зеркало из https://github.com/mozilla/gecko-dev.git
771 строка
26 KiB
C++
771 строка
26 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* vim: set ts=8 sts=2 et sw=2 tw=80:
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#ifndef js_HeapAPI_h
|
|
#define js_HeapAPI_h
|
|
|
|
#include "mozilla/Atomics.h"
|
|
#include "mozilla/BitSet.h"
|
|
|
|
#include <limits.h>
|
|
#include <type_traits>
|
|
|
|
#include "js/GCAnnotations.h"
|
|
#include "js/shadow/String.h" // JS::shadow::String
|
|
#include "js/shadow/Symbol.h" // JS::shadow::Symbol
|
|
#include "js/shadow/Zone.h" // JS::shadow::Zone
|
|
#include "js/TraceKind.h"
|
|
#include "js/TypeDecls.h"
|
|
|
|
/* These values are private to the JS engine. */
|
|
namespace js {
|
|
|
|
class NurseryDecommitTask;
|
|
|
|
JS_FRIEND_API bool CurrentThreadCanAccessZone(JS::Zone* zone);
|
|
|
|
namespace gc {
|
|
|
|
class Arena;
|
|
struct Cell;
|
|
class TenuredChunk;
|
|
class StoreBuffer;
|
|
class TenuredCell;
|
|
|
|
const size_t ArenaShift = 12;
|
|
const size_t ArenaSize = size_t(1) << ArenaShift;
|
|
const size_t ArenaMask = ArenaSize - 1;
|
|
|
|
#if defined(XP_MACOSX) && defined(__aarch64__)
|
|
const size_t PageShift = 14;
|
|
#else
|
|
const size_t PageShift = 12;
|
|
#endif
|
|
// Expected page size, so we could initialze ArenasPerPage at compile-time.
|
|
// The actual system page size should be queried by SystemPageSize().
|
|
const size_t PageSize = size_t(1) << PageShift;
|
|
constexpr size_t ArenasPerPage = PageSize / ArenaSize;
|
|
|
|
#ifdef JS_GC_SMALL_CHUNK_SIZE
|
|
const size_t ChunkShift = 18;
|
|
#else
|
|
const size_t ChunkShift = 20;
|
|
#endif
|
|
const size_t ChunkSize = size_t(1) << ChunkShift;
|
|
const size_t ChunkMask = ChunkSize - 1;
|
|
|
|
const size_t CellAlignShift = 3;
|
|
const size_t CellAlignBytes = size_t(1) << CellAlignShift;
|
|
const size_t CellAlignMask = CellAlignBytes - 1;
|
|
|
|
const size_t CellBytesPerMarkBit = CellAlignBytes;
|
|
const size_t MarkBitsPerCell = 2;
|
|
|
|
/*
|
|
* The mark bitmap has one bit per each possible cell start position. This
|
|
* wastes some space for larger GC things but allows us to avoid division by the
|
|
* cell's size when accessing the bitmap.
|
|
*/
|
|
const size_t ArenaBitmapBits = ArenaSize / CellBytesPerMarkBit;
|
|
const size_t ArenaBitmapBytes = HowMany(ArenaBitmapBits, 8);
|
|
const size_t ArenaBitmapWords = HowMany(ArenaBitmapBits, JS_BITS_PER_WORD);
|
|
|
|
// The base class for all GC chunks, either in the nursery or in the tenured
|
|
// heap memory. This structure is locatable from any GC pointer by aligning to
|
|
// the chunk size.
|
|
class alignas(CellAlignBytes) ChunkBase {
|
|
protected:
|
|
ChunkBase(JSRuntime* rt, StoreBuffer* sb) : storeBuffer(sb), runtime(rt) {
|
|
MOZ_ASSERT((uintptr_t(this) & ChunkMask) == 0);
|
|
}
|
|
|
|
public:
|
|
// The store buffer for pointers from tenured things to things in this
|
|
// chunk. Will be non-null if and only if this is a nursery chunk.
|
|
StoreBuffer* storeBuffer;
|
|
|
|
// Provide quick access to the runtime from absolutely anywhere.
|
|
JSRuntime* runtime;
|
|
};
|
|
|
|
// Information about tenured heap chunks.
|
|
struct TenuredChunkInfo {
|
|
private:
|
|
friend class ChunkPool;
|
|
TenuredChunk* next = nullptr;
|
|
TenuredChunk* prev = nullptr;
|
|
|
|
public:
|
|
/* List of free committed arenas, linked together with arena.next. */
|
|
Arena* freeArenasHead;
|
|
|
|
/*
|
|
* Decommitted pages are tracked by a bitmap in the TenuredChunkBase. We use
|
|
* this offset to start our search iteration close to a decommitted arena that
|
|
* we can allocate.
|
|
*/
|
|
uint32_t lastDecommittedPageOffset;
|
|
|
|
/* Number of free arenas, either committed or decommitted. */
|
|
uint32_t numArenasFree;
|
|
|
|
/* Number of free, committed arenas. */
|
|
uint32_t numArenasFreeCommitted;
|
|
};
|
|
|
|
/*
|
|
* Calculating ArenasPerChunk:
|
|
*
|
|
* To figure out how many Arenas will fit in a chunk we need to know how much
|
|
* extra space is available after we allocate the header data. This is a problem
|
|
* because the header size depends on the number of arenas in the chunk.
|
|
*
|
|
* The two dependent fields are bitmap and decommittedPages. bitmap needs
|
|
* ArenaBitmapBytes bytes per arena and decommittedPages needs one bit per
|
|
* page.
|
|
*
|
|
* We can calculate an approximate value by dividing the number of bits of free
|
|
* space in the chunk by the number of bits needed per arena. This is an
|
|
* approximation because it doesn't take account of the fact that the variable
|
|
* sized fields must be rounded up to a whole number of words, or any padding
|
|
* the compiler adds between fields.
|
|
*
|
|
* Fortunately, for the chunk and arena size parameters we use this
|
|
* approximation turns out to be correct. If it were not we might need to adjust
|
|
* the arena count down by one to allow more space for the padding.
|
|
*/
|
|
const size_t BitsPerPageWithHeaders =
|
|
(ArenaSize + ArenaBitmapBytes) * ArenasPerPage * CHAR_BIT + 1;
|
|
const size_t ChunkBitsAvailable =
|
|
(ChunkSize - sizeof(ChunkBase) - sizeof(TenuredChunkInfo)) * CHAR_BIT;
|
|
const size_t PagesPerChunk = ChunkBitsAvailable / BitsPerPageWithHeaders;
|
|
const size_t DecommitBits = PagesPerChunk;
|
|
const size_t ArenasPerChunk = PagesPerChunk * ArenasPerPage;
|
|
const size_t BitsPerArenaWithHeaders =
|
|
(ArenaSize + ArenaBitmapBytes) * CHAR_BIT + (DecommitBits / ArenasPerChunk);
|
|
|
|
const size_t CalculatedChunkSizeRequired =
|
|
sizeof(ChunkBase) + sizeof(TenuredChunkInfo) +
|
|
RoundUp(ArenasPerChunk * ArenaBitmapBytes, sizeof(uintptr_t)) +
|
|
RoundUp(DecommitBits, sizeof(uint32_t) * CHAR_BIT) / CHAR_BIT +
|
|
ArenasPerChunk * ArenaSize;
|
|
static_assert(CalculatedChunkSizeRequired <= ChunkSize,
|
|
"Calculated ArenasPerChunk is too large");
|
|
|
|
const size_t CalculatedChunkPadSize = ChunkSize - CalculatedChunkSizeRequired;
|
|
static_assert(CalculatedChunkPadSize * CHAR_BIT < BitsPerArenaWithHeaders,
|
|
"Calculated ArenasPerChunk is too small");
|
|
|
|
// Define a macro for the expected number of arenas so its value appears in the
|
|
// error message if the assertion fails.
|
|
#ifdef JS_GC_SMALL_CHUNK_SIZE
|
|
# define EXPECTED_ARENA_COUNT 63
|
|
#else
|
|
# define EXPECTED_ARENA_COUNT 252
|
|
#endif
|
|
static_assert(ArenasPerChunk == EXPECTED_ARENA_COUNT,
|
|
"Do not accidentally change our heap's density.");
|
|
#undef EXPECTED_ARENA_COUNT
|
|
|
|
// Mark bitmaps are atomic because they can be written by gray unmarking on the
|
|
// main thread while read by sweeping on a background thread. The former does
|
|
// not affect the result of the latter.
|
|
using MarkBitmapWord = mozilla::Atomic<uintptr_t, mozilla::Relaxed>;
|
|
|
|
/*
|
|
* Live objects are marked black or gray. Everything reachable from a JS root is
|
|
* marked black. Objects marked gray are eligible for cycle collection.
|
|
*
|
|
* BlackBit: GrayOrBlackBit: Color:
|
|
* 0 0 white
|
|
* 0 1 gray
|
|
* 1 0 black
|
|
* 1 1 black
|
|
*/
|
|
enum class ColorBit : uint32_t { BlackBit = 0, GrayOrBlackBit = 1 };
|
|
|
|
// Mark colors. Order is important here: the greater value the 'more marked' a
|
|
// cell is.
|
|
enum class MarkColor : uint8_t { Gray = 1, Black = 2 };
|
|
|
|
// Mark bitmap for a tenured heap chunk.
|
|
struct MarkBitmap {
|
|
static constexpr size_t WordCount = ArenaBitmapWords * ArenasPerChunk;
|
|
MarkBitmapWord bitmap[WordCount];
|
|
|
|
inline void getMarkWordAndMask(const TenuredCell* cell, ColorBit colorBit,
|
|
MarkBitmapWord** wordp, uintptr_t* maskp);
|
|
|
|
// The following are not exported and are defined in gc/Heap.h:
|
|
inline bool markBit(const TenuredCell* cell, ColorBit colorBit);
|
|
inline bool isMarkedAny(const TenuredCell* cell);
|
|
inline bool isMarkedBlack(const TenuredCell* cell);
|
|
inline bool isMarkedGray(const TenuredCell* cell);
|
|
inline bool markIfUnmarked(const TenuredCell* cell, MarkColor color);
|
|
inline void markBlack(const TenuredCell* cell);
|
|
inline void copyMarkBit(TenuredCell* dst, const TenuredCell* src,
|
|
ColorBit colorBit);
|
|
inline void unmark(const TenuredCell* cell);
|
|
inline void clear();
|
|
inline MarkBitmapWord* arenaBits(Arena* arena);
|
|
};
|
|
|
|
static_assert(ArenaBitmapBytes * ArenasPerChunk == sizeof(MarkBitmap),
|
|
"Ensure our MarkBitmap actually covers all arenas.");
|
|
|
|
// Decommit bitmap for a heap chunk.
|
|
using DecommitBitmap = mozilla::BitSet<PagesPerChunk, uint32_t>;
|
|
|
|
// Base class containing data members for a tenured heap chunk.
|
|
class TenuredChunkBase : public ChunkBase {
|
|
public:
|
|
TenuredChunkInfo info;
|
|
MarkBitmap markBits;
|
|
DecommitBitmap decommittedPages;
|
|
|
|
protected:
|
|
explicit TenuredChunkBase(JSRuntime* runtime) : ChunkBase(runtime, nullptr) {}
|
|
};
|
|
|
|
/*
|
|
* We sometimes use an index to refer to a cell in an arena. The index for a
|
|
* cell is found by dividing by the cell alignment so not all indices refer to
|
|
* valid cells.
|
|
*/
|
|
const size_t ArenaCellIndexBytes = CellAlignBytes;
|
|
const size_t MaxArenaCellIndex = ArenaSize / CellAlignBytes;
|
|
|
|
const size_t MarkBitmapWordBits = sizeof(MarkBitmapWord) * CHAR_BIT;
|
|
|
|
constexpr size_t FirstArenaAdjustmentBits =
|
|
RoundUp(sizeof(gc::TenuredChunkBase), ArenaSize) / gc::CellBytesPerMarkBit;
|
|
|
|
static_assert((FirstArenaAdjustmentBits % MarkBitmapWordBits) == 0);
|
|
constexpr size_t FirstArenaAdjustmentWords =
|
|
FirstArenaAdjustmentBits / MarkBitmapWordBits;
|
|
|
|
const size_t ChunkRuntimeOffset = offsetof(ChunkBase, runtime);
|
|
const size_t ChunkStoreBufferOffset = offsetof(ChunkBase, storeBuffer);
|
|
const size_t ChunkMarkBitmapOffset = offsetof(TenuredChunkBase, markBits);
|
|
|
|
// Hardcoded offsets into Arena class.
|
|
const size_t ArenaZoneOffset = 2 * sizeof(uint32_t);
|
|
const size_t ArenaHeaderSize = ArenaZoneOffset + 2 * sizeof(uintptr_t) +
|
|
sizeof(size_t) + sizeof(uintptr_t);
|
|
|
|
// The first word of a GC thing has certain requirements from the GC and is used
|
|
// to store flags in the low bits.
|
|
const size_t CellFlagBitsReservedForGC = 3;
|
|
|
|
// The first word can be used to store JSClass pointers for some thing kinds, so
|
|
// these must be suitably aligned.
|
|
const size_t JSClassAlignBytes = size_t(1) << CellFlagBitsReservedForGC;
|
|
|
|
#ifdef JS_DEBUG
|
|
/* When downcasting, ensure we are actually the right type. */
|
|
extern JS_FRIEND_API void AssertGCThingHasType(js::gc::Cell* cell,
|
|
JS::TraceKind kind);
|
|
#else
|
|
inline void AssertGCThingHasType(js::gc::Cell* cell, JS::TraceKind kind) {}
|
|
#endif
|
|
|
|
MOZ_ALWAYS_INLINE bool IsInsideNursery(const js::gc::Cell* cell);
|
|
MOZ_ALWAYS_INLINE bool IsInsideNursery(const js::gc::TenuredCell* cell);
|
|
|
|
} /* namespace gc */
|
|
} /* namespace js */
|
|
|
|
namespace JS {
|
|
|
|
enum class HeapState {
|
|
Idle, // doing nothing with the GC heap
|
|
Tracing, // tracing the GC heap without collecting, e.g.
|
|
// IterateCompartments()
|
|
MajorCollecting, // doing a GC of the major heap
|
|
MinorCollecting, // doing a GC of the minor heap (nursery)
|
|
CycleCollecting // in the "Unlink" phase of cycle collection
|
|
};
|
|
|
|
JS_PUBLIC_API HeapState RuntimeHeapState();
|
|
|
|
static inline bool RuntimeHeapIsBusy() {
|
|
return RuntimeHeapState() != HeapState::Idle;
|
|
}
|
|
|
|
static inline bool RuntimeHeapIsTracing() {
|
|
return RuntimeHeapState() == HeapState::Tracing;
|
|
}
|
|
|
|
static inline bool RuntimeHeapIsMajorCollecting() {
|
|
return RuntimeHeapState() == HeapState::MajorCollecting;
|
|
}
|
|
|
|
static inline bool RuntimeHeapIsMinorCollecting() {
|
|
return RuntimeHeapState() == HeapState::MinorCollecting;
|
|
}
|
|
|
|
static inline bool RuntimeHeapIsCollecting(HeapState state) {
|
|
return state == HeapState::MajorCollecting ||
|
|
state == HeapState::MinorCollecting;
|
|
}
|
|
|
|
static inline bool RuntimeHeapIsCollecting() {
|
|
return RuntimeHeapIsCollecting(RuntimeHeapState());
|
|
}
|
|
|
|
static inline bool RuntimeHeapIsCycleCollecting() {
|
|
return RuntimeHeapState() == HeapState::CycleCollecting;
|
|
}
|
|
|
|
/*
|
|
* This list enumerates the different types of conceptual stacks we have in
|
|
* SpiderMonkey. In reality, they all share the C stack, but we allow different
|
|
* stack limits depending on the type of code running.
|
|
*/
|
|
enum StackKind {
|
|
StackForSystemCode, // C++, such as the GC, running on behalf of the VM.
|
|
StackForTrustedScript, // Script running with trusted principals.
|
|
StackForUntrustedScript, // Script running with untrusted principals.
|
|
StackKindCount
|
|
};
|
|
|
|
/*
|
|
* Default maximum size for the generational nursery in bytes. This is the
|
|
* initial value. In the browser this configured by the
|
|
* javascript.options.mem.nursery.max_kb pref.
|
|
*/
|
|
const uint32_t DefaultNurseryMaxBytes = 16 * js::gc::ChunkSize;
|
|
|
|
/* Default maximum heap size in bytes to pass to JS_NewContext(). */
|
|
const uint32_t DefaultHeapMaxBytes = 32 * 1024 * 1024;
|
|
|
|
/**
|
|
* A GC pointer, tagged with the trace kind.
|
|
*
|
|
* In general, a GC pointer should be stored with an exact type. This class
|
|
* is for use when that is not possible because a single pointer must point
|
|
* to several kinds of GC thing.
|
|
*/
|
|
class JS_FRIEND_API GCCellPtr {
|
|
public:
|
|
GCCellPtr() : GCCellPtr(nullptr) {}
|
|
|
|
// Construction from a void* and trace kind.
|
|
GCCellPtr(void* gcthing, JS::TraceKind traceKind)
|
|
: ptr(checkedCast(gcthing, traceKind)) {}
|
|
|
|
// Automatically construct a null GCCellPtr from nullptr.
|
|
MOZ_IMPLICIT GCCellPtr(decltype(nullptr))
|
|
: ptr(checkedCast(nullptr, JS::TraceKind::Null)) {}
|
|
|
|
// Construction from an explicit type.
|
|
template <typename T>
|
|
explicit GCCellPtr(T* p)
|
|
: ptr(checkedCast(p, JS::MapTypeToTraceKind<T>::kind)) {}
|
|
explicit GCCellPtr(JSFunction* p)
|
|
: ptr(checkedCast(p, JS::TraceKind::Object)) {}
|
|
explicit GCCellPtr(JSScript* p)
|
|
: ptr(checkedCast(p, JS::TraceKind::Script)) {}
|
|
explicit GCCellPtr(const Value& v);
|
|
|
|
JS::TraceKind kind() const {
|
|
uintptr_t kindBits = ptr & OutOfLineTraceKindMask;
|
|
if (kindBits != OutOfLineTraceKindMask) {
|
|
return JS::TraceKind(kindBits);
|
|
}
|
|
return outOfLineKind();
|
|
}
|
|
|
|
// Allow GCCellPtr to be used in a boolean context.
|
|
explicit operator bool() const {
|
|
MOZ_ASSERT(bool(asCell()) == (kind() != JS::TraceKind::Null));
|
|
return asCell();
|
|
}
|
|
|
|
// Simplify checks to the kind.
|
|
template <typename T, typename = std::enable_if_t<JS::IsBaseTraceType_v<T>>>
|
|
bool is() const {
|
|
return kind() == JS::MapTypeToTraceKind<T>::kind;
|
|
}
|
|
|
|
// Conversions to more specific types must match the kind. Access to
|
|
// further refined types is not allowed directly from a GCCellPtr.
|
|
template <typename T, typename = std::enable_if_t<JS::IsBaseTraceType_v<T>>>
|
|
T& as() const {
|
|
MOZ_ASSERT(kind() == JS::MapTypeToTraceKind<T>::kind);
|
|
// We can't use static_cast here, because the fact that JSObject
|
|
// inherits from js::gc::Cell is not part of the public API.
|
|
return *reinterpret_cast<T*>(asCell());
|
|
}
|
|
|
|
// Return a pointer to the cell this |GCCellPtr| refers to, or |nullptr|.
|
|
// (It would be more symmetrical with |to| for this to return a |Cell&|, but
|
|
// the result can be |nullptr|, and null references are undefined behavior.)
|
|
js::gc::Cell* asCell() const {
|
|
return reinterpret_cast<js::gc::Cell*>(ptr & ~OutOfLineTraceKindMask);
|
|
}
|
|
|
|
// The CC's trace logger needs an identity that is XPIDL serializable.
|
|
uint64_t unsafeAsInteger() const {
|
|
return static_cast<uint64_t>(unsafeAsUIntPtr());
|
|
}
|
|
// Inline mark bitmap access requires direct pointer arithmetic.
|
|
uintptr_t unsafeAsUIntPtr() const {
|
|
MOZ_ASSERT(asCell());
|
|
MOZ_ASSERT(!js::gc::IsInsideNursery(asCell()));
|
|
return reinterpret_cast<uintptr_t>(asCell());
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE bool mayBeOwnedByOtherRuntime() const {
|
|
if (!is<JSString>() && !is<JS::Symbol>()) {
|
|
return false;
|
|
}
|
|
if (is<JSString>()) {
|
|
return JS::shadow::String::isPermanentAtom(asCell());
|
|
}
|
|
MOZ_ASSERT(is<JS::Symbol>());
|
|
return JS::shadow::Symbol::isWellKnownSymbol(asCell());
|
|
}
|
|
|
|
private:
|
|
static uintptr_t checkedCast(void* p, JS::TraceKind traceKind) {
|
|
auto* cell = static_cast<js::gc::Cell*>(p);
|
|
MOZ_ASSERT((uintptr_t(p) & OutOfLineTraceKindMask) == 0);
|
|
AssertGCThingHasType(cell, traceKind);
|
|
// Store trace in the bottom bits of pointer for common kinds.
|
|
uintptr_t kindBits = uintptr_t(traceKind);
|
|
if (kindBits >= OutOfLineTraceKindMask) {
|
|
kindBits = OutOfLineTraceKindMask;
|
|
}
|
|
return uintptr_t(p) | kindBits;
|
|
}
|
|
|
|
JS::TraceKind outOfLineKind() const;
|
|
|
|
uintptr_t ptr;
|
|
} JS_HAZ_GC_POINTER;
|
|
|
|
// Unwraps the given GCCellPtr, calls the functor |f| with a template argument
|
|
// of the actual type of the pointer, and returns the result.
|
|
template <typename F>
|
|
auto MapGCThingTyped(GCCellPtr thing, F&& f) {
|
|
switch (thing.kind()) {
|
|
#define JS_EXPAND_DEF(name, type, _, _1) \
|
|
case JS::TraceKind::name: \
|
|
return f(&thing.as<type>());
|
|
JS_FOR_EACH_TRACEKIND(JS_EXPAND_DEF);
|
|
#undef JS_EXPAND_DEF
|
|
default:
|
|
MOZ_CRASH("Invalid trace kind in MapGCThingTyped for GCCellPtr.");
|
|
}
|
|
}
|
|
|
|
// Unwraps the given GCCellPtr and calls the functor |f| with a template
|
|
// argument of the actual type of the pointer. Doesn't return anything.
|
|
template <typename F>
|
|
void ApplyGCThingTyped(GCCellPtr thing, F&& f) {
|
|
// This function doesn't do anything but is supplied for symmetry with other
|
|
// MapGCThingTyped/ApplyGCThingTyped implementations that have to wrap the
|
|
// functor to return a dummy value that is ignored.
|
|
MapGCThingTyped(thing, f);
|
|
}
|
|
|
|
} /* namespace JS */
|
|
|
|
// These are defined in the toplevel namespace instead of within JS so that
|
|
// they won't shadow other operator== overloads (see bug 1456512.)
|
|
|
|
inline bool operator==(const JS::GCCellPtr& ptr1, const JS::GCCellPtr& ptr2) {
|
|
return ptr1.asCell() == ptr2.asCell();
|
|
}
|
|
|
|
inline bool operator!=(const JS::GCCellPtr& ptr1, const JS::GCCellPtr& ptr2) {
|
|
return !(ptr1 == ptr2);
|
|
}
|
|
|
|
namespace js {
|
|
namespace gc {
|
|
|
|
/* static */
|
|
MOZ_ALWAYS_INLINE void MarkBitmap::getMarkWordAndMask(const TenuredCell* cell,
|
|
ColorBit colorBit,
|
|
MarkBitmapWord** wordp,
|
|
uintptr_t* maskp) {
|
|
// Note: the JIT pre-barrier trampolines inline this code. Update
|
|
// MacroAssembler::emitPreBarrierFastPath code too when making changes here!
|
|
|
|
MOZ_ASSERT(size_t(colorBit) < MarkBitsPerCell);
|
|
|
|
size_t offset = uintptr_t(cell) & ChunkMask;
|
|
const size_t bit = offset / CellBytesPerMarkBit + size_t(colorBit);
|
|
size_t word = bit / MarkBitmapWordBits - FirstArenaAdjustmentWords;
|
|
MOZ_ASSERT(word < WordCount);
|
|
*wordp = &bitmap[word];
|
|
*maskp = uintptr_t(1) << (bit % MarkBitmapWordBits);
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
static MOZ_ALWAYS_INLINE ChunkBase* GetCellChunkBase(const Cell* cell) {
|
|
MOZ_ASSERT(cell);
|
|
return reinterpret_cast<ChunkBase*>(uintptr_t(cell) & ~ChunkMask);
|
|
}
|
|
|
|
static MOZ_ALWAYS_INLINE TenuredChunkBase* GetCellChunkBase(
|
|
const TenuredCell* cell) {
|
|
MOZ_ASSERT(cell);
|
|
return reinterpret_cast<TenuredChunkBase*>(uintptr_t(cell) & ~ChunkMask);
|
|
}
|
|
|
|
static MOZ_ALWAYS_INLINE JS::Zone* GetTenuredGCThingZone(const uintptr_t addr) {
|
|
MOZ_ASSERT(addr);
|
|
const uintptr_t zone_addr = (addr & ~ArenaMask) | ArenaZoneOffset;
|
|
return *reinterpret_cast<JS::Zone**>(zone_addr);
|
|
}
|
|
|
|
static MOZ_ALWAYS_INLINE bool TenuredCellIsMarkedGray(const TenuredCell* cell) {
|
|
// Return true if GrayOrBlackBit is set and BlackBit is not set.
|
|
MOZ_ASSERT(cell);
|
|
MOZ_ASSERT(!js::gc::IsInsideNursery(cell));
|
|
|
|
MarkBitmapWord* grayWord;
|
|
uintptr_t grayMask;
|
|
TenuredChunkBase* chunk = GetCellChunkBase(cell);
|
|
chunk->markBits.getMarkWordAndMask(cell, js::gc::ColorBit::GrayOrBlackBit,
|
|
&grayWord, &grayMask);
|
|
if (!(*grayWord & grayMask)) {
|
|
return false;
|
|
}
|
|
|
|
MarkBitmapWord* blackWord;
|
|
uintptr_t blackMask;
|
|
chunk->markBits.getMarkWordAndMask(cell, js::gc::ColorBit::BlackBit,
|
|
&blackWord, &blackMask);
|
|
return !(*blackWord & blackMask);
|
|
}
|
|
|
|
static MOZ_ALWAYS_INLINE bool CellIsMarkedGray(const Cell* cell) {
|
|
MOZ_ASSERT(cell);
|
|
if (js::gc::IsInsideNursery(cell)) {
|
|
return false;
|
|
}
|
|
return TenuredCellIsMarkedGray(reinterpret_cast<const TenuredCell*>(cell));
|
|
}
|
|
|
|
extern JS_PUBLIC_API bool CellIsMarkedGrayIfKnown(const Cell* cell);
|
|
|
|
#ifdef DEBUG
|
|
extern JS_PUBLIC_API void AssertCellIsNotGray(const Cell* cell);
|
|
|
|
extern JS_PUBLIC_API bool ObjectIsMarkedBlack(const JSObject* obj);
|
|
#endif
|
|
|
|
MOZ_ALWAYS_INLINE bool CellHasStoreBuffer(const Cell* cell) {
|
|
return GetCellChunkBase(cell)->storeBuffer;
|
|
}
|
|
|
|
} /* namespace detail */
|
|
|
|
MOZ_ALWAYS_INLINE bool IsInsideNursery(const Cell* cell) {
|
|
if (!cell) {
|
|
return false;
|
|
}
|
|
return detail::CellHasStoreBuffer(cell);
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE bool IsInsideNursery(const TenuredCell* cell) {
|
|
MOZ_ASSERT_IF(
|
|
cell, !detail::CellHasStoreBuffer(reinterpret_cast<const Cell*>(cell)));
|
|
return false;
|
|
}
|
|
|
|
// Allow use before the compiler knows the derivation of JSObject, JSString, and
|
|
// JS::BigInt.
|
|
MOZ_ALWAYS_INLINE bool IsInsideNursery(const JSObject* obj) {
|
|
return IsInsideNursery(reinterpret_cast<const Cell*>(obj));
|
|
}
|
|
MOZ_ALWAYS_INLINE bool IsInsideNursery(const JSString* str) {
|
|
return IsInsideNursery(reinterpret_cast<const Cell*>(str));
|
|
}
|
|
MOZ_ALWAYS_INLINE bool IsInsideNursery(const JS::BigInt* bi) {
|
|
return IsInsideNursery(reinterpret_cast<const Cell*>(bi));
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE bool IsCellPointerValid(const void* ptr) {
|
|
auto addr = uintptr_t(ptr);
|
|
if (addr < ChunkSize || addr % CellAlignBytes != 0) {
|
|
return false;
|
|
}
|
|
|
|
auto* cell = reinterpret_cast<const Cell*>(ptr);
|
|
if (!IsInsideNursery(cell)) {
|
|
return detail::GetTenuredGCThingZone(addr) != nullptr;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
MOZ_ALWAYS_INLINE bool IsCellPointerValidOrNull(const void* cell) {
|
|
if (!cell) {
|
|
return true;
|
|
}
|
|
return IsCellPointerValid(cell);
|
|
}
|
|
|
|
} /* namespace gc */
|
|
} /* namespace js */
|
|
|
|
namespace JS {
|
|
|
|
static MOZ_ALWAYS_INLINE Zone* GetTenuredGCThingZone(GCCellPtr thing) {
|
|
MOZ_ASSERT(!js::gc::IsInsideNursery(thing.asCell()));
|
|
return js::gc::detail::GetTenuredGCThingZone(thing.unsafeAsUIntPtr());
|
|
}
|
|
|
|
extern JS_PUBLIC_API Zone* GetNurseryCellZone(js::gc::Cell* cell);
|
|
|
|
static MOZ_ALWAYS_INLINE Zone* GetGCThingZone(GCCellPtr thing) {
|
|
if (!js::gc::IsInsideNursery(thing.asCell())) {
|
|
return js::gc::detail::GetTenuredGCThingZone(thing.unsafeAsUIntPtr());
|
|
}
|
|
|
|
return GetNurseryCellZone(thing.asCell());
|
|
}
|
|
|
|
static MOZ_ALWAYS_INLINE Zone* GetStringZone(JSString* str) {
|
|
if (!js::gc::IsInsideNursery(str)) {
|
|
return js::gc::detail::GetTenuredGCThingZone(
|
|
reinterpret_cast<uintptr_t>(str));
|
|
}
|
|
return GetNurseryCellZone(reinterpret_cast<js::gc::Cell*>(str));
|
|
}
|
|
|
|
extern JS_PUBLIC_API Zone* GetObjectZone(JSObject* obj);
|
|
|
|
static MOZ_ALWAYS_INLINE bool GCThingIsMarkedGray(GCCellPtr thing) {
|
|
if (thing.mayBeOwnedByOtherRuntime()) {
|
|
return false;
|
|
}
|
|
return js::gc::detail::CellIsMarkedGrayIfKnown(thing.asCell());
|
|
}
|
|
|
|
extern JS_PUBLIC_API JS::TraceKind GCThingTraceKind(void* thing);
|
|
|
|
extern JS_PUBLIC_API void EnableNurseryStrings(JSContext* cx);
|
|
|
|
extern JS_PUBLIC_API void DisableNurseryStrings(JSContext* cx);
|
|
|
|
extern JS_PUBLIC_API void EnableNurseryBigInts(JSContext* cx);
|
|
|
|
extern JS_PUBLIC_API void DisableNurseryBigInts(JSContext* cx);
|
|
|
|
/*
|
|
* Returns true when writes to GC thing pointers (and reads from weak pointers)
|
|
* must call an incremental barrier. This is generally only true when running
|
|
* mutator code in-between GC slices. At other times, the barrier may be elided
|
|
* for performance.
|
|
*/
|
|
extern JS_PUBLIC_API bool IsIncrementalBarrierNeeded(JSContext* cx);
|
|
|
|
/*
|
|
* Notify the GC that a reference to a JSObject is about to be overwritten.
|
|
* This method must be called if IsIncrementalBarrierNeeded.
|
|
*/
|
|
extern JS_PUBLIC_API void IncrementalPreWriteBarrier(JSObject* obj);
|
|
|
|
/*
|
|
* Notify the GC that a reference to a tenured GC cell is about to be
|
|
* overwritten. This method must be called if IsIncrementalBarrierNeeded.
|
|
*/
|
|
extern JS_PUBLIC_API void IncrementalPreWriteBarrier(GCCellPtr thing);
|
|
|
|
/**
|
|
* Unsets the gray bit for anything reachable from |thing|. |kind| should not be
|
|
* JS::TraceKind::Shape. |thing| should be non-null. The return value indicates
|
|
* if anything was unmarked.
|
|
*/
|
|
extern JS_FRIEND_API bool UnmarkGrayGCThingRecursively(GCCellPtr thing);
|
|
|
|
} // namespace JS
|
|
|
|
namespace js {
|
|
namespace gc {
|
|
|
|
extern JS_PUBLIC_API void PerformIncrementalReadBarrier(JS::GCCellPtr thing);
|
|
|
|
static MOZ_ALWAYS_INLINE void ExposeGCThingToActiveJS(JS::GCCellPtr thing) {
|
|
// TODO: I'd like to assert !RuntimeHeapIsBusy() here but this gets
|
|
// called while we are tracing the heap, e.g. during memory reporting
|
|
// (see bug 1313318).
|
|
MOZ_ASSERT(!JS::RuntimeHeapIsCollecting());
|
|
|
|
// GC things residing in the nursery cannot be gray: they have no mark bits.
|
|
// All live objects in the nursery are moved to tenured at the beginning of
|
|
// each GC slice, so the gray marker never sees nursery things.
|
|
if (IsInsideNursery(thing.asCell())) {
|
|
return;
|
|
}
|
|
|
|
auto* cell = reinterpret_cast<TenuredCell*>(thing.asCell());
|
|
|
|
// There's nothing to do for permanent GC things that might be owned by
|
|
// another runtime.
|
|
if (thing.mayBeOwnedByOtherRuntime()) {
|
|
return;
|
|
}
|
|
|
|
auto* zone = JS::shadow::Zone::from(JS::GetTenuredGCThingZone(thing));
|
|
if (zone->needsIncrementalBarrier()) {
|
|
PerformIncrementalReadBarrier(thing);
|
|
} else if (!zone->isGCPreparing() && detail::TenuredCellIsMarkedGray(cell)) {
|
|
MOZ_ALWAYS_TRUE(JS::UnmarkGrayGCThingRecursively(thing));
|
|
}
|
|
|
|
MOZ_ASSERT_IF(!zone->isGCPreparing(), !detail::TenuredCellIsMarkedGray(cell));
|
|
}
|
|
|
|
template <typename T>
|
|
extern JS_PUBLIC_API bool EdgeNeedsSweepUnbarrieredSlow(T* thingp);
|
|
|
|
static MOZ_ALWAYS_INLINE bool EdgeNeedsSweepUnbarriered(JSObject** objp) {
|
|
// This function does not handle updating nursery pointers. Raw JSObject
|
|
// pointers should be updated separately or replaced with
|
|
// JS::Heap<JSObject*> which handles this automatically.
|
|
MOZ_ASSERT(!JS::RuntimeHeapIsMinorCollecting());
|
|
if (IsInsideNursery(*objp)) {
|
|
return false;
|
|
}
|
|
|
|
auto zone =
|
|
JS::shadow::Zone::from(detail::GetTenuredGCThingZone(uintptr_t(*objp)));
|
|
if (!zone->isGCSweepingOrCompacting()) {
|
|
return false;
|
|
}
|
|
|
|
return EdgeNeedsSweepUnbarrieredSlow(objp);
|
|
}
|
|
|
|
} // namespace gc
|
|
} // namespace js
|
|
|
|
namespace JS {
|
|
|
|
/*
|
|
* This should be called when an object that is marked gray is exposed to the JS
|
|
* engine (by handing it to running JS code or writing it into live JS
|
|
* data). During incremental GC, since the gray bits haven't been computed yet,
|
|
* we conservatively mark the object black.
|
|
*/
|
|
static MOZ_ALWAYS_INLINE void ExposeObjectToActiveJS(JSObject* obj) {
|
|
MOZ_ASSERT(obj);
|
|
MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&obj));
|
|
js::gc::ExposeGCThingToActiveJS(GCCellPtr(obj));
|
|
}
|
|
|
|
} /* namespace JS */
|
|
|
|
#endif /* js_HeapAPI_h */
|