зеркало из https://github.com/mozilla/gecko-dev.git
145 строки
3.8 KiB
JavaScript
145 строки
3.8 KiB
JavaScript
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
"use strict";
|
|
|
|
/**
|
|
* Returns a matrix for the scaling given.
|
|
* Calling `scale()` or `scale(1) returns a new identity matrix.
|
|
*
|
|
* @param {Number} [sx = 1]
|
|
* the abscissa of the scaling vector.
|
|
* If unspecified, it will equal to `1`.
|
|
* @param {Number} [sy = sx]
|
|
* The ordinate of the scaling vector.
|
|
* If not present, its default value is `sx`, leading to a uniform scaling.
|
|
* @return {Array}
|
|
* The new matrix.
|
|
*/
|
|
const scale = (sx = 1, sy = sx) => [
|
|
sx, 0, 0,
|
|
0, sy, 0,
|
|
0, 0, 1
|
|
];
|
|
exports.scale = scale;
|
|
|
|
/**
|
|
* Returns a matrix for the translation given.
|
|
* Calling `translate()` or `translate(0) returns a new identity matrix.
|
|
*
|
|
* @param {Number} [tx = 0]
|
|
* The abscissa of the translating vector.
|
|
* If unspecified, it will equal to `0`.
|
|
* @param {Number} [ty = tx]
|
|
* The ordinate of the translating vector.
|
|
* If unspecified, it will equal to `tx`.
|
|
* @return {Array}
|
|
* The new matrix.
|
|
*/
|
|
const translate = (tx = 0, ty = tx) => [
|
|
1, 0, tx,
|
|
0, 1, ty,
|
|
0, 0, 1
|
|
];
|
|
exports.translate = translate;
|
|
|
|
/**
|
|
* Returns a new identity matrix.
|
|
*
|
|
* @return {Array}
|
|
* The new matrix.
|
|
*/
|
|
const identity = () => [
|
|
1, 0, 0,
|
|
0, 1, 0,
|
|
0, 0, 1
|
|
];
|
|
exports.identity = identity;
|
|
|
|
/**
|
|
* Multiplies two matrices and returns a new matrix with the result.
|
|
*
|
|
* @param {Array} M1
|
|
* The first operand.
|
|
* @param {Array} M2
|
|
* The second operand.
|
|
* @return {Array}
|
|
* The resulting matrix.
|
|
*/
|
|
const multiply = (M1, M2) => {
|
|
let c11 = M1[0] * M2[0] + M1[1] * M2[3] + M1[2] * M2[6];
|
|
let c12 = M1[0] * M2[1] + M1[1] * M2[4] + M1[2] * M2[7];
|
|
let c13 = M1[0] * M2[2] + M1[1] * M2[5] + M1[2] * M2[8];
|
|
|
|
let c21 = M1[3] * M2[0] + M1[4] * M2[3] + M1[5] * M2[6];
|
|
let c22 = M1[3] * M2[1] + M1[4] * M2[4] + M1[5] * M2[7];
|
|
let c23 = M1[3] * M2[2] + M1[4] * M2[5] + M1[5] * M2[8];
|
|
|
|
let c31 = M1[6] * M2[0] + M1[7] * M2[3] + M1[8] * M2[6];
|
|
let c32 = M1[6] * M2[1] + M1[7] * M2[4] + M1[8] * M2[7];
|
|
let c33 = M1[6] * M2[2] + M1[7] * M2[5] + M1[8] * M2[8];
|
|
|
|
return [
|
|
c11, c12, c13,
|
|
c21, c22, c23,
|
|
c31, c32, c33
|
|
];
|
|
};
|
|
exports.multiply = multiply;
|
|
|
|
/**
|
|
* Applies the given matrix to a point.
|
|
*
|
|
* @param {Array} M
|
|
* The matrix to apply.
|
|
* @param {Array} P
|
|
* The point's vector.
|
|
* @return {Array}
|
|
* The resulting point's vector.
|
|
*/
|
|
const apply = (M, P) => [
|
|
M[0] * P[0] + M[1] * P[1] + M[2],
|
|
M[3] * P[0] + M[4] * P[1] + M[5],
|
|
];
|
|
exports.apply = apply;
|
|
|
|
/**
|
|
* Returns `true` if the given matrix is a identity matrix.
|
|
*
|
|
* @param {Array} M
|
|
* The matrix to check
|
|
* @return {Boolean}
|
|
* `true` if the matrix passed is a identity matrix, `false` otherwise.
|
|
*/
|
|
const isIdentity = (M) =>
|
|
M[0] === 1 && M[1] === 0 && M[2] === 0 &&
|
|
M[3] === 0 && M[4] === 1 && M[5] === 0 &&
|
|
M[6] === 0 && M[7] === 0 && M[8] === 1;
|
|
exports.isIdentity = isIdentity;
|
|
|
|
/**
|
|
* Returns the transformation matrix for the given node, relative to the ancestor passed
|
|
* as second argument; considering the ancestor transformation too.
|
|
* If no ancestor is specified, it will returns the transformation matrix relative to the
|
|
* node's parent element.
|
|
*
|
|
* @param {DOMNode} node
|
|
* The node.
|
|
* @param {DOMNode} ancestor
|
|
* The ancestor of the node given.
|
|
** @return {Array}
|
|
* The transformation matrix.
|
|
*/
|
|
function getNodeTransformationMatrix(node, ancestor = node.parentElement) {
|
|
let { a, b, c, d, e, f } = ancestor.getTransformToParent()
|
|
.multiply(node.getTransformToAncestor(ancestor));
|
|
|
|
return [
|
|
a, c, e,
|
|
b, d, f,
|
|
0, 0, 1
|
|
];
|
|
}
|
|
exports.getNodeTransformationMatrix = getNodeTransformationMatrix;
|