gecko-dev/devtools/shared/layout/dom-matrix-2d.js

145 строки
3.8 KiB
JavaScript

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
"use strict";
/**
* Returns a matrix for the scaling given.
* Calling `scale()` or `scale(1) returns a new identity matrix.
*
* @param {Number} [sx = 1]
* the abscissa of the scaling vector.
* If unspecified, it will equal to `1`.
* @param {Number} [sy = sx]
* The ordinate of the scaling vector.
* If not present, its default value is `sx`, leading to a uniform scaling.
* @return {Array}
* The new matrix.
*/
const scale = (sx = 1, sy = sx) => [
sx, 0, 0,
0, sy, 0,
0, 0, 1
];
exports.scale = scale;
/**
* Returns a matrix for the translation given.
* Calling `translate()` or `translate(0) returns a new identity matrix.
*
* @param {Number} [tx = 0]
* The abscissa of the translating vector.
* If unspecified, it will equal to `0`.
* @param {Number} [ty = tx]
* The ordinate of the translating vector.
* If unspecified, it will equal to `tx`.
* @return {Array}
* The new matrix.
*/
const translate = (tx = 0, ty = tx) => [
1, 0, tx,
0, 1, ty,
0, 0, 1
];
exports.translate = translate;
/**
* Returns a new identity matrix.
*
* @return {Array}
* The new matrix.
*/
const identity = () => [
1, 0, 0,
0, 1, 0,
0, 0, 1
];
exports.identity = identity;
/**
* Multiplies two matrices and returns a new matrix with the result.
*
* @param {Array} M1
* The first operand.
* @param {Array} M2
* The second operand.
* @return {Array}
* The resulting matrix.
*/
const multiply = (M1, M2) => {
let c11 = M1[0] * M2[0] + M1[1] * M2[3] + M1[2] * M2[6];
let c12 = M1[0] * M2[1] + M1[1] * M2[4] + M1[2] * M2[7];
let c13 = M1[0] * M2[2] + M1[1] * M2[5] + M1[2] * M2[8];
let c21 = M1[3] * M2[0] + M1[4] * M2[3] + M1[5] * M2[6];
let c22 = M1[3] * M2[1] + M1[4] * M2[4] + M1[5] * M2[7];
let c23 = M1[3] * M2[2] + M1[4] * M2[5] + M1[5] * M2[8];
let c31 = M1[6] * M2[0] + M1[7] * M2[3] + M1[8] * M2[6];
let c32 = M1[6] * M2[1] + M1[7] * M2[4] + M1[8] * M2[7];
let c33 = M1[6] * M2[2] + M1[7] * M2[5] + M1[8] * M2[8];
return [
c11, c12, c13,
c21, c22, c23,
c31, c32, c33
];
};
exports.multiply = multiply;
/**
* Applies the given matrix to a point.
*
* @param {Array} M
* The matrix to apply.
* @param {Array} P
* The point's vector.
* @return {Array}
* The resulting point's vector.
*/
const apply = (M, P) => [
M[0] * P[0] + M[1] * P[1] + M[2],
M[3] * P[0] + M[4] * P[1] + M[5],
];
exports.apply = apply;
/**
* Returns `true` if the given matrix is a identity matrix.
*
* @param {Array} M
* The matrix to check
* @return {Boolean}
* `true` if the matrix passed is a identity matrix, `false` otherwise.
*/
const isIdentity = (M) =>
M[0] === 1 && M[1] === 0 && M[2] === 0 &&
M[3] === 0 && M[4] === 1 && M[5] === 0 &&
M[6] === 0 && M[7] === 0 && M[8] === 1;
exports.isIdentity = isIdentity;
/**
* Returns the transformation matrix for the given node, relative to the ancestor passed
* as second argument; considering the ancestor transformation too.
* If no ancestor is specified, it will returns the transformation matrix relative to the
* node's parent element.
*
* @param {DOMNode} node
* The node.
* @param {DOMNode} ancestor
* The ancestor of the node given.
** @return {Array}
* The transformation matrix.
*/
function getNodeTransformationMatrix(node, ancestor = node.parentElement) {
let { a, b, c, d, e, f } = ancestor.getTransformToParent()
.multiply(node.getTransformToAncestor(ancestor));
return [
a, c, e,
b, d, f,
0, 0, 1
];
}
exports.getNodeTransformationMatrix = getNodeTransformationMatrix;