NULL;
|
|
int num_dist_htrees;
|
|
int context_offset = 0;
|
|
uint8_t* context_map_slice = NULL;
|
|
uint8_t literal_htree_index = 0;
|
|
int dist_context_offset = 0;
|
|
uint8_t* dist_context_map_slice = NULL;
|
|
uint8_t dist_htree_index = 0;
|
|
int context_lookup_offset1 = 0;
|
|
int context_lookup_offset2 = 0;
|
|
uint8_t context_mode;
|
|
HuffmanCode* htree_command;
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
hgroup[i].codes = NULL;
|
|
hgroup[i].htrees = NULL;
|
|
}
|
|
|
|
if (!BrotliReadMoreInput(&br)) {
|
|
printf("[BrotliDecompress] Unexpected end of input.\n");
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
BROTLI_LOG_UINT(pos);
|
|
DecodeMetaBlockLength(&br, &meta_block_remaining_len,
|
|
&input_end, &is_uncompressed);
|
|
BROTLI_LOG_UINT(meta_block_remaining_len);
|
|
if (meta_block_remaining_len == 0) {
|
|
goto End;
|
|
}
|
|
if (is_uncompressed) {
|
|
BrotliSetBitPos(&br, (br.bit_pos_ + 7) & (uint32_t)(~7UL));
|
|
ok = CopyUncompressedBlockToOutput(output, meta_block_remaining_len, pos,
|
|
ringbuffer, ringbuffer_mask, &br);
|
|
pos += meta_block_remaining_len;
|
|
goto End;
|
|
}
|
|
for (i = 0; i < 3; ++i) {
|
|
num_block_types[i] = DecodeVarLenUint8(&br) + 1;
|
|
if (num_block_types[i] >= 2) {
|
|
if (!ReadHuffmanCode(num_block_types[i] + 2,
|
|
&block_type_trees[i * HUFFMAN_MAX_TABLE_SIZE],
|
|
&br) ||
|
|
!ReadHuffmanCode(kNumBlockLengthCodes,
|
|
&block_len_trees[i * HUFFMAN_MAX_TABLE_SIZE],
|
|
&br)) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
block_length[i] = ReadBlockLength(
|
|
&block_len_trees[i * HUFFMAN_MAX_TABLE_SIZE], &br);
|
|
block_type_rb_index[i] = 1;
|
|
}
|
|
}
|
|
|
|
BROTLI_LOG_UINT(num_block_types[0]);
|
|
BROTLI_LOG_UINT(num_block_types[1]);
|
|
BROTLI_LOG_UINT(num_block_types[2]);
|
|
BROTLI_LOG_UINT(block_length[0]);
|
|
BROTLI_LOG_UINT(block_length[1]);
|
|
BROTLI_LOG_UINT(block_length[2]);
|
|
|
|
if (!BrotliReadMoreInput(&br)) {
|
|
printf("[BrotliDecompress] Unexpected end of input.\n");
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
distance_postfix_bits = (int)BrotliReadBits(&br, 2);
|
|
num_direct_distance_codes = NUM_DISTANCE_SHORT_CODES +
|
|
((int)BrotliReadBits(&br, 4) << distance_postfix_bits);
|
|
distance_postfix_mask = (1 << distance_postfix_bits) - 1;
|
|
num_distance_codes = (num_direct_distance_codes +
|
|
(48 << distance_postfix_bits));
|
|
context_modes = (uint8_t*)malloc((size_t)num_block_types[0]);
|
|
if (context_modes == 0) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
for (i = 0; i < num_block_types[0]; ++i) {
|
|
context_modes[i] = (uint8_t)(BrotliReadBits(&br, 2) << 1);
|
|
BROTLI_LOG_ARRAY_INDEX(context_modes, i);
|
|
}
|
|
BROTLI_LOG_UINT(num_direct_distance_codes);
|
|
BROTLI_LOG_UINT(distance_postfix_bits);
|
|
|
|
if (!DecodeContextMap(num_block_types[0] << kLiteralContextBits,
|
|
&num_literal_htrees, &context_map, &br) ||
|
|
!DecodeContextMap(num_block_types[2] << kDistanceContextBits,
|
|
&num_dist_htrees, &dist_context_map, &br)) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
|
|
HuffmanTreeGroupInit(&hgroup[0], kNumLiteralCodes, num_literal_htrees);
|
|
HuffmanTreeGroupInit(&hgroup[1], kNumInsertAndCopyCodes,
|
|
num_block_types[1]);
|
|
HuffmanTreeGroupInit(&hgroup[2], num_distance_codes, num_dist_htrees);
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
if (!HuffmanTreeGroupDecode(&hgroup[i], &br)) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
}
|
|
|
|
context_map_slice = context_map;
|
|
dist_context_map_slice = dist_context_map;
|
|
context_mode = context_modes[block_type[0]];
|
|
context_lookup_offset1 = kContextLookupOffsets[context_mode];
|
|
context_lookup_offset2 = kContextLookupOffsets[context_mode + 1];
|
|
htree_command = hgroup[1].htrees[0];
|
|
|
|
while (meta_block_remaining_len > 0) {
|
|
int cmd_code;
|
|
int range_idx;
|
|
int insert_code;
|
|
int copy_code;
|
|
int insert_length;
|
|
int copy_length;
|
|
int distance_code;
|
|
int distance;
|
|
uint8_t context;
|
|
int j;
|
|
const uint8_t* copy_src;
|
|
uint8_t* copy_dst;
|
|
if (!BrotliReadMoreInput(&br)) {
|
|
printf("[BrotliDecompress] Unexpected end of input.\n");
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
if (block_length[1] == 0) {
|
|
DecodeBlockType(num_block_types[1],
|
|
block_type_trees, 1, block_type, block_type_rb,
|
|
block_type_rb_index, &br);
|
|
block_length[1] = ReadBlockLength(
|
|
&block_len_trees[HUFFMAN_MAX_TABLE_SIZE], &br);
|
|
htree_command = hgroup[1].htrees[block_type[1]];
|
|
}
|
|
--block_length[1];
|
|
cmd_code = ReadSymbol(htree_command, &br);
|
|
range_idx = cmd_code >> 6;
|
|
if (range_idx >= 2) {
|
|
range_idx -= 2;
|
|
distance_code = -1;
|
|
} else {
|
|
distance_code = 0;
|
|
}
|
|
insert_code = kInsertRangeLut[range_idx] + ((cmd_code >> 3) & 7);
|
|
copy_code = kCopyRangeLut[range_idx] + (cmd_code & 7);
|
|
insert_length = kInsertLengthPrefixCode[insert_code].offset +
|
|
(int)BrotliReadBits(&br, kInsertLengthPrefixCode[insert_code].nbits);
|
|
copy_length = kCopyLengthPrefixCode[copy_code].offset +
|
|
(int)BrotliReadBits(&br, kCopyLengthPrefixCode[copy_code].nbits);
|
|
BROTLI_LOG_UINT(insert_length);
|
|
BROTLI_LOG_UINT(copy_length);
|
|
BROTLI_LOG_UINT(distance_code);
|
|
for (j = 0; j < insert_length; ++j) {
|
|
if (!BrotliReadMoreInput(&br)) {
|
|
printf("[BrotliDecompress] Unexpected end of input.\n");
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
if (block_length[0] == 0) {
|
|
DecodeBlockType(num_block_types[0],
|
|
block_type_trees, 0, block_type, block_type_rb,
|
|
block_type_rb_index, &br);
|
|
block_length[0] = ReadBlockLength(block_len_trees, &br);
|
|
context_offset = block_type[0] << kLiteralContextBits;
|
|
context_map_slice = context_map + context_offset;
|
|
context_mode = context_modes[block_type[0]];
|
|
context_lookup_offset1 = kContextLookupOffsets[context_mode];
|
|
context_lookup_offset2 = kContextLookupOffsets[context_mode + 1];
|
|
}
|
|
context = (kContextLookup[context_lookup_offset1 + prev_byte1] |
|
|
kContextLookup[context_lookup_offset2 + prev_byte2]);
|
|
BROTLI_LOG_UINT(context);
|
|
literal_htree_index = context_map_slice[context];
|
|
--block_length[0];
|
|
prev_byte2 = prev_byte1;
|
|
prev_byte1 = (uint8_t)ReadSymbol(hgroup[0].htrees[literal_htree_index],
|
|
&br);
|
|
ringbuffer[pos & ringbuffer_mask] = prev_byte1;
|
|
BROTLI_LOG_UINT(literal_htree_index);
|
|
BROTLI_LOG_ARRAY_INDEX(ringbuffer, pos & ringbuffer_mask);
|
|
if ((pos & ringbuffer_mask) == ringbuffer_mask) {
|
|
if (BrotliWrite(output, ringbuffer, (size_t)ringbuffer_size) < 0) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
}
|
|
++pos;
|
|
}
|
|
meta_block_remaining_len -= insert_length;
|
|
if (meta_block_remaining_len <= 0) break;
|
|
|
|
if (distance_code < 0) {
|
|
uint8_t context;
|
|
if (!BrotliReadMoreInput(&br)) {
|
|
printf("[BrotliDecompress] Unexpected end of input.\n");
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
if (block_length[2] == 0) {
|
|
DecodeBlockType(num_block_types[2],
|
|
block_type_trees, 2, block_type, block_type_rb,
|
|
block_type_rb_index, &br);
|
|
block_length[2] = ReadBlockLength(
|
|
&block_len_trees[2 * HUFFMAN_MAX_TABLE_SIZE], &br);
|
|
dist_htree_index = (uint8_t)block_type[2];
|
|
dist_context_offset = block_type[2] << kDistanceContextBits;
|
|
dist_context_map_slice = dist_context_map + dist_context_offset;
|
|
}
|
|
--block_length[2];
|
|
context = (uint8_t)(copy_length > 4 ? 3 : copy_length - 2);
|
|
dist_htree_index = dist_context_map_slice[context];
|
|
distance_code = ReadSymbol(hgroup[2].htrees[dist_htree_index], &br);
|
|
if (distance_code >= num_direct_distance_codes) {
|
|
int nbits;
|
|
int postfix;
|
|
int offset;
|
|
distance_code -= num_direct_distance_codes;
|
|
postfix = distance_code & distance_postfix_mask;
|
|
distance_code >>= distance_postfix_bits;
|
|
nbits = (distance_code >> 1) + 1;
|
|
offset = ((2 + (distance_code & 1)) << nbits) - 4;
|
|
distance_code = num_direct_distance_codes +
|
|
((offset + (int)BrotliReadBits(&br, nbits)) <<
|
|
distance_postfix_bits) + postfix;
|
|
}
|
|
}
|
|
|
|
/* Convert the distance code to the actual distance by possibly looking */
|
|
/* up past distnaces from the ringbuffer. */
|
|
distance = TranslateShortCodes(distance_code, dist_rb, dist_rb_idx);
|
|
if (distance < 0) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
BROTLI_LOG_UINT(distance);
|
|
|
|
if (pos < max_backward_distance &&
|
|
max_distance != max_backward_distance) {
|
|
max_distance = pos;
|
|
} else {
|
|
max_distance = max_backward_distance;
|
|
}
|
|
|
|
copy_dst = &ringbuffer[pos & ringbuffer_mask];
|
|
|
|
if (distance > max_distance) {
|
|
if (copy_length >= kMinDictionaryWordLength &&
|
|
copy_length <= kMaxDictionaryWordLength) {
|
|
int offset = kBrotliDictionaryOffsetsByLength[copy_length];
|
|
int word_id = distance - max_distance - 1;
|
|
int shift = kBrotliDictionarySizeBitsByLength[copy_length];
|
|
int mask = (1 << shift) - 1;
|
|
int word_idx = word_id & mask;
|
|
int transform_idx = word_id >> shift;
|
|
offset += word_idx * copy_length;
|
|
if (transform_idx < kNumTransforms) {
|
|
const uint8_t* word = &kBrotliDictionary[offset];
|
|
int len = TransformDictionaryWord(
|
|
copy_dst, word, copy_length, transform_idx);
|
|
copy_dst += len;
|
|
pos += len;
|
|
meta_block_remaining_len -= len;
|
|
if (copy_dst >= ringbuffer_end) {
|
|
if (BrotliWrite(output, ringbuffer,
|
|
(size_t)ringbuffer_size) < 0) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
memcpy(ringbuffer, ringbuffer_end,
|
|
(size_t)(copy_dst - ringbuffer_end));
|
|
}
|
|
} else {
|
|
printf("Invalid backward reference. pos: %d distance: %d "
|
|
"len: %d bytes left: %d\n", pos, distance, copy_length,
|
|
meta_block_remaining_len);
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
} else {
|
|
printf("Invalid backward reference. pos: %d distance: %d "
|
|
"len: %d bytes left: %d\n", pos, distance, copy_length,
|
|
meta_block_remaining_len);
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
} else {
|
|
if (distance_code > 0) {
|
|
dist_rb[dist_rb_idx & 3] = distance;
|
|
++dist_rb_idx;
|
|
}
|
|
|
|
if (copy_length > meta_block_remaining_len) {
|
|
printf("Invalid backward reference. pos: %d distance: %d "
|
|
"len: %d bytes left: %d\n", pos, distance, copy_length,
|
|
meta_block_remaining_len);
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
|
|
copy_src = &ringbuffer[(pos - distance) & ringbuffer_mask];
|
|
|
|
#if (defined(__x86_64__) || defined(_M_X64))
|
|
if (copy_src + copy_length <= ringbuffer_end &&
|
|
copy_dst + copy_length < ringbuffer_end) {
|
|
if (copy_length <= 16 && distance >= 8) {
|
|
UNALIGNED_COPY64(copy_dst, copy_src);
|
|
UNALIGNED_COPY64(copy_dst + 8, copy_src + 8);
|
|
} else {
|
|
IncrementalCopyFastPath(copy_dst, copy_src, copy_length);
|
|
}
|
|
pos += copy_length;
|
|
meta_block_remaining_len -= copy_length;
|
|
copy_length = 0;
|
|
}
|
|
#endif
|
|
|
|
for (j = 0; j < copy_length; ++j) {
|
|
ringbuffer[pos & ringbuffer_mask] =
|
|
ringbuffer[(pos - distance) & ringbuffer_mask];
|
|
if ((pos & ringbuffer_mask) == ringbuffer_mask) {
|
|
if (BrotliWrite(output, ringbuffer, (size_t)ringbuffer_size) < 0) {
|
|
ok = 0;
|
|
goto End;
|
|
}
|
|
}
|
|
++pos;
|
|
--meta_block_remaining_len;
|
|
}
|
|
}
|
|
|
|
/* When we get here, we must have inserted at least one literal and */
|
|
/* made a copy of at least length two, therefore accessing the last 2 */
|
|
/* bytes is valid. */
|
|
prev_byte1 = ringbuffer[(pos - 1) & ringbuffer_mask];
|
|
prev_byte2 = ringbuffer[(pos - 2) & ringbuffer_mask];
|
|
}
|
|
|
|
/* Protect pos from overflow, wrap it around at every GB of input data */
|
|
pos &= 0x3fffffff;
|
|
|
|
End:
|
|
if (context_modes != 0) {
|
|
free(context_modes);
|
|
}
|
|
if (context_map != 0) {
|
|
free(context_map);
|
|
}
|
|
if (dist_context_map != 0) {
|
|
free(dist_context_map);
|
|
}
|
|
for (i = 0; i < 3; ++i) {
|
|
HuffmanTreeGroupRelease(&hgroup[i]);
|
|
}
|
|
}
|
|
|
|
if (ringbuffer != 0) {
|
|
if (BrotliWrite(output, ringbuffer, (size_t)(pos & ringbuffer_mask)) < 0) {
|
|
ok = 0;
|
|
}
|
|
free(ringbuffer);
|
|
}
|
|
if (block_type_trees != 0) {
|
|
free(block_type_trees);
|
|
}
|
|
if (block_len_trees != 0) {
|
|
free(block_len_trees);
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
} /* extern "C" */
|
|
#endif
|