gecko-dev/toolkit/devtools/acorn/acorn.js

1769 строки
69 KiB
JavaScript

// Acorn is a tiny, fast JavaScript parser written in JavaScript.
//
// Acorn was written by Marijn Haverbeke and released under an MIT
// license. The Unicode regexps (for identifiers and whitespace) were
// taken from [Esprima](http://esprima.org) by Ariya Hidayat.
//
// Git repositories for Acorn are available at
//
// http://marijnhaverbeke.nl/git/acorn
// https://github.com/marijnh/acorn.git
//
// Please use the [github bug tracker][ghbt] to report issues.
//
// [ghbt]: https://github.com/marijnh/acorn/issues
//
// This file defines the main parser interface. The library also comes
// with a [error-tolerant parser][dammit] and an
// [abstract syntax tree walker][walk], defined in other files.
//
// [dammit]: acorn_loose.js
// [walk]: util/walk.js
(function(root, mod) {
if (typeof exports == "object" && typeof module == "object") return mod(exports); // CommonJS
if (typeof define == "function" && define.amd) return define(["exports"], mod); // AMD
mod(root.acorn || (root.acorn = {})); // Plain browser env
})(this, function(exports) {
"use strict";
exports.version = "0.4.1";
// The main exported interface (under `self.acorn` when in the
// browser) is a `parse` function that takes a code string and
// returns an abstract syntax tree as specified by [Mozilla parser
// API][api], with the caveat that the SpiderMonkey-specific syntax
// (`let`, `yield`, inline XML, etc) is not recognized.
//
// [api]: https://developer.mozilla.org/en-US/docs/SpiderMonkey/Parser_API
var options, input, inputLen, sourceFile;
exports.parse = function(inpt, opts) {
input = String(inpt); inputLen = input.length;
setOptions(opts);
initTokenState();
return parseTopLevel(options.program);
};
// A second optional argument can be given to further configure
// the parser process. These options are recognized:
var defaultOptions = exports.defaultOptions = {
// `ecmaVersion` indicates the ECMAScript version to parse. Must
// be either 3 or 5. This
// influences support for strict mode, the set of reserved words, and
// support for getters and setter.
ecmaVersion: 5,
// Turn on `strictSemicolons` to prevent the parser from doing
// automatic semicolon insertion.
strictSemicolons: false,
// When `allowTrailingCommas` is false, the parser will not allow
// trailing commas in array and object literals.
allowTrailingCommas: true,
// By default, reserved words are not enforced. Enable
// `forbidReserved` to enforce them.
forbidReserved: false,
// When `locations` is on, `loc` properties holding objects with
// `start` and `end` properties in `{line, column}` form (with
// line being 1-based and column 0-based) will be attached to the
// nodes.
locations: false,
// A function can be passed as `onComment` option, which will
// cause Acorn to call that function with `(block, text, start,
// end)` parameters whenever a comment is skipped. `block` is a
// boolean indicating whether this is a block (`/* */`) comment,
// `text` is the content of the comment, and `start` and `end` are
// character offsets that denote the start and end of the comment.
// When the `locations` option is on, two more parameters are
// passed, the full `{line, column}` locations of the start and
// end of the comments. Note that you are not allowed to call the
// parser from the callback—that will corrupt its internal state.
onComment: null,
// Nodes have their start and end characters offsets recorded in
// `start` and `end` properties (directly on the node, rather than
// the `loc` object, which holds line/column data. To also add a
// [semi-standardized][range] `range` property holding a `[start,
// end]` array with the same numbers, set the `ranges` option to
// `true`.
//
// [range]: https://bugzilla.mozilla.org/show_bug.cgi?id=745678
ranges: false,
// It is possible to parse multiple files into a single AST by
// passing the tree produced by parsing the first file as
// `program` option in subsequent parses. This will add the
// toplevel forms of the parsed file to the `Program` (top) node
// of an existing parse tree.
program: null,
// When `locations` is on, you can pass this to record the source
// file in every node's `loc` object.
sourceFile: null,
// This value, if given, is stored in every node, whether
// `locations` is on or off.
directSourceFile: null
};
function setOptions(opts) {
options = opts || {};
for (var opt in defaultOptions) if (!Object.prototype.hasOwnProperty.call(options, opt))
options[opt] = defaultOptions[opt];
sourceFile = options.sourceFile || null;
}
// The `getLineInfo` function is mostly useful when the
// `locations` option is off (for performance reasons) and you
// want to find the line/column position for a given character
// offset. `input` should be the code string that the offset refers
// into.
var getLineInfo = exports.getLineInfo = function(input, offset) {
for (var line = 1, cur = 0;;) {
lineBreak.lastIndex = cur;
var match = lineBreak.exec(input);
if (match && match.index < offset) {
++line;
cur = match.index + match[0].length;
} else break;
}
return {line: line, column: offset - cur};
};
// Acorn is organized as a tokenizer and a recursive-descent parser.
// The `tokenize` export provides an interface to the tokenizer.
// Because the tokenizer is optimized for being efficiently used by
// the Acorn parser itself, this interface is somewhat crude and not
// very modular. Performing another parse or call to `tokenize` will
// reset the internal state, and invalidate existing tokenizers.
exports.tokenize = function(inpt, opts) {
input = String(inpt); inputLen = input.length;
setOptions(opts);
initTokenState();
var t = {};
function getToken(forceRegexp) {
lastEnd = tokEnd;
readToken(forceRegexp);
t.start = tokStart; t.end = tokEnd;
t.startLoc = tokStartLoc; t.endLoc = tokEndLoc;
t.type = tokType; t.value = tokVal;
return t;
}
getToken.jumpTo = function(pos, reAllowed) {
tokPos = pos;
if (options.locations) {
tokCurLine = 1;
tokLineStart = lineBreak.lastIndex = 0;
var match;
while ((match = lineBreak.exec(input)) && match.index < pos) {
++tokCurLine;
tokLineStart = match.index + match[0].length;
}
}
tokRegexpAllowed = reAllowed;
skipSpace();
};
return getToken;
};
// State is kept in (closure-)global variables. We already saw the
// `options`, `input`, and `inputLen` variables above.
// The current position of the tokenizer in the input.
var tokPos;
// The start and end offsets of the current token.
var tokStart, tokEnd;
// When `options.locations` is true, these hold objects
// containing the tokens start and end line/column pairs.
var tokStartLoc, tokEndLoc;
// The type and value of the current token. Token types are objects,
// named by variables against which they can be compared, and
// holding properties that describe them (indicating, for example,
// the precedence of an infix operator, and the original name of a
// keyword token). The kind of value that's held in `tokVal` depends
// on the type of the token. For literals, it is the literal value,
// for operators, the operator name, and so on.
var tokType, tokVal;
// Interal state for the tokenizer. To distinguish between division
// operators and regular expressions, it remembers whether the last
// token was one that is allowed to be followed by an expression.
// (If it is, a slash is probably a regexp, if it isn't it's a
// division operator. See the `parseStatement` function for a
// caveat.)
var tokRegexpAllowed;
// When `options.locations` is true, these are used to keep
// track of the current line, and know when a new line has been
// entered.
var tokCurLine, tokLineStart;
// These store the position of the previous token, which is useful
// when finishing a node and assigning its `end` position.
var lastStart, lastEnd, lastEndLoc;
// This is the parser's state. `inFunction` is used to reject
// `return` statements outside of functions, `labels` to verify that
// `break` and `continue` have somewhere to jump to, and `strict`
// indicates whether strict mode is on.
var inFunction, labels, strict;
// This function is used to raise exceptions on parse errors. It
// takes an offset integer (into the current `input`) to indicate
// the location of the error, attaches the position to the end
// of the error message, and then raises a `SyntaxError` with that
// message.
function raise(pos, message) {
var loc = getLineInfo(input, pos);
message += " (" + loc.line + ":" + loc.column + ")";
var err = new SyntaxError(message);
err.pos = pos; err.loc = loc; err.raisedAt = tokPos;
throw err;
}
// Reused empty array added for node fields that are always empty.
var empty = [];
// ## Token types
// The assignment of fine-grained, information-carrying type objects
// allows the tokenizer to store the information it has about a
// token in a way that is very cheap for the parser to look up.
// All token type variables start with an underscore, to make them
// easy to recognize.
// These are the general types. The `type` property is only used to
// make them recognizeable when debugging.
var _num = {type: "num"}, _regexp = {type: "regexp"}, _string = {type: "string"};
var _name = {type: "name"}, _eof = {type: "eof"};
// Keyword tokens. The `keyword` property (also used in keyword-like
// operators) indicates that the token originated from an
// identifier-like word, which is used when parsing property names.
//
// The `beforeExpr` property is used to disambiguate between regular
// expressions and divisions. It is set on all token types that can
// be followed by an expression (thus, a slash after them would be a
// regular expression).
//
// `isLoop` marks a keyword as starting a loop, which is important
// to know when parsing a label, in order to allow or disallow
// continue jumps to that label.
var _break = {keyword: "break"}, _case = {keyword: "case", beforeExpr: true}, _catch = {keyword: "catch"};
var _continue = {keyword: "continue"}, _debugger = {keyword: "debugger"}, _default = {keyword: "default"};
var _do = {keyword: "do", isLoop: true}, _else = {keyword: "else", beforeExpr: true};
var _finally = {keyword: "finally"}, _for = {keyword: "for", isLoop: true}, _function = {keyword: "function"};
var _if = {keyword: "if"}, _return = {keyword: "return", beforeExpr: true}, _switch = {keyword: "switch"};
var _throw = {keyword: "throw", beforeExpr: true}, _try = {keyword: "try"}, _var = {keyword: "var"};
var _while = {keyword: "while", isLoop: true}, _with = {keyword: "with"}, _new = {keyword: "new", beforeExpr: true};
var _this = {keyword: "this"};
// The keywords that denote values.
var _null = {keyword: "null", atomValue: null}, _true = {keyword: "true", atomValue: true};
var _false = {keyword: "false", atomValue: false};
// Some keywords are treated as regular operators. `in` sometimes
// (when parsing `for`) needs to be tested against specifically, so
// we assign a variable name to it for quick comparing.
var _in = {keyword: "in", binop: 7, beforeExpr: true};
// Map keyword names to token types.
var keywordTypes = {"break": _break, "case": _case, "catch": _catch,
"continue": _continue, "debugger": _debugger, "default": _default,
"do": _do, "else": _else, "finally": _finally, "for": _for,
"function": _function, "if": _if, "return": _return, "switch": _switch,
"throw": _throw, "try": _try, "var": _var, "while": _while, "with": _with,
"null": _null, "true": _true, "false": _false, "new": _new, "in": _in,
"instanceof": {keyword: "instanceof", binop: 7, beforeExpr: true}, "this": _this,
"typeof": {keyword: "typeof", prefix: true, beforeExpr: true},
"void": {keyword: "void", prefix: true, beforeExpr: true},
"delete": {keyword: "delete", prefix: true, beforeExpr: true}};
// Punctuation token types. Again, the `type` property is purely for debugging.
var _bracketL = {type: "[", beforeExpr: true}, _bracketR = {type: "]"}, _braceL = {type: "{", beforeExpr: true};
var _braceR = {type: "}"}, _parenL = {type: "(", beforeExpr: true}, _parenR = {type: ")"};
var _comma = {type: ",", beforeExpr: true}, _semi = {type: ";", beforeExpr: true};
var _colon = {type: ":", beforeExpr: true}, _dot = {type: "."}, _question = {type: "?", beforeExpr: true};
// Operators. These carry several kinds of properties to help the
// parser use them properly (the presence of these properties is
// what categorizes them as operators).
//
// `binop`, when present, specifies that this operator is a binary
// operator, and will refer to its precedence.
//
// `prefix` and `postfix` mark the operator as a prefix or postfix
// unary operator. `isUpdate` specifies that the node produced by
// the operator should be of type UpdateExpression rather than
// simply UnaryExpression (`++` and `--`).
//
// `isAssign` marks all of `=`, `+=`, `-=` etcetera, which act as
// binary operators with a very low precedence, that should result
// in AssignmentExpression nodes.
var _slash = {binop: 10, beforeExpr: true}, _eq = {isAssign: true, beforeExpr: true};
var _assign = {isAssign: true, beforeExpr: true};
var _incDec = {postfix: true, prefix: true, isUpdate: true}, _prefix = {prefix: true, beforeExpr: true};
var _logicalOR = {binop: 1, beforeExpr: true};
var _logicalAND = {binop: 2, beforeExpr: true};
var _bitwiseOR = {binop: 3, beforeExpr: true};
var _bitwiseXOR = {binop: 4, beforeExpr: true};
var _bitwiseAND = {binop: 5, beforeExpr: true};
var _equality = {binop: 6, beforeExpr: true};
var _relational = {binop: 7, beforeExpr: true};
var _bitShift = {binop: 8, beforeExpr: true};
var _plusMin = {binop: 9, prefix: true, beforeExpr: true};
var _multiplyModulo = {binop: 10, beforeExpr: true};
// Provide access to the token types for external users of the
// tokenizer.
exports.tokTypes = {bracketL: _bracketL, bracketR: _bracketR, braceL: _braceL, braceR: _braceR,
parenL: _parenL, parenR: _parenR, comma: _comma, semi: _semi, colon: _colon,
dot: _dot, question: _question, slash: _slash, eq: _eq, name: _name, eof: _eof,
num: _num, regexp: _regexp, string: _string};
for (var kw in keywordTypes) exports.tokTypes["_" + kw] = keywordTypes[kw];
// This is a trick taken from Esprima. It turns out that, on
// non-Chrome browsers, to check whether a string is in a set, a
// predicate containing a big ugly `switch` statement is faster than
// a regular expression, and on Chrome the two are about on par.
// This function uses `eval` (non-lexical) to produce such a
// predicate from a space-separated string of words.
//
// It starts by sorting the words by length.
function makePredicate(words) {
words = words.split(" ");
var f = "", cats = [];
out: for (var i = 0; i < words.length; ++i) {
for (var j = 0; j < cats.length; ++j)
if (cats[j][0].length == words[i].length) {
cats[j].push(words[i]);
continue out;
}
cats.push([words[i]]);
}
function compareTo(arr) {
if (arr.length == 1) return f += "return str === " + JSON.stringify(arr[0]) + ";";
f += "switch(str){";
for (var i = 0; i < arr.length; ++i) f += "case " + JSON.stringify(arr[i]) + ":";
f += "return true}return false;";
}
// When there are more than three length categories, an outer
// switch first dispatches on the lengths, to save on comparisons.
if (cats.length > 3) {
cats.sort(function(a, b) {return b.length - a.length;});
f += "switch(str.length){";
for (var i = 0; i < cats.length; ++i) {
var cat = cats[i];
f += "case " + cat[0].length + ":";
compareTo(cat);
}
f += "}";
// Otherwise, simply generate a flat `switch` statement.
} else {
compareTo(words);
}
return new Function("str", f);
}
// The ECMAScript 3 reserved word list.
var isReservedWord3 = makePredicate("abstract boolean byte char class double enum export extends final float goto implements import int interface long native package private protected public short static super synchronized throws transient volatile");
// ECMAScript 5 reserved words.
var isReservedWord5 = makePredicate("class enum extends super const export import");
// The additional reserved words in strict mode.
var isStrictReservedWord = makePredicate("implements interface let package private protected public static yield");
// The forbidden variable names in strict mode.
var isStrictBadIdWord = makePredicate("eval arguments");
// And the keywords.
var isKeyword = makePredicate("break case catch continue debugger default do else finally for function if return switch throw try var while with null true false instanceof typeof void delete new in this");
// ## Character categories
// Big ugly regular expressions that match characters in the
// whitespace, identifier, and identifier-start categories. These
// are only applied when a character is found to actually have a
// code point above 128.
var nonASCIIwhitespace = /[\u1680\u180e\u2000-\u200a\u202f\u205f\u3000\ufeff]/;
var nonASCIIidentifierStartChars = "\xaa\xb5\xba\xc0-\xd6\xd8-\xf6\xf8-\u02c1\u02c6-\u02d1\u02e0-\u02e4\u02ec\u02ee\u0370-\u0374\u0376\u0377\u037a-\u037d\u0386\u0388-\u038a\u038c\u038e-\u03a1\u03a3-\u03f5\u03f7-\u0481\u048a-\u0527\u0531-\u0556\u0559\u0561-\u0587\u05d0-\u05ea\u05f0-\u05f2\u0620-\u064a\u066e\u066f\u0671-\u06d3\u06d5\u06e5\u06e6\u06ee\u06ef\u06fa-\u06fc\u06ff\u0710\u0712-\u072f\u074d-\u07a5\u07b1\u07ca-\u07ea\u07f4\u07f5\u07fa\u0800-\u0815\u081a\u0824\u0828\u0840-\u0858\u08a0\u08a2-\u08ac\u0904-\u0939\u093d\u0950\u0958-\u0961\u0971-\u0977\u0979-\u097f\u0985-\u098c\u098f\u0990\u0993-\u09a8\u09aa-\u09b0\u09b2\u09b6-\u09b9\u09bd\u09ce\u09dc\u09dd\u09df-\u09e1\u09f0\u09f1\u0a05-\u0a0a\u0a0f\u0a10\u0a13-\u0a28\u0a2a-\u0a30\u0a32\u0a33\u0a35\u0a36\u0a38\u0a39\u0a59-\u0a5c\u0a5e\u0a72-\u0a74\u0a85-\u0a8d\u0a8f-\u0a91\u0a93-\u0aa8\u0aaa-\u0ab0\u0ab2\u0ab3\u0ab5-\u0ab9\u0abd\u0ad0\u0ae0\u0ae1\u0b05-\u0b0c\u0b0f\u0b10\u0b13-\u0b28\u0b2a-\u0b30\u0b32\u0b33\u0b35-\u0b39\u0b3d\u0b5c\u0b5d\u0b5f-\u0b61\u0b71\u0b83\u0b85-\u0b8a\u0b8e-\u0b90\u0b92-\u0b95\u0b99\u0b9a\u0b9c\u0b9e\u0b9f\u0ba3\u0ba4\u0ba8-\u0baa\u0bae-\u0bb9\u0bd0\u0c05-\u0c0c\u0c0e-\u0c10\u0c12-\u0c28\u0c2a-\u0c33\u0c35-\u0c39\u0c3d\u0c58\u0c59\u0c60\u0c61\u0c85-\u0c8c\u0c8e-\u0c90\u0c92-\u0ca8\u0caa-\u0cb3\u0cb5-\u0cb9\u0cbd\u0cde\u0ce0\u0ce1\u0cf1\u0cf2\u0d05-\u0d0c\u0d0e-\u0d10\u0d12-\u0d3a\u0d3d\u0d4e\u0d60\u0d61\u0d7a-\u0d7f\u0d85-\u0d96\u0d9a-\u0db1\u0db3-\u0dbb\u0dbd\u0dc0-\u0dc6\u0e01-\u0e30\u0e32\u0e33\u0e40-\u0e46\u0e81\u0e82\u0e84\u0e87\u0e88\u0e8a\u0e8d\u0e94-\u0e97\u0e99-\u0e9f\u0ea1-\u0ea3\u0ea5\u0ea7\u0eaa\u0eab\u0ead-\u0eb0\u0eb2\u0eb3\u0ebd\u0ec0-\u0ec4\u0ec6\u0edc-\u0edf\u0f00\u0f40-\u0f47\u0f49-\u0f6c\u0f88-\u0f8c\u1000-\u102a\u103f\u1050-\u1055\u105a-\u105d\u1061\u1065\u1066\u106e-\u1070\u1075-\u1081\u108e\u10a0-\u10c5\u10c7\u10cd\u10d0-\u10fa\u10fc-\u1248\u124a-\u124d\u1250-\u1256\u1258\u125a-\u125d\u1260-\u1288\u128a-\u128d\u1290-\u12b0\u12b2-\u12b5\u12b8-\u12be\u12c0\u12c2-\u12c5\u12c8-\u12d6\u12d8-\u1310\u1312-\u1315\u1318-\u135a\u1380-\u138f\u13a0-\u13f4\u1401-\u166c\u166f-\u167f\u1681-\u169a\u16a0-\u16ea\u16ee-\u16f0\u1700-\u170c\u170e-\u1711\u1720-\u1731\u1740-\u1751\u1760-\u176c\u176e-\u1770\u1780-\u17b3\u17d7\u17dc\u1820-\u1877\u1880-\u18a8\u18aa\u18b0-\u18f5\u1900-\u191c\u1950-\u196d\u1970-\u1974\u1980-\u19ab\u19c1-\u19c7\u1a00-\u1a16\u1a20-\u1a54\u1aa7\u1b05-\u1b33\u1b45-\u1b4b\u1b83-\u1ba0\u1bae\u1baf\u1bba-\u1be5\u1c00-\u1c23\u1c4d-\u1c4f\u1c5a-\u1c7d\u1ce9-\u1cec\u1cee-\u1cf1\u1cf5\u1cf6\u1d00-\u1dbf\u1e00-\u1f15\u1f18-\u1f1d\u1f20-\u1f45\u1f48-\u1f4d\u1f50-\u1f57\u1f59\u1f5b\u1f5d\u1f5f-\u1f7d\u1f80-\u1fb4\u1fb6-\u1fbc\u1fbe\u1fc2-\u1fc4\u1fc6-\u1fcc\u1fd0-\u1fd3\u1fd6-\u1fdb\u1fe0-\u1fec\u1ff2-\u1ff4\u1ff6-\u1ffc\u2071\u207f\u2090-\u209c\u2102\u2107\u210a-\u2113\u2115\u2119-\u211d\u2124\u2126\u2128\u212a-\u212d\u212f-\u2139\u213c-\u213f\u2145-\u2149\u214e\u2160-\u2188\u2c00-\u2c2e\u2c30-\u2c5e\u2c60-\u2ce4\u2ceb-\u2cee\u2cf2\u2cf3\u2d00-\u2d25\u2d27\u2d2d\u2d30-\u2d67\u2d6f\u2d80-\u2d96\u2da0-\u2da6\u2da8-\u2dae\u2db0-\u2db6\u2db8-\u2dbe\u2dc0-\u2dc6\u2dc8-\u2dce\u2dd0-\u2dd6\u2dd8-\u2dde\u2e2f\u3005-\u3007\u3021-\u3029\u3031-\u3035\u3038-\u303c\u3041-\u3096\u309d-\u309f\u30a1-\u30fa\u30fc-\u30ff\u3105-\u312d\u3131-\u318e\u31a0-\u31ba\u31f0-\u31ff\u3400-\u4db5\u4e00-\u9fcc\ua000-\ua48c\ua4d0-\ua4fd\ua500-\ua60c\ua610-\ua61f\ua62a\ua62b\ua640-\ua66e\ua67f-\ua697\ua6a0-\ua6ef\ua717-\ua71f\ua722-\ua788\ua78b-\ua78e\ua790-\ua793\ua7a0-\ua7aa\ua7f8-\ua801\ua803-\ua805\ua807-\ua80a\ua80c-\ua822\ua840-\ua873\ua882-\ua8b3\ua8f2-\ua8f7\ua8fb\ua90a-\ua925\ua930-\ua946\ua960-\ua97c\ua984-\ua9b2\ua9cf\uaa00-\uaa28\uaa40-\uaa42\uaa44-\uaa4b\uaa60-\uaa76\uaa7a\uaa80-\uaaaf\uaab1\uaab5\uaab6\uaab9-\uaabd\uaac0\uaac2\uaadb-\uaadd\uaae0-\uaaea\uaaf2-\uaaf4\uab01-\uab06\uab09-\uab0e\uab11-\uab16\uab20-\uab26\uab28-\uab2e\uabc0-\uabe2\uac00-\ud7a3\ud7b0-\ud7c6\ud7cb-\ud7fb\uf900-\ufa6d\ufa70-\ufad9\ufb00-\ufb06\ufb13-\ufb17\ufb1d\ufb1f-\ufb28\ufb2a-\ufb36\ufb38-\ufb3c\ufb3e\ufb40\ufb41\ufb43\ufb44\ufb46-\ufbb1\ufbd3-\ufd3d\ufd50-\ufd8f\ufd92-\ufdc7\ufdf0-\ufdfb\ufe70-\ufe74\ufe76-\ufefc\uff21-\uff3a\uff41-\uff5a\uff66-\uffbe\uffc2-\uffc7\uffca-\uffcf\uffd2-\uffd7\uffda-\uffdc";
var nonASCIIidentifierChars = "\u0300-\u036f\u0483-\u0487\u0591-\u05bd\u05bf\u05c1\u05c2\u05c4\u05c5\u05c7\u0610-\u061a\u0620-\u0649\u0672-\u06d3\u06e7-\u06e8\u06fb-\u06fc\u0730-\u074a\u0800-\u0814\u081b-\u0823\u0825-\u0827\u0829-\u082d\u0840-\u0857\u08e4-\u08fe\u0900-\u0903\u093a-\u093c\u093e-\u094f\u0951-\u0957\u0962-\u0963\u0966-\u096f\u0981-\u0983\u09bc\u09be-\u09c4\u09c7\u09c8\u09d7\u09df-\u09e0\u0a01-\u0a03\u0a3c\u0a3e-\u0a42\u0a47\u0a48\u0a4b-\u0a4d\u0a51\u0a66-\u0a71\u0a75\u0a81-\u0a83\u0abc\u0abe-\u0ac5\u0ac7-\u0ac9\u0acb-\u0acd\u0ae2-\u0ae3\u0ae6-\u0aef\u0b01-\u0b03\u0b3c\u0b3e-\u0b44\u0b47\u0b48\u0b4b-\u0b4d\u0b56\u0b57\u0b5f-\u0b60\u0b66-\u0b6f\u0b82\u0bbe-\u0bc2\u0bc6-\u0bc8\u0bca-\u0bcd\u0bd7\u0be6-\u0bef\u0c01-\u0c03\u0c46-\u0c48\u0c4a-\u0c4d\u0c55\u0c56\u0c62-\u0c63\u0c66-\u0c6f\u0c82\u0c83\u0cbc\u0cbe-\u0cc4\u0cc6-\u0cc8\u0cca-\u0ccd\u0cd5\u0cd6\u0ce2-\u0ce3\u0ce6-\u0cef\u0d02\u0d03\u0d46-\u0d48\u0d57\u0d62-\u0d63\u0d66-\u0d6f\u0d82\u0d83\u0dca\u0dcf-\u0dd4\u0dd6\u0dd8-\u0ddf\u0df2\u0df3\u0e34-\u0e3a\u0e40-\u0e45\u0e50-\u0e59\u0eb4-\u0eb9\u0ec8-\u0ecd\u0ed0-\u0ed9\u0f18\u0f19\u0f20-\u0f29\u0f35\u0f37\u0f39\u0f41-\u0f47\u0f71-\u0f84\u0f86-\u0f87\u0f8d-\u0f97\u0f99-\u0fbc\u0fc6\u1000-\u1029\u1040-\u1049\u1067-\u106d\u1071-\u1074\u1082-\u108d\u108f-\u109d\u135d-\u135f\u170e-\u1710\u1720-\u1730\u1740-\u1750\u1772\u1773\u1780-\u17b2\u17dd\u17e0-\u17e9\u180b-\u180d\u1810-\u1819\u1920-\u192b\u1930-\u193b\u1951-\u196d\u19b0-\u19c0\u19c8-\u19c9\u19d0-\u19d9\u1a00-\u1a15\u1a20-\u1a53\u1a60-\u1a7c\u1a7f-\u1a89\u1a90-\u1a99\u1b46-\u1b4b\u1b50-\u1b59\u1b6b-\u1b73\u1bb0-\u1bb9\u1be6-\u1bf3\u1c00-\u1c22\u1c40-\u1c49\u1c5b-\u1c7d\u1cd0-\u1cd2\u1d00-\u1dbe\u1e01-\u1f15\u200c\u200d\u203f\u2040\u2054\u20d0-\u20dc\u20e1\u20e5-\u20f0\u2d81-\u2d96\u2de0-\u2dff\u3021-\u3028\u3099\u309a\ua640-\ua66d\ua674-\ua67d\ua69f\ua6f0-\ua6f1\ua7f8-\ua800\ua806\ua80b\ua823-\ua827\ua880-\ua881\ua8b4-\ua8c4\ua8d0-\ua8d9\ua8f3-\ua8f7\ua900-\ua909\ua926-\ua92d\ua930-\ua945\ua980-\ua983\ua9b3-\ua9c0\uaa00-\uaa27\uaa40-\uaa41\uaa4c-\uaa4d\uaa50-\uaa59\uaa7b\uaae0-\uaae9\uaaf2-\uaaf3\uabc0-\uabe1\uabec\uabed\uabf0-\uabf9\ufb20-\ufb28\ufe00-\ufe0f\ufe20-\ufe26\ufe33\ufe34\ufe4d-\ufe4f\uff10-\uff19\uff3f";
var nonASCIIidentifierStart = new RegExp("[" + nonASCIIidentifierStartChars + "]");
var nonASCIIidentifier = new RegExp("[" + nonASCIIidentifierStartChars + nonASCIIidentifierChars + "]");
// Whether a single character denotes a newline.
var newline = /[\n\r\u2028\u2029]/;
// Matches a whole line break (where CRLF is considered a single
// line break). Used to count lines.
var lineBreak = /\r\n|[\n\r\u2028\u2029]/g;
// Test whether a given character code starts an identifier.
var isIdentifierStart = exports.isIdentifierStart = function(code) {
if (code < 65) return code === 36;
if (code < 91) return true;
if (code < 97) return code === 95;
if (code < 123)return true;
return code >= 0xaa && nonASCIIidentifierStart.test(String.fromCharCode(code));
};
// Test whether a given character is part of an identifier.
var isIdentifierChar = exports.isIdentifierChar = function(code) {
if (code < 48) return code === 36;
if (code < 58) return true;
if (code < 65) return false;
if (code < 91) return true;
if (code < 97) return code === 95;
if (code < 123)return true;
return code >= 0xaa && nonASCIIidentifier.test(String.fromCharCode(code));
};
// ## Tokenizer
// These are used when `options.locations` is on, for the
// `tokStartLoc` and `tokEndLoc` properties.
function line_loc_t() {
this.line = tokCurLine;
this.column = tokPos - tokLineStart;
}
// Reset the token state. Used at the start of a parse.
function initTokenState() {
tokCurLine = 1;
tokPos = tokLineStart = 0;
tokRegexpAllowed = true;
skipSpace();
}
// Called at the end of every token. Sets `tokEnd`, `tokVal`, and
// `tokRegexpAllowed`, and skips the space after the token, so that
// the next one's `tokStart` will point at the right position.
function finishToken(type, val) {
tokEnd = tokPos;
if (options.locations) tokEndLoc = new line_loc_t;
tokType = type;
skipSpace();
tokVal = val;
tokRegexpAllowed = type.beforeExpr;
}
function skipBlockComment() {
var startLoc = options.onComment && options.locations && new line_loc_t;
var start = tokPos, end = input.indexOf("*/", tokPos += 2);
if (end === -1) raise(tokPos - 2, "Unterminated comment");
tokPos = end + 2;
if (options.locations) {
lineBreak.lastIndex = start;
var match;
while ((match = lineBreak.exec(input)) && match.index < tokPos) {
++tokCurLine;
tokLineStart = match.index + match[0].length;
}
}
if (options.onComment)
options.onComment(true, input.slice(start + 2, end), start, tokPos,
startLoc, options.locations && new line_loc_t);
}
function skipLineComment() {
var start = tokPos;
var startLoc = options.onComment && options.locations && new line_loc_t;
var ch = input.charCodeAt(tokPos+=2);
while (tokPos < inputLen && ch !== 10 && ch !== 13 && ch !== 8232 && ch !== 8233) {
++tokPos;
ch = input.charCodeAt(tokPos);
}
if (options.onComment)
options.onComment(false, input.slice(start + 2, tokPos), start, tokPos,
startLoc, options.locations && new line_loc_t);
}
// Called at the start of the parse and after every token. Skips
// whitespace and comments, and.
function skipSpace() {
while (tokPos < inputLen) {
var ch = input.charCodeAt(tokPos);
if (ch === 32) { // ' '
++tokPos;
} else if (ch === 13) {
++tokPos;
var next = input.charCodeAt(tokPos);
if (next === 10) {
++tokPos;
}
if (options.locations) {
++tokCurLine;
tokLineStart = tokPos;
}
} else if (ch === 10 || ch === 8232 || ch === 8233) {
++tokPos;
if (options.locations) {
++tokCurLine;
tokLineStart = tokPos;
}
} else if (ch > 8 && ch < 14) {
++tokPos;
} else if (ch === 47) { // '/'
var next = input.charCodeAt(tokPos + 1);
if (next === 42) { // '*'
skipBlockComment();
} else if (next === 47) { // '/'
skipLineComment();
} else break;
} else if (ch === 160) { // '\xa0'
++tokPos;
} else if (ch >= 5760 && nonASCIIwhitespace.test(String.fromCharCode(ch))) {
++tokPos;
} else {
break;
}
}
}
// ### Token reading
// This is the function that is called to fetch the next token. It
// is somewhat obscure, because it works in character codes rather
// than characters, and because operator parsing has been inlined
// into it.
//
// All in the name of speed.
//
// The `forceRegexp` parameter is used in the one case where the
// `tokRegexpAllowed` trick does not work. See `parseStatement`.
function readToken_dot() {
var next = input.charCodeAt(tokPos + 1);
if (next >= 48 && next <= 57) return readNumber(true);
++tokPos;
return finishToken(_dot);
}
function readToken_slash() { // '/'
var next = input.charCodeAt(tokPos + 1);
if (tokRegexpAllowed) {++tokPos; return readRegexp();}
if (next === 61) return finishOp(_assign, 2);
return finishOp(_slash, 1);
}
function readToken_mult_modulo() { // '%*'
var next = input.charCodeAt(tokPos + 1);
if (next === 61) return finishOp(_assign, 2);
return finishOp(_multiplyModulo, 1);
}
function readToken_pipe_amp(code) { // '|&'
var next = input.charCodeAt(tokPos + 1);
if (next === code) return finishOp(code === 124 ? _logicalOR : _logicalAND, 2);
if (next === 61) return finishOp(_assign, 2);
return finishOp(code === 124 ? _bitwiseOR : _bitwiseAND, 1);
}
function readToken_caret() { // '^'
var next = input.charCodeAt(tokPos + 1);
if (next === 61) return finishOp(_assign, 2);
return finishOp(_bitwiseXOR, 1);
}
function readToken_plus_min(code) { // '+-'
var next = input.charCodeAt(tokPos + 1);
if (next === code) {
if (next == 45 && input.charCodeAt(tokPos + 2) == 62 &&
newline.test(input.slice(lastEnd, tokPos))) {
// A `-->` line comment
tokPos += 3;
skipLineComment();
skipSpace();
return readToken();
}
return finishOp(_incDec, 2);
}
if (next === 61) return finishOp(_assign, 2);
return finishOp(_plusMin, 1);
}
function readToken_lt_gt(code) { // '<>'
var next = input.charCodeAt(tokPos + 1);
var size = 1;
if (next === code) {
size = code === 62 && input.charCodeAt(tokPos + 2) === 62 ? 3 : 2;
if (input.charCodeAt(tokPos + size) === 61) return finishOp(_assign, size + 1);
return finishOp(_bitShift, size);
}
if (next == 33 && code == 60 && input.charCodeAt(tokPos + 2) == 45 &&
input.charCodeAt(tokPos + 3) == 45) {
// `<!--`, an XML-style comment that should be interpreted as a line comment
tokPos += 4;
skipLineComment();
skipSpace();
return readToken();
}
if (next === 61)
size = input.charCodeAt(tokPos + 2) === 61 ? 3 : 2;
return finishOp(_relational, size);
}
function readToken_eq_excl(code) { // '=!'
var next = input.charCodeAt(tokPos + 1);
if (next === 61) return finishOp(_equality, input.charCodeAt(tokPos + 2) === 61 ? 3 : 2);
return finishOp(code === 61 ? _eq : _prefix, 1);
}
function getTokenFromCode(code) {
switch(code) {
// The interpretation of a dot depends on whether it is followed
// by a digit.
case 46: // '.'
return readToken_dot();
// Punctuation tokens.
case 40: ++tokPos; return finishToken(_parenL);
case 41: ++tokPos; return finishToken(_parenR);
case 59: ++tokPos; return finishToken(_semi);
case 44: ++tokPos; return finishToken(_comma);
case 91: ++tokPos; return finishToken(_bracketL);
case 93: ++tokPos; return finishToken(_bracketR);
case 123: ++tokPos; return finishToken(_braceL);
case 125: ++tokPos; return finishToken(_braceR);
case 58: ++tokPos; return finishToken(_colon);
case 63: ++tokPos; return finishToken(_question);
// '0x' is a hexadecimal number.
case 48: // '0'
var next = input.charCodeAt(tokPos + 1);
if (next === 120 || next === 88) return readHexNumber();
// Anything else beginning with a digit is an integer, octal
// number, or float.
case 49: case 50: case 51: case 52: case 53: case 54: case 55: case 56: case 57: // 1-9
return readNumber(false);
// Quotes produce strings.
case 34: case 39: // '"', "'"
return readString(code);
// Operators are parsed inline in tiny state machines. '=' (61) is
// often referred to. `finishOp` simply skips the amount of
// characters it is given as second argument, and returns a token
// of the type given by its first argument.
case 47: // '/'
return readToken_slash(code);
case 37: case 42: // '%*'
return readToken_mult_modulo();
case 124: case 38: // '|&'
return readToken_pipe_amp(code);
case 94: // '^'
return readToken_caret();
case 43: case 45: // '+-'
return readToken_plus_min(code);
case 60: case 62: // '<>'
return readToken_lt_gt(code);
case 61: case 33: // '=!'
return readToken_eq_excl(code);
case 126: // '~'
return finishOp(_prefix, 1);
}
return false;
}
function readToken(forceRegexp) {
if (!forceRegexp) tokStart = tokPos;
else tokPos = tokStart + 1;
if (options.locations) tokStartLoc = new line_loc_t;
if (forceRegexp) return readRegexp();
if (tokPos >= inputLen) return finishToken(_eof);
var code = input.charCodeAt(tokPos);
// Identifier or keyword. '\uXXXX' sequences are allowed in
// identifiers, so '\' also dispatches to that.
if (isIdentifierStart(code) || code === 92 /* '\' */) return readWord();
var tok = getTokenFromCode(code);
if (tok === false) {
// If we are here, we either found a non-ASCII identifier
// character, or something that's entirely disallowed.
var ch = String.fromCharCode(code);
if (ch === "\\" || nonASCIIidentifierStart.test(ch)) return readWord();
raise(tokPos, "Unexpected character '" + ch + "'");
}
return tok;
}
function finishOp(type, size) {
var str = input.slice(tokPos, tokPos + size);
tokPos += size;
finishToken(type, str);
}
// Parse a regular expression. Some context-awareness is necessary,
// since a '/' inside a '[]' set does not end the expression.
function readRegexp() {
var content = "", escaped, inClass, start = tokPos;
for (;;) {
if (tokPos >= inputLen) raise(start, "Unterminated regular expression");
var ch = input.charAt(tokPos);
if (newline.test(ch)) raise(start, "Unterminated regular expression");
if (!escaped) {
if (ch === "[") inClass = true;
else if (ch === "]" && inClass) inClass = false;
else if (ch === "/" && !inClass) break;
escaped = ch === "\\";
} else escaped = false;
++tokPos;
}
var content = input.slice(start, tokPos);
++tokPos;
// Need to use `readWord1` because '\uXXXX' sequences are allowed
// here (don't ask).
var mods = readWord1();
if (mods && !/^[gmsiy]*$/.test(mods)) raise(start, "Invalid regexp flag");
try {
var value = new RegExp(content, mods);
} catch (e) {
if (e instanceof SyntaxError) raise(start, e.message);
raise(e);
}
return finishToken(_regexp, value);
}
// Read an integer in the given radix. Return null if zero digits
// were read, the integer value otherwise. When `len` is given, this
// will return `null` unless the integer has exactly `len` digits.
function readInt(radix, len) {
var start = tokPos, total = 0;
for (var i = 0, e = len == null ? Infinity : len; i < e; ++i) {
var code = input.charCodeAt(tokPos), val;
if (code >= 97) val = code - 97 + 10; // a
else if (code >= 65) val = code - 65 + 10; // A
else if (code >= 48 && code <= 57) val = code - 48; // 0-9
else val = Infinity;
if (val >= radix) break;
++tokPos;
total = total * radix + val;
}
if (tokPos === start || len != null && tokPos - start !== len) return null;
return total;
}
function readHexNumber() {
tokPos += 2; // 0x
var val = readInt(16);
if (val == null) raise(tokStart + 2, "Expected hexadecimal number");
if (isIdentifierStart(input.charCodeAt(tokPos))) raise(tokPos, "Identifier directly after number");
return finishToken(_num, val);
}
// Read an integer, octal integer, or floating-point number.
function readNumber(startsWithDot) {
var start = tokPos, isFloat = false, octal = input.charCodeAt(tokPos) === 48;
if (!startsWithDot && readInt(10) === null) raise(start, "Invalid number");
if (input.charCodeAt(tokPos) === 46) {
++tokPos;
readInt(10);
isFloat = true;
}
var next = input.charCodeAt(tokPos);
if (next === 69 || next === 101) { // 'eE'
next = input.charCodeAt(++tokPos);
if (next === 43 || next === 45) ++tokPos; // '+-'
if (readInt(10) === null) raise(start, "Invalid number");
isFloat = true;
}
if (isIdentifierStart(input.charCodeAt(tokPos))) raise(tokPos, "Identifier directly after number");
var str = input.slice(start, tokPos), val;
if (isFloat) val = parseFloat(str);
else if (!octal || str.length === 1) val = parseInt(str, 10);
else if (/[89]/.test(str) || strict) raise(start, "Invalid number");
else val = parseInt(str, 8);
return finishToken(_num, val);
}
// Read a string value, interpreting backslash-escapes.
function readString(quote) {
tokPos++;
var out = "";
for (;;) {
if (tokPos >= inputLen) raise(tokStart, "Unterminated string constant");
var ch = input.charCodeAt(tokPos);
if (ch === quote) {
++tokPos;
return finishToken(_string, out);
}
if (ch === 92) { // '\'
ch = input.charCodeAt(++tokPos);
var octal = /^[0-7]+/.exec(input.slice(tokPos, tokPos + 3));
if (octal) octal = octal[0];
while (octal && parseInt(octal, 8) > 255) octal = octal.slice(0, -1);
if (octal === "0") octal = null;
++tokPos;
if (octal) {
if (strict) raise(tokPos - 2, "Octal literal in strict mode");
out += String.fromCharCode(parseInt(octal, 8));
tokPos += octal.length - 1;
} else {
switch (ch) {
case 110: out += "\n"; break; // 'n' -> '\n'
case 114: out += "\r"; break; // 'r' -> '\r'
case 120: out += String.fromCharCode(readHexChar(2)); break; // 'x'
case 117: out += String.fromCharCode(readHexChar(4)); break; // 'u'
case 85: out += String.fromCharCode(readHexChar(8)); break; // 'U'
case 116: out += "\t"; break; // 't' -> '\t'
case 98: out += "\b"; break; // 'b' -> '\b'
case 118: out += "\u000b"; break; // 'v' -> '\u000b'
case 102: out += "\f"; break; // 'f' -> '\f'
case 48: out += "\0"; break; // 0 -> '\0'
case 13: if (input.charCodeAt(tokPos) === 10) ++tokPos; // '\r\n'
case 10: // ' \n'
if (options.locations) { tokLineStart = tokPos; ++tokCurLine; }
break;
default: out += String.fromCharCode(ch); break;
}
}
} else {
if (ch === 13 || ch === 10 || ch === 8232 || ch === 8233) raise(tokStart, "Unterminated string constant");
out += String.fromCharCode(ch); // '\'
++tokPos;
}
}
}
// Used to read character escape sequences ('\x', '\u', '\U').
function readHexChar(len) {
var n = readInt(16, len);
if (n === null) raise(tokStart, "Bad character escape sequence");
return n;
}
// Used to signal to callers of `readWord1` whether the word
// contained any escape sequences. This is needed because words with
// escape sequences must not be interpreted as keywords.
var containsEsc;
// Read an identifier, and return it as a string. Sets `containsEsc`
// to whether the word contained a '\u' escape.
//
// Only builds up the word character-by-character when it actually
// containeds an escape, as a micro-optimization.
function readWord1() {
containsEsc = false;
var word, first = true, start = tokPos;
for (;;) {
var ch = input.charCodeAt(tokPos);
if (isIdentifierChar(ch)) {
if (containsEsc) word += input.charAt(tokPos);
++tokPos;
} else if (ch === 92) { // "\"
if (!containsEsc) word = input.slice(start, tokPos);
containsEsc = true;
if (input.charCodeAt(++tokPos) != 117) // "u"
raise(tokPos, "Expecting Unicode escape sequence \\uXXXX");
++tokPos;
var esc = readHexChar(4);
var escStr = String.fromCharCode(esc);
if (!escStr) raise(tokPos - 1, "Invalid Unicode escape");
if (!(first ? isIdentifierStart(esc) : isIdentifierChar(esc)))
raise(tokPos - 4, "Invalid Unicode escape");
word += escStr;
} else {
break;
}
first = false;
}
return containsEsc ? word : input.slice(start, tokPos);
}
// Read an identifier or keyword token. Will check for reserved
// words when necessary.
function readWord() {
var word = readWord1();
var type = _name;
if (!containsEsc) {
if (isKeyword(word)) type = keywordTypes[word];
else if (options.forbidReserved &&
(options.ecmaVersion === 3 ? isReservedWord3 : isReservedWord5)(word) ||
strict && isStrictReservedWord(word))
raise(tokStart, "The keyword '" + word + "' is reserved");
}
return finishToken(type, word);
}
// ## Parser
// A recursive descent parser operates by defining functions for all
// syntactic elements, and recursively calling those, each function
// advancing the input stream and returning an AST node. Precedence
// of constructs (for example, the fact that `!x[1]` means `!(x[1])`
// instead of `(!x)[1]` is handled by the fact that the parser
// function that parses unary prefix operators is called first, and
// in turn calls the function that parses `[]` subscripts — that
// way, it'll receive the node for `x[1]` already parsed, and wraps
// *that* in the unary operator node.
//
// Acorn uses an [operator precedence parser][opp] to handle binary
// operator precedence, because it is much more compact than using
// the technique outlined above, which uses different, nesting
// functions to specify precedence, for all of the ten binary
// precedence levels that JavaScript defines.
//
// [opp]: http://en.wikipedia.org/wiki/Operator-precedence_parser
// ### Parser utilities
// Continue to the next token.
function next() {
lastStart = tokStart;
lastEnd = tokEnd;
lastEndLoc = tokEndLoc;
readToken();
}
// Enter strict mode. Re-reads the next token to please pedantic
// tests ("use strict"; 010; -- should fail).
function setStrict(strct) {
strict = strct;
tokPos = tokStart;
if (options.locations) {
while (tokPos < tokLineStart) {
tokLineStart = input.lastIndexOf("\n", tokLineStart - 2) + 1;
--tokCurLine;
}
}
skipSpace();
readToken();
}
// Start an AST node, attaching a start offset.
function node_t() {
this.type = null;
this.start = tokStart;
this.end = null;
}
function node_loc_t() {
this.start = tokStartLoc;
this.end = null;
if (sourceFile !== null) this.source = sourceFile;
}
function startNode() {
var node = new node_t();
if (options.locations)
node.loc = new node_loc_t();
if (options.directSourceFile)
node.sourceFile = options.directSourceFile;
if (options.ranges)
node.range = [tokStart, 0];
return node;
}
// Start a node whose start offset information should be based on
// the start of another node. For example, a binary operator node is
// only started after its left-hand side has already been parsed.
function startNodeFrom(other) {
var node = new node_t();
node.start = other.start;
if (options.locations) {
node.loc = new node_loc_t();
node.loc.start = other.loc.start;
}
if (options.ranges)
node.range = [other.range[0], 0];
return node;
}
// Finish an AST node, adding `type` and `end` properties.
function finishNode(node, type) {
node.type = type;
node.end = lastEnd;
if (options.locations)
node.loc.end = lastEndLoc;
if (options.ranges)
node.range[1] = lastEnd;
return node;
}
// Test whether a statement node is the string literal `"use strict"`.
function isUseStrict(stmt) {
return options.ecmaVersion >= 5 && stmt.type === "ExpressionStatement" &&
stmt.expression.type === "Literal" && stmt.expression.value === "use strict";
}
// Predicate that tests whether the next token is of the given
// type, and if yes, consumes it as a side effect.
function eat(type) {
if (tokType === type) {
next();
return true;
}
}
// Test whether a semicolon can be inserted at the current position.
function canInsertSemicolon() {
return !options.strictSemicolons &&
(tokType === _eof || tokType === _braceR || newline.test(input.slice(lastEnd, tokStart)));
}
// Consume a semicolon, or, failing that, see if we are allowed to
// pretend that there is a semicolon at this position.
function semicolon() {
if (!eat(_semi) && !canInsertSemicolon()) unexpected();
}
// Expect a token of a given type. If found, consume it, otherwise,
// raise an unexpected token error.
function expect(type) {
if (tokType === type) next();
else unexpected();
}
// Raise an unexpected token error.
function unexpected() {
raise(tokStart, "Unexpected token");
}
// Verify that a node is an lval — something that can be assigned
// to.
function checkLVal(expr) {
if (expr.type !== "Identifier" && expr.type !== "MemberExpression")
raise(expr.start, "Assigning to rvalue");
if (strict && expr.type === "Identifier" && isStrictBadIdWord(expr.name))
raise(expr.start, "Assigning to " + expr.name + " in strict mode");
}
// ### Statement parsing
// Parse a program. Initializes the parser, reads any number of
// statements, and wraps them in a Program node. Optionally takes a
// `program` argument. If present, the statements will be appended
// to its body instead of creating a new node.
function parseTopLevel(program) {
lastStart = lastEnd = tokPos;
if (options.locations) lastEndLoc = new line_loc_t;
inFunction = strict = null;
labels = [];
readToken();
var node = program || startNode(), first = true;
if (!program) node.body = [];
while (tokType !== _eof) {
var stmt = parseStatement();
node.body.push(stmt);
if (first && isUseStrict(stmt)) setStrict(true);
first = false;
}
return finishNode(node, "Program");
}
var loopLabel = {kind: "loop"}, switchLabel = {kind: "switch"};
// Parse a single statement.
//
// If expecting a statement and finding a slash operator, parse a
// regular expression literal. This is to handle cases like
// `if (foo) /blah/.exec(foo);`, where looking at the previous token
// does not help.
function parseStatement() {
if (tokType === _slash || tokType === _assign && tokVal == "/=")
readToken(true);
var starttype = tokType, node = startNode();
// Most types of statements are recognized by the keyword they
// start with. Many are trivial to parse, some require a bit of
// complexity.
switch (starttype) {
case _break: case _continue:
next();
var isBreak = starttype === _break;
if (eat(_semi) || canInsertSemicolon()) node.label = null;
else if (tokType !== _name) unexpected();
else {
node.label = parseIdent();
semicolon();
}
// Verify that there is an actual destination to break or
// continue to.
for (var i = 0; i < labels.length; ++i) {
var lab = labels[i];
if (node.label == null || lab.name === node.label.name) {
if (lab.kind != null && (isBreak || lab.kind === "loop")) break;
if (node.label && isBreak) break;
}
}
if (i === labels.length) raise(node.start, "Unsyntactic " + starttype.keyword);
return finishNode(node, isBreak ? "BreakStatement" : "ContinueStatement");
case _debugger:
next();
semicolon();
return finishNode(node, "DebuggerStatement");
case _do:
next();
labels.push(loopLabel);
node.body = parseStatement();
labels.pop();
expect(_while);
node.test = parseParenExpression();
semicolon();
return finishNode(node, "DoWhileStatement");
// Disambiguating between a `for` and a `for`/`in` loop is
// non-trivial. Basically, we have to parse the init `var`
// statement or expression, disallowing the `in` operator (see
// the second parameter to `parseExpression`), and then check
// whether the next token is `in`. When there is no init part
// (semicolon immediately after the opening parenthesis), it is
// a regular `for` loop.
case _for:
next();
labels.push(loopLabel);
expect(_parenL);
if (tokType === _semi) return parseFor(node, null);
if (tokType === _var) {
var init = startNode();
next();
parseVar(init, true);
finishNode(init, "VariableDeclaration");
if (init.declarations.length === 1 && eat(_in))
return parseForIn(node, init);
return parseFor(node, init);
}
var init = parseExpression(false, true);
if (eat(_in)) {checkLVal(init); return parseForIn(node, init);}
return parseFor(node, init);
case _function:
next();
return parseFunction(node, true);
case _if:
next();
node.test = parseParenExpression();
node.consequent = parseStatement();
node.alternate = eat(_else) ? parseStatement() : null;
return finishNode(node, "IfStatement");
case _return:
if (!inFunction) raise(tokStart, "'return' outside of function");
next();
// In `return` (and `break`/`continue`), the keywords with
// optional arguments, we eagerly look for a semicolon or the
// possibility to insert one.
if (eat(_semi) || canInsertSemicolon()) node.argument = null;
else { node.argument = parseExpression(); semicolon(); }
return finishNode(node, "ReturnStatement");
case _switch:
next();
node.discriminant = parseParenExpression();
node.cases = [];
expect(_braceL);
labels.push(switchLabel);
// Statements under must be grouped (by label) in SwitchCase
// nodes. `cur` is used to keep the node that we are currently
// adding statements to.
for (var cur, sawDefault; tokType != _braceR;) {
if (tokType === _case || tokType === _default) {
var isCase = tokType === _case;
if (cur) finishNode(cur, "SwitchCase");
node.cases.push(cur = startNode());
cur.consequent = [];
next();
if (isCase) cur.test = parseExpression();
else {
if (sawDefault) raise(lastStart, "Multiple default clauses"); sawDefault = true;
cur.test = null;
}
expect(_colon);
} else {
if (!cur) unexpected();
cur.consequent.push(parseStatement());
}
}
if (cur) finishNode(cur, "SwitchCase");
next(); // Closing brace
labels.pop();
return finishNode(node, "SwitchStatement");
case _throw:
next();
if (newline.test(input.slice(lastEnd, tokStart)))
raise(lastEnd, "Illegal newline after throw");
node.argument = parseExpression();
semicolon();
return finishNode(node, "ThrowStatement");
case _try:
next();
node.block = parseBlock();
node.handler = null;
if (tokType === _catch) {
var clause = startNode();
next();
expect(_parenL);
clause.param = parseIdent();
if (strict && isStrictBadIdWord(clause.param.name))
raise(clause.param.start, "Binding " + clause.param.name + " in strict mode");
expect(_parenR);
clause.guard = null;
clause.body = parseBlock();
node.handler = finishNode(clause, "CatchClause");
}
node.guardedHandlers = empty;
node.finalizer = eat(_finally) ? parseBlock() : null;
if (!node.handler && !node.finalizer)
raise(node.start, "Missing catch or finally clause");
return finishNode(node, "TryStatement");
case _var:
next();
parseVar(node);
semicolon();
return finishNode(node, "VariableDeclaration");
case _while:
next();
node.test = parseParenExpression();
labels.push(loopLabel);
node.body = parseStatement();
labels.pop();
return finishNode(node, "WhileStatement");
case _with:
if (strict) raise(tokStart, "'with' in strict mode");
next();
node.object = parseParenExpression();
node.body = parseStatement();
return finishNode(node, "WithStatement");
case _braceL:
return parseBlock();
case _semi:
next();
return finishNode(node, "EmptyStatement");
// If the statement does not start with a statement keyword or a
// brace, it's an ExpressionStatement or LabeledStatement. We
// simply start parsing an expression, and afterwards, if the
// next token is a colon and the expression was a simple
// Identifier node, we switch to interpreting it as a label.
default:
var maybeName = tokVal, expr = parseExpression();
if (starttype === _name && expr.type === "Identifier" && eat(_colon)) {
for (var i = 0; i < labels.length; ++i)
if (labels[i].name === maybeName) raise(expr.start, "Label '" + maybeName + "' is already declared");
var kind = tokType.isLoop ? "loop" : tokType === _switch ? "switch" : null;
labels.push({name: maybeName, kind: kind});
node.body = parseStatement();
labels.pop();
node.label = expr;
return finishNode(node, "LabeledStatement");
} else {
node.expression = expr;
semicolon();
return finishNode(node, "ExpressionStatement");
}
}
}
// Used for constructs like `switch` and `if` that insist on
// parentheses around their expression.
function parseParenExpression() {
expect(_parenL);
var val = parseExpression();
expect(_parenR);
return val;
}
// Parse a semicolon-enclosed block of statements, handling `"use
// strict"` declarations when `allowStrict` is true (used for
// function bodies).
function parseBlock(allowStrict) {
var node = startNode(), first = true, strict = false, oldStrict;
node.body = [];
expect(_braceL);
while (!eat(_braceR)) {
var stmt = parseStatement();
node.body.push(stmt);
if (first && allowStrict && isUseStrict(stmt)) {
oldStrict = strict;
setStrict(strict = true);
}
first = false;
}
if (strict && !oldStrict) setStrict(false);
return finishNode(node, "BlockStatement");
}
// Parse a regular `for` loop. The disambiguation code in
// `parseStatement` will already have parsed the init statement or
// expression.
function parseFor(node, init) {
node.init = init;
expect(_semi);
node.test = tokType === _semi ? null : parseExpression();
expect(_semi);
node.update = tokType === _parenR ? null : parseExpression();
expect(_parenR);
node.body = parseStatement();
labels.pop();
return finishNode(node, "ForStatement");
}
// Parse a `for`/`in` loop.
function parseForIn(node, init) {
node.left = init;
node.right = parseExpression();
expect(_parenR);
node.body = parseStatement();
labels.pop();
return finishNode(node, "ForInStatement");
}
// Parse a list of variable declarations.
function parseVar(node, noIn) {
node.declarations = [];
node.kind = "var";
for (;;) {
var decl = startNode();
decl.id = parseIdent();
if (strict && isStrictBadIdWord(decl.id.name))
raise(decl.id.start, "Binding " + decl.id.name + " in strict mode");
decl.init = eat(_eq) ? parseExpression(true, noIn) : null;
node.declarations.push(finishNode(decl, "VariableDeclarator"));
if (!eat(_comma)) break;
}
return node;
}
// ### Expression parsing
// These nest, from the most general expression type at the top to
// 'atomic', nondivisible expression types at the bottom. Most of
// the functions will simply let the function(s) below them parse,
// and, *if* the syntactic construct they handle is present, wrap
// the AST node that the inner parser gave them in another node.
// Parse a full expression. The arguments are used to forbid comma
// sequences (in argument lists, array literals, or object literals)
// or the `in` operator (in for loops initalization expressions).
function parseExpression(noComma, noIn) {
var expr = parseMaybeAssign(noIn);
if (!noComma && tokType === _comma) {
var node = startNodeFrom(expr);
node.expressions = [expr];
while (eat(_comma)) node.expressions.push(parseMaybeAssign(noIn));
return finishNode(node, "SequenceExpression");
}
return expr;
}
// Parse an assignment expression. This includes applications of
// operators like `+=`.
function parseMaybeAssign(noIn) {
var left = parseMaybeConditional(noIn);
if (tokType.isAssign) {
var node = startNodeFrom(left);
node.operator = tokVal;
node.left = left;
next();
node.right = parseMaybeAssign(noIn);
checkLVal(left);
return finishNode(node, "AssignmentExpression");
}
return left;
}
// Parse a ternary conditional (`?:`) operator.
function parseMaybeConditional(noIn) {
var expr = parseExprOps(noIn);
if (eat(_question)) {
var node = startNodeFrom(expr);
node.test = expr;
node.consequent = parseExpression(true);
expect(_colon);
node.alternate = parseExpression(true, noIn);
return finishNode(node, "ConditionalExpression");
}
return expr;
}
// Start the precedence parser.
function parseExprOps(noIn) {
return parseExprOp(parseMaybeUnary(), -1, noIn);
}
// Parse binary operators with the operator precedence parsing
// algorithm. `left` is the left-hand side of the operator.
// `minPrec` provides context that allows the function to stop and
// defer further parser to one of its callers when it encounters an
// operator that has a lower precedence than the set it is parsing.
function parseExprOp(left, minPrec, noIn) {
var prec = tokType.binop;
if (prec != null && (!noIn || tokType !== _in)) {
if (prec > minPrec) {
var node = startNodeFrom(left);
node.left = left;
node.operator = tokVal;
var op = tokType;
next();
node.right = parseExprOp(parseMaybeUnary(), prec, noIn);
var exprNode = finishNode(node, (op === _logicalOR || op === _logicalAND) ? "LogicalExpression" : "BinaryExpression");
return parseExprOp(exprNode, minPrec, noIn);
}
}
return left;
}
// Parse unary operators, both prefix and postfix.
function parseMaybeUnary() {
if (tokType.prefix) {
var node = startNode(), update = tokType.isUpdate;
node.operator = tokVal;
node.prefix = true;
tokRegexpAllowed = true;
next();
node.argument = parseMaybeUnary();
if (update) checkLVal(node.argument);
else if (strict && node.operator === "delete" &&
node.argument.type === "Identifier")
raise(node.start, "Deleting local variable in strict mode");
return finishNode(node, update ? "UpdateExpression" : "UnaryExpression");
}
var expr = parseExprSubscripts();
while (tokType.postfix && !canInsertSemicolon()) {
var node = startNodeFrom(expr);
node.operator = tokVal;
node.prefix = false;
node.argument = expr;
checkLVal(expr);
next();
expr = finishNode(node, "UpdateExpression");
}
return expr;
}
// Parse call, dot, and `[]`-subscript expressions.
function parseExprSubscripts() {
return parseSubscripts(parseExprAtom());
}
function parseSubscripts(base, noCalls) {
if (eat(_dot)) {
var node = startNodeFrom(base);
node.object = base;
node.property = parseIdent(true);
node.computed = false;
return parseSubscripts(finishNode(node, "MemberExpression"), noCalls);
} else if (eat(_bracketL)) {
var node = startNodeFrom(base);
node.object = base;
node.property = parseExpression();
node.computed = true;
expect(_bracketR);
return parseSubscripts(finishNode(node, "MemberExpression"), noCalls);
} else if (!noCalls && eat(_parenL)) {
var node = startNodeFrom(base);
node.callee = base;
node.arguments = parseExprList(_parenR, false);
return parseSubscripts(finishNode(node, "CallExpression"), noCalls);
} else return base;
}
// Parse an atomic expression — either a single token that is an
// expression, an expression started by a keyword like `function` or
// `new`, or an expression wrapped in punctuation like `()`, `[]`,
// or `{}`.
function parseExprAtom() {
switch (tokType) {
case _this:
var node = startNode();
next();
return finishNode(node, "ThisExpression");
case _name:
return parseIdent();
case _num: case _string: case _regexp:
var node = startNode();
node.value = tokVal;
node.raw = input.slice(tokStart, tokEnd);
next();
return finishNode(node, "Literal");
case _null: case _true: case _false:
var node = startNode();
node.value = tokType.atomValue;
node.raw = tokType.keyword;
next();
return finishNode(node, "Literal");
case _parenL:
var tokStartLoc1 = tokStartLoc, tokStart1 = tokStart;
next();
var val = parseExpression();
val.start = tokStart1;
val.end = tokEnd;
if (options.locations) {
val.loc.start = tokStartLoc1;
val.loc.end = tokEndLoc;
}
if (options.ranges)
val.range = [tokStart1, tokEnd];
expect(_parenR);
return val;
case _bracketL:
var node = startNode();
next();
node.elements = parseExprList(_bracketR, true, true);
return finishNode(node, "ArrayExpression");
case _braceL:
return parseObj();
case _function:
var node = startNode();
next();
return parseFunction(node, false);
case _new:
return parseNew();
default:
unexpected();
}
}
// New's precedence is slightly tricky. It must allow its argument
// to be a `[]` or dot subscript expression, but not a call — at
// least, not without wrapping it in parentheses. Thus, it uses the
function parseNew() {
var node = startNode();
next();
node.callee = parseSubscripts(parseExprAtom(), true);
if (eat(_parenL)) node.arguments = parseExprList(_parenR, false);
else node.arguments = empty;
return finishNode(node, "NewExpression");
}
// Parse an object literal.
function parseObj() {
var node = startNode(), first = true, sawGetSet = false;
node.properties = [];
next();
while (!eat(_braceR)) {
if (!first) {
expect(_comma);
if (options.allowTrailingCommas && eat(_braceR)) break;
} else first = false;
var prop = {key: parsePropertyName()}, isGetSet = false, kind;
if (eat(_colon)) {
prop.value = parseExpression(true);
kind = prop.kind = "init";
} else if (options.ecmaVersion >= 5 && prop.key.type === "Identifier" &&
(prop.key.name === "get" || prop.key.name === "set")) {
isGetSet = sawGetSet = true;
kind = prop.kind = prop.key.name;
prop.key = parsePropertyName();
if (tokType !== _parenL) unexpected();
prop.value = parseFunction(startNode(), false);
} else unexpected();
// getters and setters are not allowed to clash — either with
// each other or with an init property — and in strict mode,
// init properties are also not allowed to be repeated.
if (prop.key.type === "Identifier" && (strict || sawGetSet)) {
for (var i = 0; i < node.properties.length; ++i) {
var other = node.properties[i];
if (other.key.name === prop.key.name) {
var conflict = kind == other.kind || isGetSet && other.kind === "init" ||
kind === "init" && (other.kind === "get" || other.kind === "set");
if (conflict && !strict && kind === "init" && other.kind === "init") conflict = false;
if (conflict) raise(prop.key.start, "Redefinition of property");
}
}
}
node.properties.push(prop);
}
return finishNode(node, "ObjectExpression");
}
function parsePropertyName() {
if (tokType === _num || tokType === _string) return parseExprAtom();
return parseIdent(true);
}
// Parse a function declaration or literal (depending on the
// `isStatement` parameter).
function parseFunction(node, isStatement) {
if (tokType === _name) node.id = parseIdent();
else if (isStatement) unexpected();
else node.id = null;
node.params = [];
var first = true;
expect(_parenL);
while (!eat(_parenR)) {
if (!first) expect(_comma); else first = false;
node.params.push(parseIdent());
}
// Start a new scope with regard to labels and the `inFunction`
// flag (restore them to their old value afterwards).
var oldInFunc = inFunction, oldLabels = labels;
inFunction = true; labels = [];
node.body = parseBlock(true);
inFunction = oldInFunc; labels = oldLabels;
// If this is a strict mode function, verify that argument names
// are not repeated, and it does not try to bind the words `eval`
// or `arguments`.
if (strict || node.body.body.length && isUseStrict(node.body.body[0])) {
for (var i = node.id ? -1 : 0; i < node.params.length; ++i) {
var id = i < 0 ? node.id : node.params[i];
if (isStrictReservedWord(id.name) || isStrictBadIdWord(id.name))
raise(id.start, "Defining '" + id.name + "' in strict mode");
if (i >= 0) for (var j = 0; j < i; ++j) if (id.name === node.params[j].name)
raise(id.start, "Argument name clash in strict mode");
}
}
return finishNode(node, isStatement ? "FunctionDeclaration" : "FunctionExpression");
}
// Parses a comma-separated list of expressions, and returns them as
// an array. `close` is the token type that ends the list, and
// `allowEmpty` can be turned on to allow subsequent commas with
// nothing in between them to be parsed as `null` (which is needed
// for array literals).
function parseExprList(close, allowTrailingComma, allowEmpty) {
var elts = [], first = true;
while (!eat(close)) {
if (!first) {
expect(_comma);
if (allowTrailingComma && options.allowTrailingCommas && eat(close)) break;
} else first = false;
if (allowEmpty && tokType === _comma) elts.push(null);
else elts.push(parseExpression(true));
}
return elts;
}
// Parse the next token as an identifier. If `liberal` is true (used
// when parsing properties), it will also convert keywords into
// identifiers.
function parseIdent(liberal) {
var node = startNode();
node.name = tokType === _name ? tokVal : (liberal && !options.forbidReserved && tokType.keyword) || unexpected();
tokRegexpAllowed = false;
next();
return finishNode(node, "Identifier");
}
});