gecko-dev/security/nss/lib/softoken/rsawrapr.c

1450 строки
41 KiB
C

/*
* PKCS#1 encoding and decoding functions.
* This file is believed to contain no code licensed from other parties.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* $Id: rsawrapr.c,v 1.22 2013/02/05 02:19:52 ryan.sleevi%gmail.com Exp $ */
#include "blapi.h"
#include "softoken.h"
#include "lowkeyi.h"
#include "secerr.h"
#define RSA_BLOCK_MIN_PAD_LEN 8
#define RSA_BLOCK_FIRST_OCTET 0x00
#define RSA_BLOCK_PRIVATE0_PAD_OCTET 0x00
#define RSA_BLOCK_PRIVATE_PAD_OCTET 0xff
#define RSA_BLOCK_AFTER_PAD_OCTET 0x00
/* Needed for RSA-PSS functions */
static const unsigned char eightZeros[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
/* Constant time comparison of a single byte.
* Returns 1 iff a == b, otherwise returns 0.
* Note: For ranges of bytes, use constantTimeCompare.
*/
static unsigned char constantTimeEQ8(unsigned char a, unsigned char b) {
unsigned char c = ~(a - b | b - a);
c >>= 7;
return c;
}
/* Constant time comparison of a range of bytes.
* Returns 1 iff len bytes of a are identical to len bytes of b, otherwise
* returns 0.
*/
static unsigned char constantTimeCompare(const unsigned char *a,
const unsigned char *b,
unsigned int len) {
unsigned char tmp = 0;
unsigned int i;
for (i = 0; i < len; ++i, ++a, ++b)
tmp |= *a ^ *b;
return constantTimeEQ8(0x00, tmp);
}
/* Constant time conditional.
* Returns a if c is 1, or b if c is 0. The result is undefined if c is
* not 0 or 1.
*/
static unsigned int constantTimeCondition(unsigned int c,
unsigned int a,
unsigned int b)
{
return (~(c - 1) & a) | ((c - 1) & b);
}
/*
* Format one block of data for public/private key encryption using
* the rules defined in PKCS #1.
*/
static unsigned char *
rsa_FormatOneBlock(unsigned modulusLen, RSA_BlockType blockType,
SECItem *data)
{
unsigned char *block;
unsigned char *bp;
int padLen;
int i, j;
SECStatus rv;
block = (unsigned char *) PORT_Alloc(modulusLen);
if (block == NULL)
return NULL;
bp = block;
/*
* All RSA blocks start with two octets:
* 0x00 || BlockType
*/
*bp++ = RSA_BLOCK_FIRST_OCTET;
*bp++ = (unsigned char) blockType;
switch (blockType) {
/*
* Blocks intended for private-key operation.
*/
case RSA_BlockPrivate0: /* essentially unused */
case RSA_BlockPrivate: /* preferred method */
/*
* 0x00 || BT || Pad || 0x00 || ActualData
* 1 1 padLen 1 data->len
* Pad is either all 0x00 or all 0xff bytes, depending on blockType.
*/
padLen = modulusLen - data->len - 3;
PORT_Assert (padLen >= RSA_BLOCK_MIN_PAD_LEN);
if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
PORT_Free (block);
return NULL;
}
PORT_Memset (bp,
blockType == RSA_BlockPrivate0
? RSA_BLOCK_PRIVATE0_PAD_OCTET
: RSA_BLOCK_PRIVATE_PAD_OCTET,
padLen);
bp += padLen;
*bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
PORT_Memcpy (bp, data->data, data->len);
break;
/*
* Blocks intended for public-key operation.
*/
case RSA_BlockPublic:
/*
* 0x00 || BT || Pad || 0x00 || ActualData
* 1 1 padLen 1 data->len
* Pad is all non-zero random bytes.
*
* Build the block left to right.
* Fill the entire block from Pad to the end with random bytes.
* Use the bytes after Pad as a supply of extra random bytes from
* which to find replacements for the zero bytes in Pad.
* If we need more than that, refill the bytes after Pad with
* new random bytes as necessary.
*/
padLen = modulusLen - (data->len + 3);
PORT_Assert (padLen >= RSA_BLOCK_MIN_PAD_LEN);
if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
PORT_Free (block);
return NULL;
}
j = modulusLen - 2;
rv = RNG_GenerateGlobalRandomBytes(bp, j);
if (rv == SECSuccess) {
for (i = 0; i < padLen; ) {
unsigned char repl;
/* Pad with non-zero random data. */
if (bp[i] != RSA_BLOCK_AFTER_PAD_OCTET) {
++i;
continue;
}
if (j <= padLen) {
rv = RNG_GenerateGlobalRandomBytes(bp + padLen,
modulusLen - (2 + padLen));
if (rv != SECSuccess)
break;
j = modulusLen - 2;
}
do {
repl = bp[--j];
} while (repl == RSA_BLOCK_AFTER_PAD_OCTET && j > padLen);
if (repl != RSA_BLOCK_AFTER_PAD_OCTET) {
bp[i++] = repl;
}
}
}
if (rv != SECSuccess) {
sftk_fatalError = PR_TRUE;
PORT_Free (block);
return NULL;
}
bp += padLen;
*bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
PORT_Memcpy (bp, data->data, data->len);
break;
default:
PORT_Assert (0);
PORT_Free (block);
return NULL;
}
return block;
}
static SECStatus
rsa_FormatBlock(SECItem *result, unsigned modulusLen,
RSA_BlockType blockType, SECItem *data)
{
/*
* XXX For now assume that the data length fits in a single
* XXX encryption block; the ASSERTs below force this.
* XXX To fix it, each case will have to loop over chunks whose
* XXX lengths satisfy the assertions, until all data is handled.
* XXX (Unless RSA has more to say about how to handle data
* XXX which does not fit in a single encryption block?)
* XXX And I do not know what the result is supposed to be,
* XXX so the interface to this function may need to change
* XXX to allow for returning multiple blocks, if they are
* XXX not wanted simply concatenated one after the other.
*/
switch (blockType) {
case RSA_BlockPrivate0:
case RSA_BlockPrivate:
case RSA_BlockPublic:
/*
* 0x00 || BT || Pad || 0x00 || ActualData
*
* The "3" below is the first octet + the second octet + the 0x00
* octet that always comes just before the ActualData.
*/
PORT_Assert (data->len <= (modulusLen - (3 + RSA_BLOCK_MIN_PAD_LEN)));
result->data = rsa_FormatOneBlock(modulusLen, blockType, data);
if (result->data == NULL) {
result->len = 0;
return SECFailure;
}
result->len = modulusLen;
break;
case RSA_BlockRaw:
/*
* Pad || ActualData
* Pad is zeros. The application is responsible for recovering
* the actual data.
*/
if (data->len > modulusLen ) {
return SECFailure;
}
result->data = (unsigned char*)PORT_ZAlloc(modulusLen);
result->len = modulusLen;
PORT_Memcpy(result->data+(modulusLen-data->len),data->data,data->len);
break;
default:
PORT_Assert (0);
result->data = NULL;
result->len = 0;
return SECFailure;
}
return SECSuccess;
}
/* XXX Doesn't set error code */
SECStatus
RSA_Sign(NSSLOWKEYPrivateKey *key,
unsigned char * output,
unsigned int * output_len,
unsigned int maxOutputLen,
unsigned char * input,
unsigned int input_len)
{
SECStatus rv = SECSuccess;
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
SECItem formatted;
SECItem unformatted;
if (maxOutputLen < modulus_len)
return SECFailure;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
return SECFailure;
unformatted.len = input_len;
unformatted.data = input;
formatted.data = NULL;
rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockPrivate,
&unformatted);
if (rv != SECSuccess)
goto done;
rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, output, formatted.data);
if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
sftk_fatalError = PR_TRUE;
}
*output_len = modulus_len;
goto done;
done:
if (formatted.data != NULL)
PORT_ZFree(formatted.data, modulus_len);
return rv;
}
/* XXX Doesn't set error code */
SECStatus
RSA_CheckSign(NSSLOWKEYPublicKey *key,
unsigned char * sign,
unsigned int sign_len,
unsigned char * hash,
unsigned int hash_len)
{
SECStatus rv;
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
unsigned int i;
unsigned char * buffer;
modulus_len = nsslowkey_PublicModulusLen(key);
if (sign_len != modulus_len)
goto failure;
/*
* 0x00 || BT || Pad || 0x00 || ActualData
*
* The "3" below is the first octet + the second octet + the 0x00
* octet that always comes just before the ActualData.
*/
if (hash_len > modulus_len - (3 + RSA_BLOCK_MIN_PAD_LEN))
goto failure;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
goto failure;
buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
if (!buffer)
goto failure;
rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
if (rv != SECSuccess)
goto loser;
/*
* check the padding that was used
*/
if (buffer[0] != 0 || buffer[1] != 1)
goto loser;
for (i = 2; i < modulus_len - hash_len - 1; i++) {
if (buffer[i] != 0xff)
goto loser;
}
if (buffer[i] != 0)
goto loser;
/*
* make sure we get the same results
*/
if (PORT_Memcmp(buffer + modulus_len - hash_len, hash, hash_len) != 0)
goto loser;
PORT_Free(buffer);
return SECSuccess;
loser:
PORT_Free(buffer);
failure:
return SECFailure;
}
/* XXX Doesn't set error code */
SECStatus
RSA_CheckSignRecover(NSSLOWKEYPublicKey *key,
unsigned char * data,
unsigned int * data_len,
unsigned int max_output_len,
unsigned char * sign,
unsigned int sign_len)
{
SECStatus rv;
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
unsigned int i;
unsigned char * buffer;
if (sign_len != modulus_len)
goto failure;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
goto failure;
buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
if (!buffer)
goto failure;
rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
if (rv != SECSuccess)
goto loser;
*data_len = 0;
/*
* check the padding that was used
*/
if (buffer[0] != 0 || buffer[1] != 1)
goto loser;
for (i = 2; i < modulus_len; i++) {
if (buffer[i] == 0) {
*data_len = modulus_len - i - 1;
break;
}
if (buffer[i] != 0xff)
goto loser;
}
if (*data_len == 0)
goto loser;
if (*data_len > max_output_len)
goto loser;
/*
* make sure we get the same results
*/
PORT_Memcpy(data,buffer + modulus_len - *data_len, *data_len);
PORT_Free(buffer);
return SECSuccess;
loser:
PORT_Free(buffer);
failure:
return SECFailure;
}
/* XXX Doesn't set error code */
SECStatus
RSA_EncryptBlock(NSSLOWKEYPublicKey *key,
unsigned char * output,
unsigned int * output_len,
unsigned int max_output_len,
unsigned char * input,
unsigned int input_len)
{
SECStatus rv;
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
SECItem formatted;
SECItem unformatted;
formatted.data = NULL;
if (max_output_len < modulus_len)
goto failure;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
goto failure;
unformatted.len = input_len;
unformatted.data = input;
formatted.data = NULL;
rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockPublic,
&unformatted);
if (rv != SECSuccess)
goto failure;
rv = RSA_PublicKeyOp(&key->u.rsa, output, formatted.data);
if (rv != SECSuccess)
goto failure;
PORT_ZFree(formatted.data, modulus_len);
*output_len = modulus_len;
return SECSuccess;
failure:
if (formatted.data != NULL)
PORT_ZFree(formatted.data, modulus_len);
return SECFailure;
}
/* XXX Doesn't set error code */
SECStatus
RSA_DecryptBlock(NSSLOWKEYPrivateKey *key,
unsigned char * output,
unsigned int * output_len,
unsigned int max_output_len,
unsigned char * input,
unsigned int input_len)
{
SECStatus rv;
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
unsigned int i;
unsigned char * buffer;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
goto failure;
if (input_len != modulus_len)
goto failure;
buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
if (!buffer)
goto failure;
rv = RSA_PrivateKeyOp(&key->u.rsa, buffer, input);
if (rv != SECSuccess) {
if (PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
sftk_fatalError = PR_TRUE;
}
goto loser;
}
if (buffer[0] != 0 || buffer[1] != 2)
goto loser;
*output_len = 0;
for (i = 2; i < modulus_len; i++) {
if (buffer[i] == 0) {
*output_len = modulus_len - i - 1;
break;
}
}
if (*output_len == 0)
goto loser;
if (*output_len > max_output_len)
goto loser;
PORT_Memcpy(output, buffer + modulus_len - *output_len, *output_len);
PORT_Free(buffer);
return SECSuccess;
loser:
PORT_Free(buffer);
failure:
return SECFailure;
}
/* XXX Doesn't set error code */
/*
* added to make pkcs #11 happy
* RAW is RSA_X_509
*/
SECStatus
RSA_SignRaw(NSSLOWKEYPrivateKey *key,
unsigned char * output,
unsigned int * output_len,
unsigned int maxOutputLen,
unsigned char * input,
unsigned int input_len)
{
SECStatus rv = SECSuccess;
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
SECItem formatted;
SECItem unformatted;
if (maxOutputLen < modulus_len)
return SECFailure;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
return SECFailure;
unformatted.len = input_len;
unformatted.data = input;
formatted.data = NULL;
rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockRaw, &unformatted);
if (rv != SECSuccess)
goto done;
rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, output, formatted.data);
if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
sftk_fatalError = PR_TRUE;
}
*output_len = modulus_len;
done:
if (formatted.data != NULL)
PORT_ZFree(formatted.data, modulus_len);
return rv;
}
/* XXX Doesn't set error code */
SECStatus
RSA_CheckSignRaw(NSSLOWKEYPublicKey *key,
unsigned char * sign,
unsigned int sign_len,
unsigned char * hash,
unsigned int hash_len)
{
SECStatus rv;
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
unsigned char * buffer;
if (sign_len != modulus_len)
goto failure;
if (hash_len > modulus_len)
goto failure;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
goto failure;
buffer = (unsigned char *)PORT_Alloc(modulus_len + 1);
if (!buffer)
goto failure;
rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
if (rv != SECSuccess)
goto loser;
/*
* make sure we get the same results
*/
/* NOTE: should we verify the leading zeros? */
if (PORT_Memcmp(buffer + (modulus_len-hash_len), hash, hash_len) != 0)
goto loser;
PORT_Free(buffer);
return SECSuccess;
loser:
PORT_Free(buffer);
failure:
return SECFailure;
}
/* XXX Doesn't set error code */
SECStatus
RSA_CheckSignRecoverRaw(NSSLOWKEYPublicKey *key,
unsigned char * data,
unsigned int * data_len,
unsigned int max_output_len,
unsigned char * sign,
unsigned int sign_len)
{
SECStatus rv;
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
if (sign_len != modulus_len)
goto failure;
if (max_output_len < modulus_len)
goto failure;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
goto failure;
rv = RSA_PublicKeyOp(&key->u.rsa, data, sign);
if (rv != SECSuccess)
goto failure;
*data_len = modulus_len;
return SECSuccess;
failure:
return SECFailure;
}
/* XXX Doesn't set error code */
SECStatus
RSA_EncryptRaw(NSSLOWKEYPublicKey *key,
unsigned char * output,
unsigned int * output_len,
unsigned int max_output_len,
unsigned char * input,
unsigned int input_len)
{
SECStatus rv;
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
SECItem formatted;
SECItem unformatted;
formatted.data = NULL;
if (max_output_len < modulus_len)
goto failure;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
goto failure;
unformatted.len = input_len;
unformatted.data = input;
formatted.data = NULL;
rv = rsa_FormatBlock(&formatted, modulus_len, RSA_BlockRaw, &unformatted);
if (rv != SECSuccess)
goto failure;
rv = RSA_PublicKeyOp(&key->u.rsa, output, formatted.data);
if (rv != SECSuccess)
goto failure;
PORT_ZFree(formatted.data, modulus_len);
*output_len = modulus_len;
return SECSuccess;
failure:
if (formatted.data != NULL)
PORT_ZFree(formatted.data, modulus_len);
return SECFailure;
}
/* XXX Doesn't set error code */
SECStatus
RSA_DecryptRaw(NSSLOWKEYPrivateKey *key,
unsigned char * output,
unsigned int * output_len,
unsigned int max_output_len,
unsigned char * input,
unsigned int input_len)
{
SECStatus rv;
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
if (modulus_len <= 0)
goto failure;
if (modulus_len > max_output_len)
goto failure;
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey)
goto failure;
if (input_len != modulus_len)
goto failure;
rv = RSA_PrivateKeyOp(&key->u.rsa, output, input);
if (rv != SECSuccess) {
if (PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
sftk_fatalError = PR_TRUE;
}
goto failure;
}
*output_len = modulus_len;
return SECSuccess;
failure:
return SECFailure;
}
/*
* Mask generation function MGF1 as defined in PKCS #1 v2.1 / RFC 3447.
*/
static SECStatus
MGF1(HASH_HashType hashAlg, unsigned char *mask, unsigned int maskLen,
const unsigned char *mgfSeed, unsigned int mgfSeedLen)
{
unsigned int digestLen;
PRUint32 counter, rounds;
unsigned char *tempHash, *temp;
const SECHashObject *hash;
void *hashContext;
unsigned char C[4];
hash = HASH_GetRawHashObject(hashAlg);
if (hash == NULL)
return SECFailure;
hashContext = (*hash->create)();
rounds = (maskLen + hash->length - 1) / hash->length;
for (counter = 0; counter < rounds; counter++) {
C[0] = (unsigned char)((counter >> 24) & 0xff);
C[1] = (unsigned char)((counter >> 16) & 0xff);
C[2] = (unsigned char)((counter >> 8) & 0xff);
C[3] = (unsigned char)(counter & 0xff);
/* This could be optimized when the clone functions in
* rawhash.c are implemented. */
(*hash->begin)(hashContext);
(*hash->update)(hashContext, mgfSeed, mgfSeedLen);
(*hash->update)(hashContext, C, sizeof C);
tempHash = mask + counter * hash->length;
if (counter != (rounds-1)) {
(*hash->end)(hashContext, tempHash, &digestLen, hash->length);
} else { /* we're in the last round and need to cut the hash */
temp = PORT_Alloc(hash->length);
(*hash->end)(hashContext, temp, &digestLen, hash->length);
PORT_Memcpy(tempHash, temp, maskLen - counter * hash->length);
PORT_Free(temp);
}
}
(*hash->destroy)(hashContext, PR_TRUE);
return SECSuccess;
}
/*
* Decodes an EME-OAEP encoded block, validating the encoding in constant
* time.
* Described in RFC 3447, section 7.1.2.
* input contains the encoded block, after decryption.
* label is the optional value L that was associated with the message.
* On success, the original message and message length will be stored in
* output and outputLen.
*/
static SECStatus
eme_oaep_decode(unsigned char *output, unsigned int *outputLen,
unsigned int maxOutputLen,
const unsigned char *input, unsigned int inputLen,
HASH_HashType hashAlg, HASH_HashType maskHashAlg,
const unsigned char *label, unsigned int labelLen)
{
const SECHashObject *hash;
void *hashContext;
SECStatus rv = SECFailure;
unsigned char labelHash[HASH_LENGTH_MAX];
unsigned int i, maskLen, paddingOffset;
unsigned char *mask = NULL, *tmpOutput = NULL;
unsigned char isGood, foundPaddingEnd;
hash = HASH_GetRawHashObject(hashAlg);
/* 1.c */
if (inputLen < (hash->length * 2) + 2) {
PORT_SetError(SEC_ERROR_INPUT_LEN);
return SECFailure;
}
/* Step 3.a - Generate lHash */
hashContext = (*hash->create)();
if (hashContext == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
(*hash->begin)(hashContext);
if (labelLen > 0)
(*hash->update)(hashContext, label, labelLen);
(*hash->end)(hashContext, labelHash, &i, sizeof(labelHash));
(*hash->destroy)(hashContext, PR_TRUE);
tmpOutput = (unsigned char*)PORT_Alloc(inputLen);
if (tmpOutput == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
goto done;
}
maskLen = inputLen - hash->length - 1;
mask = (unsigned char*)PORT_Alloc(maskLen);
if (mask == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
goto done;
}
PORT_Memcpy(tmpOutput, input, inputLen);
/* 3.c - Generate seedMask */
MGF1(maskHashAlg, mask, hash->length, &tmpOutput[1 + hash->length],
inputLen - hash->length - 1);
/* 3.d - Unmask seed */
for (i = 0; i < hash->length; ++i)
tmpOutput[1 + i] ^= mask[i];
/* 3.e - Generate dbMask */
MGF1(maskHashAlg, mask, maskLen, &tmpOutput[1], hash->length);
/* 3.f - Unmask DB */
for (i = 0; i < maskLen; ++i)
tmpOutput[1 + hash->length + i] ^= mask[i];
/* 3.g - Compare Y, lHash, and PS in constant time
* Warning: This code is timing dependent and must not disclose which of
* these were invalid.
*/
paddingOffset = 0;
isGood = 1;
foundPaddingEnd = 0;
/* Compare Y */
isGood &= constantTimeEQ8(0x00, tmpOutput[0]);
/* Compare lHash and lHash' */
isGood &= constantTimeCompare(&labelHash[0],
&tmpOutput[1 + hash->length],
hash->length);
/* Compare that the padding is zero or more zero octets, followed by a
* 0x01 octet */
for (i = 1 + (hash->length * 2); i < inputLen; ++i) {
unsigned char isZero = constantTimeEQ8(0x00, tmpOutput[i]);
unsigned char isOne = constantTimeEQ8(0x01, tmpOutput[i]);
/* non-constant time equivalent:
* if (tmpOutput[i] == 0x01 && !foundPaddingEnd)
* paddingOffset = i;
*/
paddingOffset = constantTimeCondition(isOne & ~foundPaddingEnd, i,
paddingOffset);
/* non-constant time equivalent:
* if (tmpOutput[i] == 0x01)
* foundPaddingEnd = true;
*
* Note: This may yield false positives, as it will be set whenever
* a 0x01 byte is encountered. If there was bad padding (eg:
* 0x03 0x02 0x01), foundPaddingEnd will still be set to true, and
* paddingOffset will still be set to 2.
*/
foundPaddingEnd = constantTimeCondition(isOne, 1, foundPaddingEnd);
/* non-constant time equivalent:
* if (tmpOutput[i] != 0x00 && tmpOutput[i] != 0x01 &&
* !foundPaddingEnd) {
* isGood = false;
* }
*
* Note: This may yield false positives, as a message (and padding)
* that is entirely zeros will result in isGood still being true. Thus
* it's necessary to check foundPaddingEnd is positive below.
*/
isGood = constantTimeCondition(~foundPaddingEnd & ~isZero, 0, isGood);
}
/* While both isGood and foundPaddingEnd may have false positives, they
* cannot BOTH have false positives. If both are not true, then an invalid
* message was received. Note, this comparison must still be done in constant
* time so as not to leak either condition.
*/
if (!(isGood & foundPaddingEnd)) {
PORT_SetError(SEC_ERROR_BAD_DATA);
goto done;
}
/* End timing dependent code */
++paddingOffset; /* Skip the 0x01 following the end of PS */
*outputLen = inputLen - paddingOffset;
if (*outputLen > maxOutputLen) {
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
goto done;
}
if (*outputLen)
PORT_Memcpy(output, &tmpOutput[paddingOffset], *outputLen);
rv = SECSuccess;
done:
if (mask)
PORT_ZFree(mask, maskLen);
if (tmpOutput)
PORT_ZFree(tmpOutput, inputLen);
return rv;
}
/*
* Generate an EME-OAEP encoded block for encryption
* Described in RFC 3447, section 7.1.1
* We use input instead of M for the message to be encrypted
* label is the optional value L to be associated with the message.
*/
static SECStatus
eme_oaep_encode(unsigned char *em, unsigned int emLen,
const unsigned char *input, unsigned int inputLen,
HASH_HashType hashAlg, HASH_HashType maskHashAlg,
const unsigned char *label, unsigned int labelLen)
{
const SECHashObject *hash;
void *hashContext;
SECStatus rv;
unsigned char *mask;
unsigned int reservedLen, dbMaskLen, i;
hash = HASH_GetRawHashObject(hashAlg);
/* Step 1.b */
reservedLen = (2 * hash->length) + 2;
if (emLen < reservedLen || inputLen > (emLen - reservedLen)) {
PORT_SetError(SEC_ERROR_INPUT_LEN);
return SECFailure;
}
/*
* From RFC 3447, Section 7.1
* +----------+---------+-------+
* DB = | lHash | PS | M |
* +----------+---------+-------+
* |
* +----------+ V
* | seed |--> MGF ---> xor
* +----------+ |
* | |
* +--+ V |
* |00| xor <----- MGF <-----|
* +--+ | |
* | | |
* V V V
* +--+----------+----------------------------+
* EM = |00|maskedSeed| maskedDB |
* +--+----------+----------------------------+
*
* We use mask to hold the result of the MGF functions, and all other
* values are generated in their final resting place.
*/
*em = 0x00;
/* Step 2.a - Generate lHash */
hashContext = (*hash->create)();
if (hashContext == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
(*hash->begin)(hashContext);
if (labelLen > 0)
(*hash->update)(hashContext, label, labelLen);
(*hash->end)(hashContext, &em[1 + hash->length], &i, hash->length);
(*hash->destroy)(hashContext, PR_TRUE);
/* Step 2.b - Generate PS */
if (emLen - reservedLen - inputLen > 0) {
PORT_Memset(em + 1 + (hash->length * 2), 0x00,
emLen - reservedLen - inputLen);
}
/* Step 2.c. - Generate DB
* DB = lHash || PS || 0x01 || M
* Note that PS and lHash have already been placed into em at their
* appropriate offsets. This just copies M into place
*/
em[emLen - inputLen - 1] = 0x01;
if (inputLen)
PORT_Memcpy(em + emLen - inputLen, input, inputLen);
/* Step 2.d - Generate seed */
rv = RNG_GenerateGlobalRandomBytes(em + 1, hash->length);
if (rv != SECSuccess) {
return rv;
}
/* Step 2.e - Generate dbMask*/
dbMaskLen = emLen - hash->length - 1;
mask = (unsigned char*)PORT_Alloc(dbMaskLen);
if (mask == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
MGF1(maskHashAlg, mask, dbMaskLen, em + 1, hash->length);
/* Step 2.f - Compute maskedDB*/
for (i = 0; i < dbMaskLen; ++i)
em[1 + hash->length + i] ^= mask[i];
/* Step 2.g - Generate seedMask */
MGF1(maskHashAlg, mask, hash->length, &em[1 + hash->length], dbMaskLen);
/* Step 2.h - Compute maskedSeed */
for (i = 0; i < hash->length; ++i)
em[1 + i] ^= mask[i];
PORT_ZFree(mask, dbMaskLen);
return SECSuccess;
}
/*
* Encode a RSA-PSS signature.
* Described in RFC 3447, section 9.1.1.
* We use mHash instead of M as input.
* emBits from the RFC is just modBits - 1, see section 8.1.1.
* We only support MGF1 as the MGF.
*
* NOTE: this code assumes modBits is a multiple of 8.
*/
static SECStatus
emsa_pss_encode(unsigned char *em, unsigned int emLen,
const unsigned char *mHash, HASH_HashType hashAlg,
HASH_HashType maskHashAlg, unsigned int sLen)
{
const SECHashObject *hash;
void *hash_context;
unsigned char *dbMask;
unsigned int dbMaskLen, i;
SECStatus rv;
hash = HASH_GetRawHashObject(hashAlg);
dbMaskLen = emLen - hash->length - 1;
/* Step 3 */
if (emLen < hash->length + sLen + 2) {
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
/* Step 4 */
rv = RNG_GenerateGlobalRandomBytes(&em[dbMaskLen - sLen], sLen);
if (rv != SECSuccess) {
return rv;
}
/* Step 5 + 6 */
/* Compute H and store it at its final location &em[dbMaskLen]. */
hash_context = (*hash->create)();
if (hash_context == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
(*hash->begin)(hash_context);
(*hash->update)(hash_context, eightZeros, 8);
(*hash->update)(hash_context, mHash, hash->length);
(*hash->update)(hash_context, &em[dbMaskLen - sLen], sLen);
(*hash->end)(hash_context, &em[dbMaskLen], &i, hash->length);
(*hash->destroy)(hash_context, PR_TRUE);
/* Step 7 + 8 */
PORT_Memset(em, 0, dbMaskLen - sLen - 1);
em[dbMaskLen - sLen - 1] = 0x01;
/* Step 9 */
dbMask = (unsigned char *)PORT_Alloc(dbMaskLen);
if (dbMask == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
MGF1(maskHashAlg, dbMask, dbMaskLen, &em[dbMaskLen], hash->length);
/* Step 10 */
for (i = 0; i < dbMaskLen; i++)
em[i] ^= dbMask[i];
PORT_Free(dbMask);
/* Step 11 */
em[0] &= 0x7f;
/* Step 12 */
em[emLen - 1] = 0xbc;
return SECSuccess;
}
/*
* Verify a RSA-PSS signature.
* Described in RFC 3447, section 9.1.2.
* We use mHash instead of M as input.
* emBits from the RFC is just modBits - 1, see section 8.1.2.
* We only support MGF1 as the MGF.
*
* NOTE: this code assumes modBits is a multiple of 8.
*/
static SECStatus
emsa_pss_verify(const unsigned char *mHash,
const unsigned char *em, unsigned int emLen,
HASH_HashType hashAlg, HASH_HashType maskHashAlg,
unsigned int sLen)
{
const SECHashObject *hash;
void *hash_context;
unsigned char *db;
unsigned char *H_; /* H' from the RFC */
unsigned int i, dbMaskLen;
SECStatus rv;
hash = HASH_GetRawHashObject(hashAlg);
dbMaskLen = emLen - hash->length - 1;
/* Step 3 + 4 + 6 */
if ((emLen < (hash->length + sLen + 2)) ||
(em[emLen - 1] != 0xbc) ||
((em[0] & 0x80) != 0)) {
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
return SECFailure;
}
/* Step 7 */
db = (unsigned char *)PORT_Alloc(dbMaskLen);
if (db == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
/* &em[dbMaskLen] points to H, used as mgfSeed */
MGF1(maskHashAlg, db, dbMaskLen, &em[dbMaskLen], hash->length);
/* Step 8 */
for (i = 0; i < dbMaskLen; i++) {
db[i] ^= em[i];
}
/* Step 9 */
db[0] &= 0x7f;
/* Step 10 */
for (i = 0; i < (dbMaskLen - sLen - 1); i++) {
if (db[i] != 0) {
PORT_Free(db);
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
return SECFailure;
}
}
if (db[dbMaskLen - sLen - 1] != 0x01) {
PORT_Free(db);
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
return SECFailure;
}
/* Step 12 + 13 */
H_ = (unsigned char *)PORT_Alloc(hash->length);
if (H_ == NULL) {
PORT_Free(db);
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
hash_context = (*hash->create)();
if (hash_context == NULL) {
PORT_Free(db);
PORT_Free(H_);
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
(*hash->begin)(hash_context);
(*hash->update)(hash_context, eightZeros, 8);
(*hash->update)(hash_context, mHash, hash->length);
(*hash->update)(hash_context, &db[dbMaskLen - sLen], sLen);
(*hash->end)(hash_context, H_, &i, hash->length);
(*hash->destroy)(hash_context, PR_TRUE);
PORT_Free(db);
/* Step 14 */
if (PORT_Memcmp(H_, &em[dbMaskLen], hash->length) != 0) {
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
rv = SECFailure;
} else {
rv = SECSuccess;
}
PORT_Free(H_);
return rv;
}
static HASH_HashType
GetHashTypeFromMechanism(CK_MECHANISM_TYPE mech)
{
switch (mech) {
case CKM_SHA_1:
case CKG_MGF1_SHA1:
return HASH_AlgSHA1;
case CKM_SHA224:
case CKG_MGF1_SHA224:
return HASH_AlgSHA224;
case CKM_SHA256:
case CKG_MGF1_SHA256:
return HASH_AlgSHA256;
case CKM_SHA384:
case CKG_MGF1_SHA384:
return HASH_AlgSHA384;
case CKM_SHA512:
case CKG_MGF1_SHA512:
return HASH_AlgSHA512;
default:
return HASH_AlgNULL;
}
}
/* MGF1 is the only supported MGF. */
SECStatus
RSA_CheckSignPSS(CK_RSA_PKCS_PSS_PARAMS *pss_params,
NSSLOWKEYPublicKey *key,
const unsigned char *sign, unsigned int sign_len,
const unsigned char *hash, unsigned int hash_len)
{
HASH_HashType hashAlg;
HASH_HashType maskHashAlg;
SECStatus rv;
unsigned int modulus_len = nsslowkey_PublicModulusLen(key);
unsigned char *buffer;
if (sign_len != modulus_len) {
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
return SECFailure;
}
hashAlg = GetHashTypeFromMechanism(pss_params->hashAlg);
maskHashAlg = GetHashTypeFromMechanism(pss_params->mgf);
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
return SECFailure;
}
buffer = (unsigned char *)PORT_Alloc(modulus_len);
if (!buffer) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
rv = RSA_PublicKeyOp(&key->u.rsa, buffer, sign);
if (rv != SECSuccess) {
PORT_Free(buffer);
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
return SECFailure;
}
rv = emsa_pss_verify(hash, buffer, modulus_len, hashAlg,
maskHashAlg, pss_params->sLen);
PORT_Free(buffer);
return rv;
}
/* MGF1 is the only supported MGF. */
SECStatus
RSA_SignPSS(CK_RSA_PKCS_PSS_PARAMS *pss_params, NSSLOWKEYPrivateKey *key,
unsigned char *output, unsigned int *output_len,
unsigned int max_output_len,
const unsigned char *input, unsigned int input_len)
{
SECStatus rv = SECSuccess;
unsigned int modulus_len = nsslowkey_PrivateModulusLen(key);
unsigned char *pss_encoded = NULL;
HASH_HashType hashAlg;
HASH_HashType maskHashAlg;
if (max_output_len < modulus_len) {
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey) {
PORT_SetError(SEC_ERROR_INVALID_KEY);
return SECFailure;
}
hashAlg = GetHashTypeFromMechanism(pss_params->hashAlg);
maskHashAlg = GetHashTypeFromMechanism(pss_params->mgf);
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
return SECFailure;
}
pss_encoded = (unsigned char *)PORT_Alloc(modulus_len);
if (pss_encoded == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
rv = emsa_pss_encode(pss_encoded, modulus_len, input, hashAlg,
maskHashAlg, pss_params->sLen);
if (rv != SECSuccess)
goto done;
rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, output, pss_encoded);
if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
sftk_fatalError = PR_TRUE;
}
*output_len = modulus_len;
done:
PORT_Free(pss_encoded);
return rv;
}
/* MGF1 is the only supported MGF. */
SECStatus
RSA_EncryptOAEP(CK_RSA_PKCS_OAEP_PARAMS *oaepParams,
NSSLOWKEYPublicKey *key,
unsigned char *output, unsigned int *outputLen,
unsigned int maxOutputLen,
const unsigned char *input, unsigned int inputLen)
{
SECStatus rv = SECFailure;
unsigned int modulusLen = nsslowkey_PublicModulusLen(key);
unsigned char *oaepEncoded = NULL;
unsigned char *sourceData = NULL;
unsigned int sourceDataLen = 0;
HASH_HashType hashAlg;
HASH_HashType maskHashAlg;
if (maxOutputLen < modulusLen) {
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
return SECFailure;
}
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey) {
PORT_SetError(SEC_ERROR_INVALID_KEY);
return SECFailure;
}
hashAlg = GetHashTypeFromMechanism(oaepParams->hashAlg);
maskHashAlg = GetHashTypeFromMechanism(oaepParams->mgf);
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
return SECFailure;
}
/* The PKCS#11 source parameter is the "source" of the label parameter.
* The only defined source is explicitly specified, in which case, the
* label is an optional byte string in pSourceData. If ulSourceDataLen is
* zero, then pSourceData MUST be NULL - otherwise, it must be non-NULL.
*/
if (oaepParams->source != CKZ_DATA_SPECIFIED) {
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
return SECFailure;
}
sourceData = (unsigned char*)oaepParams->pSourceData;
sourceDataLen = oaepParams->ulSourceDataLen;
if ((sourceDataLen == 0 && sourceData != NULL) ||
(sourceDataLen > 0 && sourceData == NULL)) {
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
return SECFailure;
}
oaepEncoded = (unsigned char *)PORT_Alloc(modulusLen);
if (oaepEncoded == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
rv = eme_oaep_encode(oaepEncoded, modulusLen, input, inputLen,
hashAlg, maskHashAlg, sourceData, sourceDataLen);
if (rv != SECSuccess)
goto done;
rv = RSA_PublicKeyOp(&key->u.rsa, output, oaepEncoded);
if (rv != SECSuccess)
goto done;
*outputLen = modulusLen;
done:
PORT_Free(oaepEncoded);
return rv;
}
/* MGF1 is the only supported MGF. */
SECStatus
RSA_DecryptOAEP(CK_RSA_PKCS_OAEP_PARAMS *oaepParams,
NSSLOWKEYPrivateKey *key,
unsigned char *output, unsigned int *outputLen,
unsigned int maxOutputLen,
const unsigned char *input, unsigned int inputLen)
{
SECStatus rv = SECFailure;
unsigned int modulusLen = nsslowkey_PrivateModulusLen(key);
unsigned char *oaepEncoded = NULL;
unsigned char *sourceData = NULL;
unsigned int sourceDataLen = 0;
HASH_HashType hashAlg = GetHashTypeFromMechanism(oaepParams->hashAlg);
HASH_HashType maskHashAlg = GetHashTypeFromMechanism(oaepParams->mgf);
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
return SECFailure;
}
if (inputLen != modulusLen) {
PORT_SetError(SEC_ERROR_INPUT_LEN);
return SECFailure;
}
PORT_Assert(key->keyType == NSSLOWKEYRSAKey);
if (key->keyType != NSSLOWKEYRSAKey) {
PORT_SetError(SEC_ERROR_INVALID_KEY);
return SECFailure;
}
/* The PKCS#11 source parameter is the "source" of the label parameter.
* The only defined source is explicitly specified, in which case, the
* label is an optional byte string in pSourceData. If ulSourceDataLen is
* zero, then pSourceData MUST be NULL - otherwise, it must be non-NULL.
*/
if (oaepParams->source != CKZ_DATA_SPECIFIED) {
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
return SECFailure;
}
sourceData = (unsigned char*)oaepParams->pSourceData;
sourceDataLen = oaepParams->ulSourceDataLen;
if ((sourceDataLen == 0 && sourceData != NULL) ||
(sourceDataLen > 0 && sourceData == NULL)) {
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
return SECFailure;
}
oaepEncoded = (unsigned char *)PORT_Alloc(modulusLen);
if (oaepEncoded == NULL) {
PORT_SetError(SEC_ERROR_NO_MEMORY);
return SECFailure;
}
rv = RSA_PrivateKeyOpDoubleChecked(&key->u.rsa, oaepEncoded, input);
if (rv != SECSuccess && PORT_GetError() == SEC_ERROR_LIBRARY_FAILURE) {
sftk_fatalError = PR_TRUE;
goto done;
}
rv = eme_oaep_decode(output, outputLen, maxOutputLen, oaepEncoded,
modulusLen, hashAlg, maskHashAlg, sourceData,
sourceDataLen);
done:
if (oaepEncoded)
PORT_ZFree(oaepEncoded, modulusLen);
return rv;
}