gecko-dev/taskcluster/taskgraph/action.py

154 строки
6.2 KiB
Python

# -*- coding: utf-8 -*-
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
from __future__ import absolute_import, print_function, unicode_literals
import json
import logging
import requests
import yaml
from .create import create_tasks
from .decision import write_artifact
from .optimize import optimize_task_graph
from .taskgraph import TaskGraph
logger = logging.getLogger(__name__)
TASKCLUSTER_QUEUE_URL = "https://queue.taskcluster.net/v1/task"
TREEHERDER_URL = "https://treeherder.mozilla.org/api"
# We set this to 5 for now because this is what SETA sets the
# count to for every repository/job. If this is ever changed,
# we'll need to have an API added to Treeherder to let us query
# how far back we should look.
MAX_BACKFILL_RESULTSETS = 5
def add_tasks(decision_task_id, task_labels, prefix=''):
"""
Run the add-tasks task. This function implements `mach taskgraph add-tasks`,
and is responsible for
* creating taskgraph of tasks asked for in parameters with respect to
a given gecko decision task and schedule these jobs.
"""
# read in the full graph for reference
full_task_json = get_artifact(decision_task_id, "public/full-task-graph.json")
decision_params = get_artifact(decision_task_id, "public/parameters.yml")
all_tasks, full_task_graph = TaskGraph.from_json(full_task_json)
target_tasks = set(task_labels)
target_graph = full_task_graph.graph.transitive_closure(target_tasks)
target_task_graph = TaskGraph(
{l: all_tasks[l] for l in target_graph.nodes},
target_graph)
existing_tasks = get_artifact(decision_task_id, "public/label-to-taskid.json")
# We don't want to optimize target tasks since they have been requested by user
# Hence we put `target_tasks under` `do_not_optimize`
optimized_graph, label_to_taskid = optimize_task_graph(target_task_graph=target_task_graph,
params=decision_params,
do_not_optimize=target_tasks,
existing_tasks=existing_tasks)
# write out the optimized task graph to describe what will actually happen,
# and the map of labels to taskids
write_artifact('{}task-graph.json'.format(prefix), optimized_graph.to_json())
write_artifact('{}label-to-taskid.json'.format(prefix), label_to_taskid)
# actually create the graph
create_tasks(optimized_graph, label_to_taskid, decision_params)
def get_artifact(task_id, path):
resp = requests.get(url="{}/{}/artifacts/{}".format(TASKCLUSTER_QUEUE_URL, task_id, path))
if path.endswith('.json'):
artifact = json.loads(resp.text)
elif path.endswith('.yml'):
artifact = yaml.load(resp.text)
return artifact
def backfill(project, job_id):
"""
Run the backfill task. This function implements `mach taskgraph backfill-task`,
and is responsible for
* Scheduling backfill jobs from a given treeherder resultset backwards until either
a successful job is found or `N` jobs have been scheduled.
"""
s = requests.Session()
s.headers.update({"User-Agent": "gecko-intree-backfill-task"})
job = s.get(url="{}/project/{}/jobs/{}/".format(TREEHERDER_URL, project, job_id)).json()
if job["build_system_type"] != "taskcluster":
logger.warning("Invalid build system type! Must be a Taskcluster job. Aborting.")
return
filters = dict((k, job[k]) for k in ("build_platform_id", "platform_option", "job_type_id"))
resultset_url = "{}/project/{}/resultset/".format(TREEHERDER_URL, project)
params = {"id__lt": job["result_set_id"], "count": MAX_BACKFILL_RESULTSETS}
results = s.get(url=resultset_url, params=params).json()["results"]
resultsets = [resultset["id"] for resultset in results]
for decision in load_decisions(s, project, resultsets, filters):
add_tasks(decision, [job["job_type_name"]], '{}-'.format(decision))
def add_talos(decision_task_id, times=1):
"""
Run the add-talos task. This function implements `mach taskgraph add-talos`,
and is responsible for
* Adding all talos jobs to a push.
"""
full_task_json = get_artifact(decision_task_id, "public/full-task-graph.json")
task_labels = [label for label in full_task_json if "talos" in label]
for time in xrange(times):
add_tasks(decision_task_id, task_labels, '{}-'.format(time))
def load_decisions(s, project, resultsets, filters):
"""
Given a project, a list of revisions, and a dict of filters, return
a list of taskIds from decision tasks.
"""
project_url = "{}/project/{}/jobs/".format(TREEHERDER_URL, project)
decision_url = "{}/jobdetail/".format(TREEHERDER_URL)
decisions = []
decision_ids = []
for resultset in resultsets:
unfiltered = []
offset = 0
jobs_per_call = 250
while True:
params = {"push_id": resultset, "count": jobs_per_call, "offset": offset}
results = s.get(url=project_url, params=params).json()["results"]
unfiltered += results
if (len(results) < jobs_per_call):
break
offset += jobs_per_call
filtered = [j for j in unfiltered if all([j[k] == filters[k] for k in filters])]
if len(filtered) > 1:
raise Exception("Too many jobs matched. Aborting.")
elif len(filtered) == 1:
if filtered[0]["result"] == "success":
break
decisions += [t for t in unfiltered if t["job_type_name"] == "Gecko Decision Task"]
for decision in decisions:
params = {"job_guid": decision["job_guid"]}
details = s.get(url=decision_url, params=params).json()["results"]
inspect = [detail["url"] for detail in details if detail["value"] == "Inspect Task"][0]
# Pull out the taskId from the URL e.g.
# oN1NErz_Rf2DZJ1hi7YVfA from tools.taskcluster.net/task-inspector/#oN1NErz_Rf2DZJ1hi7YVfA/
decision_ids.append(inspect.partition('#')[-1].rpartition('/')[0])
return decision_ids