зеркало из https://github.com/mozilla/gecko-dev.git
379 строки
13 KiB
C++
379 строки
13 KiB
C++
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <vector>
|
|
|
|
#include "config/av1_rtcd.h"
|
|
|
|
#include "aom_ports/aom_timer.h"
|
|
#include "av1/common/av1_inv_txfm1d_cfg.h"
|
|
#include "av1/common/scan.h"
|
|
#include "test/acm_random.h"
|
|
#include "test/av1_txfm_test.h"
|
|
#include "test/util.h"
|
|
|
|
using libaom_test::ACMRandom;
|
|
using libaom_test::InvTxfm2dFunc;
|
|
using libaom_test::LbdInvTxfm2dFunc;
|
|
using libaom_test::bd;
|
|
using libaom_test::compute_avg_abs_error;
|
|
using libaom_test::input_base;
|
|
|
|
using ::testing::Combine;
|
|
using ::testing::Range;
|
|
using ::testing::Values;
|
|
|
|
using std::vector;
|
|
|
|
namespace {
|
|
|
|
// AV1InvTxfm2dParam argument list:
|
|
// tx_type_, tx_size_, max_error_, max_avg_error_
|
|
typedef ::testing::tuple<TX_TYPE, TX_SIZE, int, double> AV1InvTxfm2dParam;
|
|
|
|
class AV1InvTxfm2d : public ::testing::TestWithParam<AV1InvTxfm2dParam> {
|
|
public:
|
|
virtual void SetUp() {
|
|
tx_type_ = GET_PARAM(0);
|
|
tx_size_ = GET_PARAM(1);
|
|
max_error_ = GET_PARAM(2);
|
|
max_avg_error_ = GET_PARAM(3);
|
|
}
|
|
|
|
void RunRoundtripCheck() {
|
|
int tx_w = tx_size_wide[tx_size_];
|
|
int tx_h = tx_size_high[tx_size_];
|
|
int txfm2d_size = tx_w * tx_h;
|
|
const FwdTxfm2dFunc fwd_txfm_func = libaom_test::fwd_txfm_func_ls[tx_size_];
|
|
const InvTxfm2dFunc inv_txfm_func = libaom_test::inv_txfm_func_ls[tx_size_];
|
|
double avg_abs_error = 0;
|
|
ACMRandom rnd(ACMRandom::DeterministicSeed());
|
|
|
|
const int count = 500;
|
|
|
|
for (int ci = 0; ci < count; ci++) {
|
|
DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 };
|
|
ASSERT_LE(txfm2d_size, NELEMENTS(input));
|
|
|
|
for (int ni = 0; ni < txfm2d_size; ++ni) {
|
|
if (ci == 0) {
|
|
int extreme_input = input_base - 1;
|
|
input[ni] = extreme_input; // extreme case
|
|
} else {
|
|
input[ni] = rnd.Rand16() % input_base;
|
|
}
|
|
}
|
|
|
|
DECLARE_ALIGNED(16, uint16_t, expected[64 * 64]) = { 0 };
|
|
ASSERT_LE(txfm2d_size, NELEMENTS(expected));
|
|
if (TxfmUsesApproximation()) {
|
|
// Compare reference forward HT + inverse HT vs forward HT + inverse HT.
|
|
double ref_input[64 * 64];
|
|
ASSERT_LE(txfm2d_size, NELEMENTS(ref_input));
|
|
for (int ni = 0; ni < txfm2d_size; ++ni) {
|
|
ref_input[ni] = input[ni];
|
|
}
|
|
double ref_coeffs[64 * 64] = { 0 };
|
|
ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs));
|
|
ASSERT_EQ(tx_type_, DCT_DCT);
|
|
libaom_test::reference_hybrid_2d(ref_input, ref_coeffs, tx_type_,
|
|
tx_size_);
|
|
DECLARE_ALIGNED(16, int32_t, ref_coeffs_int[64 * 64]) = { 0 };
|
|
ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs_int));
|
|
for (int ni = 0; ni < txfm2d_size; ++ni) {
|
|
ref_coeffs_int[ni] = (int32_t)round(ref_coeffs[ni]);
|
|
}
|
|
inv_txfm_func(ref_coeffs_int, expected, tx_w, tx_type_, bd);
|
|
} else {
|
|
// Compare original input vs forward HT + inverse HT.
|
|
for (int ni = 0; ni < txfm2d_size; ++ni) {
|
|
expected[ni] = input[ni];
|
|
}
|
|
}
|
|
|
|
DECLARE_ALIGNED(16, int32_t, coeffs[64 * 64]) = { 0 };
|
|
ASSERT_LE(txfm2d_size, NELEMENTS(coeffs));
|
|
fwd_txfm_func(input, coeffs, tx_w, tx_type_, bd);
|
|
|
|
DECLARE_ALIGNED(16, uint16_t, actual[64 * 64]) = { 0 };
|
|
ASSERT_LE(txfm2d_size, NELEMENTS(actual));
|
|
inv_txfm_func(coeffs, actual, tx_w, tx_type_, bd);
|
|
|
|
double actual_max_error = 0;
|
|
for (int ni = 0; ni < txfm2d_size; ++ni) {
|
|
const double this_error = abs(expected[ni] - actual[ni]);
|
|
actual_max_error = AOMMAX(actual_max_error, this_error);
|
|
}
|
|
EXPECT_GE(max_error_, actual_max_error)
|
|
<< " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_;
|
|
if (actual_max_error > max_error_) { // exit early.
|
|
break;
|
|
}
|
|
avg_abs_error += compute_avg_abs_error<uint16_t, uint16_t>(
|
|
expected, actual, txfm2d_size);
|
|
}
|
|
|
|
avg_abs_error /= count;
|
|
EXPECT_GE(max_avg_error_, avg_abs_error)
|
|
<< " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_;
|
|
}
|
|
|
|
private:
|
|
bool TxfmUsesApproximation() {
|
|
if (tx_size_wide[tx_size_] == 64 || tx_size_high[tx_size_] == 64) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int max_error_;
|
|
double max_avg_error_;
|
|
TX_TYPE tx_type_;
|
|
TX_SIZE tx_size_;
|
|
};
|
|
|
|
static int max_error_ls[TX_SIZES_ALL] = {
|
|
2, // 4x4 transform
|
|
2, // 8x8 transform
|
|
2, // 16x16 transform
|
|
4, // 32x32 transform
|
|
3, // 64x64 transform
|
|
2, // 4x8 transform
|
|
2, // 8x4 transform
|
|
2, // 8x16 transform
|
|
2, // 16x8 transform
|
|
3, // 16x32 transform
|
|
3, // 32x16 transform
|
|
5, // 32x64 transform
|
|
5, // 64x32 transform
|
|
2, // 4x16 transform
|
|
2, // 16x4 transform
|
|
2, // 8x32 transform
|
|
2, // 32x8 transform
|
|
3, // 16x64 transform
|
|
3, // 64x16 transform
|
|
};
|
|
|
|
static double avg_error_ls[TX_SIZES_ALL] = {
|
|
0.002, // 4x4 transform
|
|
0.05, // 8x8 transform
|
|
0.07, // 16x16 transform
|
|
0.4, // 32x32 transform
|
|
0.3, // 64x64 transform
|
|
0.02, // 4x8 transform
|
|
0.02, // 8x4 transform
|
|
0.04, // 8x16 transform
|
|
0.07, // 16x8 transform
|
|
0.4, // 16x32 transform
|
|
0.5, // 32x16 transform
|
|
0.38, // 32x64 transform
|
|
0.39, // 64x32 transform
|
|
0.2, // 4x16 transform
|
|
0.2, // 16x4 transform
|
|
0.2, // 8x32 transform
|
|
0.2, // 32x8 transform
|
|
0.38, // 16x64 transform
|
|
0.38, // 64x16 transform
|
|
};
|
|
|
|
vector<AV1InvTxfm2dParam> GetInvTxfm2dParamList() {
|
|
vector<AV1InvTxfm2dParam> param_list;
|
|
for (int s = 0; s < TX_SIZES; ++s) {
|
|
const int max_error = max_error_ls[s];
|
|
const double avg_error = avg_error_ls[s];
|
|
for (int t = 0; t < TX_TYPES; ++t) {
|
|
const TX_TYPE tx_type = static_cast<TX_TYPE>(t);
|
|
const TX_SIZE tx_size = static_cast<TX_SIZE>(s);
|
|
if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) {
|
|
param_list.push_back(
|
|
AV1InvTxfm2dParam(tx_type, tx_size, max_error, avg_error));
|
|
}
|
|
}
|
|
}
|
|
return param_list;
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(C, AV1InvTxfm2d,
|
|
::testing::ValuesIn(GetInvTxfm2dParamList()));
|
|
|
|
TEST_P(AV1InvTxfm2d, RunRoundtripCheck) { RunRoundtripCheck(); }
|
|
|
|
TEST(AV1InvTxfm2d, CfgTest) {
|
|
for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) {
|
|
int bd = libaom_test::bd_arr[bd_idx];
|
|
int8_t low_range = libaom_test::low_range_arr[bd_idx];
|
|
int8_t high_range = libaom_test::high_range_arr[bd_idx];
|
|
for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) {
|
|
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
|
|
if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(tx_size),
|
|
static_cast<TX_TYPE>(tx_type)) ==
|
|
false) {
|
|
continue;
|
|
}
|
|
TXFM_2D_FLIP_CFG cfg;
|
|
av1_get_inv_txfm_cfg(static_cast<TX_TYPE>(tx_type),
|
|
static_cast<TX_SIZE>(tx_size), &cfg);
|
|
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
|
|
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
|
|
av1_gen_inv_stage_range(stage_range_col, stage_range_row, &cfg,
|
|
(TX_SIZE)tx_size, bd);
|
|
libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col,
|
|
cfg.cos_bit_col, low_range,
|
|
high_range);
|
|
libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row,
|
|
cfg.cos_bit_row, low_range,
|
|
high_range);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef ::testing::tuple<const LbdInvTxfm2dFunc> AV1LbdInvTxfm2dParam;
|
|
class AV1LbdInvTxfm2d : public ::testing::TestWithParam<AV1LbdInvTxfm2dParam> {
|
|
public:
|
|
virtual void SetUp() { target_func_ = GET_PARAM(0); }
|
|
void RunAV1InvTxfm2dTest(TX_TYPE tx_type, TX_SIZE tx_size, int run_times);
|
|
|
|
private:
|
|
LbdInvTxfm2dFunc target_func_;
|
|
};
|
|
|
|
void AV1LbdInvTxfm2d::RunAV1InvTxfm2dTest(TX_TYPE tx_type, TX_SIZE tx_size,
|
|
int run_times) {
|
|
FwdTxfm2dFunc fwd_func_ = libaom_test::fwd_txfm_func_ls[tx_size];
|
|
InvTxfm2dFunc ref_func_ = libaom_test::inv_txfm_func_ls[tx_size];
|
|
if (fwd_func_ == NULL || ref_func_ == NULL || target_func_ == NULL) {
|
|
return;
|
|
}
|
|
const int bd = 8;
|
|
const int BLK_WIDTH = 64;
|
|
const int BLK_SIZE = BLK_WIDTH * BLK_WIDTH;
|
|
DECLARE_ALIGNED(16, int16_t, input[BLK_SIZE]) = { 0 };
|
|
DECLARE_ALIGNED(32, int32_t, inv_input[BLK_SIZE]) = { 0 };
|
|
DECLARE_ALIGNED(16, uint8_t, output[BLK_SIZE]) = { 0 };
|
|
DECLARE_ALIGNED(16, uint16_t, ref_output[BLK_SIZE]) = { 0 };
|
|
int stride = BLK_WIDTH;
|
|
int rows = tx_size_high[tx_size];
|
|
int cols = tx_size_wide[tx_size];
|
|
const int rows_nonezero = AOMMIN(32, rows);
|
|
const int cols_nonezero = AOMMIN(32, cols);
|
|
run_times /= (rows * cols);
|
|
run_times = AOMMAX(1, run_times);
|
|
const SCAN_ORDER *scan_order = get_default_scan(tx_size, tx_type);
|
|
const int16_t *scan = scan_order->scan;
|
|
const int16_t eobmax = rows_nonezero * cols_nonezero;
|
|
ACMRandom rnd(ACMRandom::DeterministicSeed());
|
|
int randTimes = run_times == 1 ? (eobmax + 500) : 1;
|
|
for (int cnt = 0; cnt < randTimes; ++cnt) {
|
|
const int16_t max_in = (1 << (bd)) - 1;
|
|
for (int r = 0; r < BLK_WIDTH; ++r) {
|
|
for (int c = 0; c < BLK_WIDTH; ++c) {
|
|
input[r * cols + c] = (cnt == 0) ? max_in : rnd.Rand8Extremes();
|
|
output[r * stride + c] = (cnt == 0) ? 128 : rnd.Rand8();
|
|
ref_output[r * stride + c] = output[r * stride + c];
|
|
}
|
|
}
|
|
fwd_func_(input, inv_input, stride, tx_type, bd);
|
|
|
|
// produce eob input by setting high freq coeffs to zero
|
|
const int eob = AOMMIN(cnt + 1, eobmax);
|
|
for (int i = eob; i < eobmax; i++) {
|
|
inv_input[scan[i]] = 0;
|
|
}
|
|
|
|
aom_usec_timer timer;
|
|
aom_usec_timer_start(&timer);
|
|
for (int i = 0; i < run_times; ++i) {
|
|
ref_func_(inv_input, ref_output, stride, tx_type, bd);
|
|
}
|
|
aom_usec_timer_mark(&timer);
|
|
const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer));
|
|
aom_usec_timer_start(&timer);
|
|
for (int i = 0; i < run_times; ++i) {
|
|
target_func_(inv_input, output, stride, tx_type, tx_size, eob);
|
|
}
|
|
aom_usec_timer_mark(&timer);
|
|
const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer));
|
|
if (run_times > 10) {
|
|
printf("txfm[%d] %3dx%-3d:%7.2f/%7.2fns", tx_type, cols, rows, time1,
|
|
time2);
|
|
printf("(%3.2f)\n", time1 / time2);
|
|
}
|
|
for (int r = 0; r < rows; ++r) {
|
|
for (int c = 0; c < cols; ++c) {
|
|
uint8_t ref_value = static_cast<uint8_t>(ref_output[r * stride + c]);
|
|
ASSERT_EQ(ref_value, output[r * stride + c])
|
|
<< "[" << r << "," << c << "] " << cnt
|
|
<< " tx_size: " << static_cast<int>(tx_size)
|
|
<< " tx_type: " << tx_type << " eob " << eob;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(AV1LbdInvTxfm2d, match) {
|
|
for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) {
|
|
for (int i = 0; i < (int)TX_TYPES; ++i) {
|
|
if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(j),
|
|
static_cast<TX_TYPE>(i))) {
|
|
RunAV1InvTxfm2dTest(static_cast<TX_TYPE>(i), static_cast<TX_SIZE>(j),
|
|
1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(AV1LbdInvTxfm2d, DISABLED_Speed) {
|
|
for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) {
|
|
for (int i = 0; i < (int)TX_TYPES; ++i) {
|
|
if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(j),
|
|
static_cast<TX_TYPE>(i))) {
|
|
RunAV1InvTxfm2dTest(static_cast<TX_TYPE>(i), static_cast<TX_SIZE>(j),
|
|
10000000);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if HAVE_SSSE3
|
|
#if defined(_MSC_VER) || defined(__SSSE3__)
|
|
#include "av1/common/x86/av1_inv_txfm_ssse3.h"
|
|
INSTANTIATE_TEST_CASE_P(SSSE3, AV1LbdInvTxfm2d,
|
|
::testing::Values(av1_lowbd_inv_txfm2d_add_ssse3));
|
|
#endif // _MSC_VER || __SSSE3__
|
|
#endif // HAVE_SSSE3
|
|
|
|
#if HAVE_AVX2
|
|
extern "C" void av1_lowbd_inv_txfm2d_add_avx2(const int32_t *input,
|
|
uint8_t *output, int stride,
|
|
TX_TYPE tx_type, TX_SIZE tx_size,
|
|
int eob);
|
|
|
|
INSTANTIATE_TEST_CASE_P(AVX2, AV1LbdInvTxfm2d,
|
|
::testing::Values(av1_lowbd_inv_txfm2d_add_avx2));
|
|
#endif // HAVE_AVX2
|
|
|
|
#if HAVE_NEON
|
|
|
|
extern "C" void av1_lowbd_inv_txfm2d_add_neon(const int32_t *input,
|
|
uint8_t *output, int stride,
|
|
TX_TYPE tx_type, TX_SIZE tx_size,
|
|
int eob);
|
|
|
|
INSTANTIATE_TEST_CASE_P(NEON, AV1LbdInvTxfm2d,
|
|
::testing::Values(av1_lowbd_inv_txfm2d_add_neon));
|
|
#endif // HAVE_NEON
|
|
|
|
} // namespace
|