зеркало из https://github.com/mozilla/gecko-dev.git
6881 строка
268 KiB
C++
6881 строка
268 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
||
/* vim: set ts=2 et sw=2 tw=80: */
|
||
/* This Source Code is subject to the terms of the Mozilla Public License
|
||
* version 2.0 (the "License"). You can obtain a copy of the License at
|
||
* http://mozilla.org/MPL/2.0/. */
|
||
|
||
/* rendering object for CSS "display: grid | inline-grid" */
|
||
|
||
#include "nsGridContainerFrame.h"
|
||
|
||
#include <algorithm> // for std::stable_sort
|
||
#include <functional>
|
||
#include <limits>
|
||
#include "mozilla/CSSAlignUtils.h"
|
||
#include "mozilla/CSSOrderAwareFrameIterator.h"
|
||
#include "mozilla/dom/GridBinding.h"
|
||
#include "mozilla/Maybe.h"
|
||
#include "mozilla/PodOperations.h" // for PodZero
|
||
#include "mozilla/Poison.h"
|
||
#include "nsAbsoluteContainingBlock.h"
|
||
#include "nsAlgorithm.h" // for clamped()
|
||
#include "nsCSSAnonBoxes.h"
|
||
#include "nsCSSFrameConstructor.h"
|
||
#include "nsDataHashtable.h"
|
||
#include "nsDisplayList.h"
|
||
#include "nsHashKeys.h"
|
||
#include "nsIFrameInlines.h"
|
||
#include "nsPresContext.h"
|
||
#include "nsReadableUtils.h"
|
||
#include "nsRenderingContext.h"
|
||
#include "nsRuleNode.h"
|
||
#include "nsStyleContext.h"
|
||
#include "nsTableWrapperFrame.h"
|
||
|
||
using namespace mozilla;
|
||
|
||
typedef nsAbsoluteContainingBlock::AbsPosReflowFlags AbsPosReflowFlags;
|
||
typedef nsGridContainerFrame::TrackSize TrackSize;
|
||
const uint32_t nsGridContainerFrame::kTranslatedMaxLine =
|
||
uint32_t(nsStyleGridLine::kMaxLine - nsStyleGridLine::kMinLine);
|
||
const uint32_t nsGridContainerFrame::kAutoLine = kTranslatedMaxLine + 3457U;
|
||
typedef nsTHashtable< nsPtrHashKey<nsIFrame> > FrameHashtable;
|
||
typedef mozilla::CSSAlignUtils::AlignJustifyFlags AlignJustifyFlags;
|
||
typedef nsLayoutUtils::IntrinsicISizeType IntrinsicISizeType;
|
||
|
||
// https://drafts.csswg.org/css-sizing/#constraints
|
||
enum class SizingConstraint
|
||
{
|
||
eMinContent, // sizing under min-content constraint
|
||
eMaxContent, // sizing under max-content constraint
|
||
eNoConstraint // no constraint, used during Reflow
|
||
};
|
||
|
||
static void
|
||
ReparentFrame(nsIFrame* aFrame, nsContainerFrame* aOldParent,
|
||
nsContainerFrame* aNewParent)
|
||
{
|
||
NS_ASSERTION(aOldParent == aFrame->GetParent(),
|
||
"Parent not consistent with expectations");
|
||
|
||
aFrame->SetParent(aNewParent);
|
||
|
||
// When pushing and pulling frames we need to check for whether any
|
||
// views need to be reparented
|
||
nsContainerFrame::ReparentFrameView(aFrame, aOldParent, aNewParent);
|
||
}
|
||
|
||
static void
|
||
ReparentFrames(nsFrameList& aFrameList, nsContainerFrame* aOldParent,
|
||
nsContainerFrame* aNewParent)
|
||
{
|
||
for (auto f : aFrameList) {
|
||
ReparentFrame(f, aOldParent, aNewParent);
|
||
}
|
||
}
|
||
|
||
static nscoord
|
||
ClampToCSSMaxBSize(nscoord aSize, const ReflowInput* aReflowInput)
|
||
{
|
||
auto maxSize = aReflowInput->ComputedMaxBSize();
|
||
if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
|
||
MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
|
||
aSize = std::min(aSize, maxSize);
|
||
}
|
||
return aSize;
|
||
}
|
||
|
||
// Same as above and set aStatus INCOMPLETE if aSize wasn't clamped.
|
||
// (If we clamp aSize it means our size is less than the break point,
|
||
// i.e. we're effectively breaking in our overflow, so we should leave
|
||
// aStatus as is (it will likely be set to OVERFLOW_INCOMPLETE later)).
|
||
static nscoord
|
||
ClampToCSSMaxBSize(nscoord aSize, const ReflowInput* aReflowInput,
|
||
nsReflowStatus* aStatus)
|
||
{
|
||
auto maxSize = aReflowInput->ComputedMaxBSize();
|
||
if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
|
||
MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
|
||
if (aSize < maxSize) {
|
||
aStatus->SetIncomplete();
|
||
} else {
|
||
aSize = maxSize;
|
||
}
|
||
} else {
|
||
aStatus->SetIncomplete();
|
||
}
|
||
return aSize;
|
||
}
|
||
|
||
static bool
|
||
IsPercentOfIndefiniteSize(const nsStyleCoord& aCoord, nscoord aPercentBasis)
|
||
{
|
||
return aPercentBasis == NS_UNCONSTRAINEDSIZE && aCoord.HasPercent();
|
||
}
|
||
|
||
static nscoord
|
||
ResolveToDefiniteSize(const nsStyleCoord& aCoord, nscoord aPercentBasis)
|
||
{
|
||
MOZ_ASSERT(aCoord.IsCoordPercentCalcUnit());
|
||
if (::IsPercentOfIndefiniteSize(aCoord, aPercentBasis)) {
|
||
return nscoord(0);
|
||
}
|
||
return std::max(nscoord(0),
|
||
nsRuleNode::ComputeCoordPercentCalc(aCoord, aPercentBasis));
|
||
}
|
||
|
||
static bool
|
||
GetPercentSizeParts(const nsStyleCoord& aCoord, nscoord* aLength, float* aPercent)
|
||
{
|
||
switch (aCoord.GetUnit()) {
|
||
case eStyleUnit_Percent:
|
||
*aLength = 0;
|
||
*aPercent = aCoord.GetPercentValue();
|
||
return true;
|
||
case eStyleUnit_Calc: {
|
||
nsStyleCoord::Calc* calc = aCoord.GetCalcValue();
|
||
*aLength = calc->mLength;
|
||
*aPercent = calc->mPercent;
|
||
return true;
|
||
}
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static void
|
||
ResolvePercentSizeParts(const nsStyleCoord& aCoord, nscoord aPercentBasis,
|
||
nscoord* aLength, float* aPercent)
|
||
{
|
||
MOZ_ASSERT(aCoord.IsCoordPercentCalcUnit());
|
||
if (aPercentBasis != NS_UNCONSTRAINEDSIZE) {
|
||
*aLength = std::max(nscoord(0),
|
||
nsRuleNode::ComputeCoordPercentCalc(aCoord,
|
||
aPercentBasis));
|
||
*aPercent = 0.0f;
|
||
return;
|
||
}
|
||
if (!GetPercentSizeParts(aCoord, aLength, aPercent)) {
|
||
*aLength = aCoord.ToLength();
|
||
*aPercent = 0.0f;
|
||
}
|
||
}
|
||
|
||
// Synthesize a baseline from a border box. For an alphabetical baseline
|
||
// this is the end edge of the border box. For a central baseline it's
|
||
// the center of the border box.
|
||
// https://drafts.csswg.org/css-align-3/#synthesize-baselines
|
||
// For a 'first baseline' the measure is from the border-box start edge and
|
||
// for a 'last baseline' the measure is from the border-box end edge.
|
||
static nscoord
|
||
SynthesizeBaselineFromBorderBox(BaselineSharingGroup aGroup,
|
||
WritingMode aWM,
|
||
nscoord aBorderBoxSize)
|
||
{
|
||
if (aGroup == BaselineSharingGroup::eFirst) {
|
||
return aWM.IsAlphabeticalBaseline() ? aBorderBoxSize : aBorderBoxSize / 2;
|
||
}
|
||
MOZ_ASSERT(aGroup == BaselineSharingGroup::eLast);
|
||
// Round up for central baseline offset, to be consistent with eFirst.
|
||
return aWM.IsAlphabeticalBaseline() ? 0 :
|
||
(aBorderBoxSize / 2) + (aBorderBoxSize % 2);
|
||
}
|
||
|
||
enum class GridLineSide
|
||
{
|
||
eBeforeGridGap,
|
||
eAfterGridGap,
|
||
};
|
||
|
||
struct nsGridContainerFrame::TrackSize
|
||
{
|
||
enum StateBits : uint16_t {
|
||
eAutoMinSizing = 0x1,
|
||
eMinContentMinSizing = 0x2,
|
||
eMaxContentMinSizing = 0x4,
|
||
eMinOrMaxContentMinSizing = eMinContentMinSizing | eMaxContentMinSizing,
|
||
eIntrinsicMinSizing = eMinOrMaxContentMinSizing | eAutoMinSizing,
|
||
// 0x8 is unused, feel free to take it!
|
||
eAutoMaxSizing = 0x10,
|
||
eMinContentMaxSizing = 0x20,
|
||
eMaxContentMaxSizing = 0x40,
|
||
eAutoOrMaxContentMaxSizing = eAutoMaxSizing | eMaxContentMaxSizing,
|
||
eIntrinsicMaxSizing = eAutoOrMaxContentMaxSizing | eMinContentMaxSizing,
|
||
eFlexMaxSizing = 0x80,
|
||
eFrozen = 0x100,
|
||
eSkipGrowUnlimited1 = 0x200,
|
||
eSkipGrowUnlimited2 = 0x400,
|
||
eSkipGrowUnlimited = eSkipGrowUnlimited1 | eSkipGrowUnlimited2,
|
||
eBreakBefore = 0x800,
|
||
eFitContent = 0x1000,
|
||
};
|
||
|
||
StateBits Initialize(nscoord aPercentageBasis,
|
||
const nsStyleCoord& aMinCoord,
|
||
const nsStyleCoord& aMaxCoord);
|
||
bool IsFrozen() const { return mState & eFrozen; }
|
||
#ifdef DEBUG
|
||
void Dump() const;
|
||
#endif
|
||
|
||
static bool IsMinContent(const nsStyleCoord& aCoord)
|
||
{
|
||
return aCoord.GetUnit() == eStyleUnit_Enumerated &&
|
||
aCoord.GetEnumValue<StyleGridTrackBreadth>() == StyleGridTrackBreadth::MinContent;
|
||
}
|
||
static bool IsDefiniteMaxSizing(StateBits aStateBits)
|
||
{
|
||
return (aStateBits & (eIntrinsicMaxSizing | eFlexMaxSizing)) == 0;
|
||
}
|
||
|
||
nscoord mBase;
|
||
nscoord mLimit;
|
||
nscoord mPosition; // zero until we apply 'align/justify-content'
|
||
// mBaselineSubtreeSize is the size of a baseline-aligned subtree within
|
||
// this track. One subtree per baseline-sharing group (per track).
|
||
nscoord mBaselineSubtreeSize[2];
|
||
StateBits mState;
|
||
};
|
||
|
||
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(TrackSize::StateBits)
|
||
|
||
namespace mozilla {
|
||
template <>
|
||
struct IsPod<nsGridContainerFrame::TrackSize> : TrueType {};
|
||
}
|
||
|
||
TrackSize::StateBits
|
||
nsGridContainerFrame::TrackSize::Initialize(nscoord aPercentageBasis,
|
||
const nsStyleCoord& aMinCoord,
|
||
const nsStyleCoord& aMaxCoord)
|
||
{
|
||
MOZ_ASSERT(mBase == 0 && mLimit == 0 && mState == 0,
|
||
"track size data is expected to be initialized to zero");
|
||
auto minSizeUnit = aMinCoord.GetUnit();
|
||
auto maxSizeUnit = aMaxCoord.GetUnit();
|
||
if (minSizeUnit == eStyleUnit_None) {
|
||
// This track is sized using fit-content(size) (represented in style system
|
||
// with minCoord=None,maxCoord=size). In layout, fit-content(size) behaves
|
||
// as minmax(auto, max-content), with 'size' as an additional upper-bound.
|
||
mState = eFitContent;
|
||
minSizeUnit = eStyleUnit_Auto;
|
||
maxSizeUnit = eStyleUnit_Enumerated; // triggers max-content sizing below
|
||
}
|
||
if (::IsPercentOfIndefiniteSize(aMinCoord, aPercentageBasis)) {
|
||
// https://drafts.csswg.org/css-grid/#valdef-grid-template-columns-percentage
|
||
// "If the inline or block size of the grid container is indefinite,
|
||
// <percentage> values relative to that size are treated as 'auto'."
|
||
minSizeUnit = eStyleUnit_Auto;
|
||
}
|
||
if (::IsPercentOfIndefiniteSize(aMaxCoord, aPercentageBasis)) {
|
||
maxSizeUnit = eStyleUnit_Auto;
|
||
}
|
||
// http://dev.w3.org/csswg/css-grid/#algo-init
|
||
switch (minSizeUnit) {
|
||
case eStyleUnit_Auto:
|
||
mState |= eAutoMinSizing;
|
||
break;
|
||
case eStyleUnit_Enumerated:
|
||
mState |= IsMinContent(aMinCoord) ? eMinContentMinSizing
|
||
: eMaxContentMinSizing;
|
||
break;
|
||
default:
|
||
MOZ_ASSERT(minSizeUnit != eStyleUnit_FlexFraction,
|
||
"<flex> min-sizing is invalid as a track size");
|
||
mBase = ::ResolveToDefiniteSize(aMinCoord, aPercentageBasis);
|
||
}
|
||
switch (maxSizeUnit) {
|
||
case eStyleUnit_Auto:
|
||
mState |= eAutoMaxSizing;
|
||
mLimit = NS_UNCONSTRAINEDSIZE;
|
||
break;
|
||
case eStyleUnit_Enumerated:
|
||
mState |= IsMinContent(aMaxCoord) ? eMinContentMaxSizing
|
||
: eMaxContentMaxSizing;
|
||
mLimit = NS_UNCONSTRAINEDSIZE;
|
||
break;
|
||
case eStyleUnit_FlexFraction:
|
||
mState |= eFlexMaxSizing;
|
||
mLimit = mBase;
|
||
break;
|
||
default:
|
||
mLimit = ::ResolveToDefiniteSize(aMaxCoord, aPercentageBasis);
|
||
if (mLimit < mBase) {
|
||
mLimit = mBase;
|
||
}
|
||
}
|
||
|
||
mBaselineSubtreeSize[BaselineSharingGroup::eFirst] = nscoord(0);
|
||
mBaselineSubtreeSize[BaselineSharingGroup::eLast] = nscoord(0);
|
||
return mState;
|
||
}
|
||
|
||
/**
|
||
* Is aFrame1 a prev-continuation of aFrame2?
|
||
*/
|
||
static bool
|
||
IsPrevContinuationOf(nsIFrame* aFrame1, nsIFrame* aFrame2)
|
||
{
|
||
nsIFrame* prev = aFrame2;
|
||
while ((prev = prev->GetPrevContinuation())) {
|
||
if (prev == aFrame1) {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/**
|
||
* Moves all frames from aSrc into aDest such that the resulting aDest
|
||
* is still sorted in document content order and continuation order.
|
||
* Precondition: both |aSrc| and |aDest| must be sorted to begin with.
|
||
* @param aCommonAncestor a hint for nsLayoutUtils::CompareTreePosition
|
||
*/
|
||
static void
|
||
MergeSortedFrameLists(nsFrameList& aDest, nsFrameList& aSrc,
|
||
nsIContent* aCommonAncestor)
|
||
{
|
||
nsIFrame* dest = aDest.FirstChild();
|
||
for (nsIFrame* src = aSrc.FirstChild(); src; ) {
|
||
if (!dest) {
|
||
aDest.AppendFrames(nullptr, aSrc);
|
||
break;
|
||
}
|
||
nsIContent* srcContent = src->GetContent();
|
||
nsIContent* destContent = dest->GetContent();
|
||
int32_t result = nsLayoutUtils::CompareTreePosition(srcContent,
|
||
destContent,
|
||
aCommonAncestor);
|
||
if (MOZ_UNLIKELY(result == 0)) {
|
||
// NOTE: we get here when comparing ::before/::after for the same element.
|
||
if (MOZ_UNLIKELY(srcContent->IsGeneratedContentContainerForBefore())) {
|
||
if (MOZ_LIKELY(!destContent->IsGeneratedContentContainerForBefore()) ||
|
||
::IsPrevContinuationOf(src, dest)) {
|
||
result = -1;
|
||
}
|
||
} else if (MOZ_UNLIKELY(srcContent->IsGeneratedContentContainerForAfter())) {
|
||
if (MOZ_UNLIKELY(destContent->IsGeneratedContentContainerForAfter()) &&
|
||
::IsPrevContinuationOf(src, dest)) {
|
||
result = -1;
|
||
}
|
||
} else if (::IsPrevContinuationOf(src, dest)) {
|
||
result = -1;
|
||
}
|
||
}
|
||
if (result < 0) {
|
||
// src should come before dest
|
||
nsIFrame* next = src->GetNextSibling();
|
||
aSrc.RemoveFrame(src);
|
||
aDest.InsertFrame(nullptr, dest->GetPrevSibling(), src);
|
||
src = next;
|
||
} else {
|
||
dest = dest->GetNextSibling();
|
||
}
|
||
}
|
||
MOZ_ASSERT(aSrc.IsEmpty());
|
||
}
|
||
|
||
static void
|
||
MergeSortedFrameListsFor(nsFrameList& aDest, nsFrameList& aSrc,
|
||
nsContainerFrame* aParent)
|
||
{
|
||
MergeSortedFrameLists(aDest, aSrc, aParent->GetContent());
|
||
}
|
||
|
||
/**
|
||
* A LineRange can be definite or auto - when it's definite it represents
|
||
* a consecutive set of tracks between a starting line and an ending line.
|
||
* Before it's definite it can also represent an auto position with a span,
|
||
* where mStart == kAutoLine and mEnd is the (non-zero positive) span.
|
||
* For normal-flow items, the invariant mStart < mEnd holds when both
|
||
* lines are definite.
|
||
*
|
||
* For abs.pos. grid items, mStart and mEnd may both be kAutoLine, meaning
|
||
* "attach this side to the grid container containing block edge".
|
||
* Additionally, mStart <= mEnd holds when both are definite (non-kAutoLine),
|
||
* i.e. the invariant is slightly relaxed compared to normal flow items.
|
||
*/
|
||
struct nsGridContainerFrame::LineRange
|
||
{
|
||
LineRange(int32_t aStart, int32_t aEnd)
|
||
: mUntranslatedStart(aStart), mUntranslatedEnd(aEnd)
|
||
{
|
||
#ifdef DEBUG
|
||
if (!IsAutoAuto()) {
|
||
if (IsAuto()) {
|
||
MOZ_ASSERT(aEnd >= nsStyleGridLine::kMinLine &&
|
||
aEnd <= nsStyleGridLine::kMaxLine, "invalid span");
|
||
} else {
|
||
MOZ_ASSERT(aStart >= nsStyleGridLine::kMinLine &&
|
||
aStart <= nsStyleGridLine::kMaxLine, "invalid start line");
|
||
MOZ_ASSERT(aEnd == int32_t(kAutoLine) ||
|
||
(aEnd >= nsStyleGridLine::kMinLine &&
|
||
aEnd <= nsStyleGridLine::kMaxLine), "invalid end line");
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
bool IsAutoAuto() const { return mStart == kAutoLine && mEnd == kAutoLine; }
|
||
bool IsAuto() const { return mStart == kAutoLine; }
|
||
bool IsDefinite() const { return mStart != kAutoLine; }
|
||
uint32_t Extent() const
|
||
{
|
||
MOZ_ASSERT(mEnd != kAutoLine, "Extent is undefined for abs.pos. 'auto'");
|
||
if (IsAuto()) {
|
||
MOZ_ASSERT(mEnd >= 1 && mEnd < uint32_t(nsStyleGridLine::kMaxLine),
|
||
"invalid span");
|
||
return mEnd;
|
||
}
|
||
return mEnd - mStart;
|
||
}
|
||
/**
|
||
* Resolve this auto range to start at aStart, making it definite.
|
||
* Precondition: this range IsAuto()
|
||
*/
|
||
void ResolveAutoPosition(uint32_t aStart, uint32_t aExplicitGridOffset)
|
||
{
|
||
MOZ_ASSERT(IsAuto(), "Why call me?");
|
||
mStart = aStart;
|
||
mEnd += aStart;
|
||
// Clamping to where kMaxLine is in the explicit grid, per
|
||
// http://dev.w3.org/csswg/css-grid/#overlarge-grids :
|
||
uint32_t translatedMax = aExplicitGridOffset + nsStyleGridLine::kMaxLine;
|
||
if (MOZ_UNLIKELY(mStart >= translatedMax)) {
|
||
mEnd = translatedMax;
|
||
mStart = mEnd - 1;
|
||
} else if (MOZ_UNLIKELY(mEnd > translatedMax)) {
|
||
mEnd = translatedMax;
|
||
}
|
||
}
|
||
/**
|
||
* Translate the lines to account for (empty) removed tracks. This method
|
||
* is only for grid items and should only be called after placement.
|
||
* aNumRemovedTracks contains a count for each line in the grid how many
|
||
* tracks were removed between the start of the grid and that line.
|
||
*/
|
||
void AdjustForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks)
|
||
{
|
||
MOZ_ASSERT(mStart != kAutoLine, "invalid resolved line for a grid item");
|
||
MOZ_ASSERT(mEnd != kAutoLine, "invalid resolved line for a grid item");
|
||
uint32_t numRemovedTracks = aNumRemovedTracks[mStart];
|
||
MOZ_ASSERT(numRemovedTracks == aNumRemovedTracks[mEnd],
|
||
"tracks that a grid item spans can't be removed");
|
||
mStart -= numRemovedTracks;
|
||
mEnd -= numRemovedTracks;
|
||
}
|
||
/**
|
||
* Translate the lines to account for (empty) removed tracks. This method
|
||
* is only for abs.pos. children and should only be called after placement.
|
||
* Same as for in-flow items, but we don't touch 'auto' lines here and we
|
||
* also need to adjust areas that span into the removed tracks.
|
||
*/
|
||
void AdjustAbsPosForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks)
|
||
{
|
||
if (mStart != nsGridContainerFrame::kAutoLine) {
|
||
mStart -= aNumRemovedTracks[mStart];
|
||
}
|
||
if (mEnd != nsGridContainerFrame::kAutoLine) {
|
||
MOZ_ASSERT(mStart == nsGridContainerFrame::kAutoLine ||
|
||
mEnd > mStart, "invalid line range");
|
||
mEnd -= aNumRemovedTracks[mEnd];
|
||
}
|
||
if (mStart == mEnd) {
|
||
mEnd = nsGridContainerFrame::kAutoLine;
|
||
}
|
||
}
|
||
/**
|
||
* Return the contribution of this line range for step 2 in
|
||
* http://dev.w3.org/csswg/css-grid/#auto-placement-algo
|
||
*/
|
||
uint32_t HypotheticalEnd() const { return mEnd; }
|
||
/**
|
||
* Given an array of track sizes, return the starting position and length
|
||
* of the tracks in this line range.
|
||
*/
|
||
void ToPositionAndLength(const nsTArray<TrackSize>& aTrackSizes,
|
||
nscoord* aPos, nscoord* aLength) const;
|
||
/**
|
||
* Given an array of track sizes, return the length of the tracks in this
|
||
* line range.
|
||
*/
|
||
nscoord ToLength(const nsTArray<TrackSize>& aTrackSizes) const;
|
||
/**
|
||
* Given an array of track sizes and a grid origin coordinate, adjust the
|
||
* abs.pos. containing block along an axis given by aPos and aLength.
|
||
* aPos and aLength should already be initialized to the grid container
|
||
* containing block for this axis before calling this method.
|
||
*/
|
||
void ToPositionAndLengthForAbsPos(const Tracks& aTracks,
|
||
nscoord aGridOrigin,
|
||
nscoord* aPos, nscoord* aLength) const;
|
||
|
||
/**
|
||
* @note We'll use the signed member while resolving definite positions
|
||
* to line numbers (1-based), which may become negative for implicit lines
|
||
* to the top/left of the explicit grid. PlaceGridItems() then translates
|
||
* the whole grid to a 0,0 origin and we'll use the unsigned member from
|
||
* there on.
|
||
*/
|
||
union {
|
||
uint32_t mStart;
|
||
int32_t mUntranslatedStart;
|
||
};
|
||
union {
|
||
uint32_t mEnd;
|
||
int32_t mUntranslatedEnd;
|
||
};
|
||
protected:
|
||
LineRange() {}
|
||
};
|
||
|
||
/**
|
||
* Helper class to construct a LineRange from translated lines.
|
||
* The ctor only accepts translated definite line numbers.
|
||
*/
|
||
struct nsGridContainerFrame::TranslatedLineRange : public LineRange
|
||
{
|
||
TranslatedLineRange(uint32_t aStart, uint32_t aEnd)
|
||
{
|
||
MOZ_ASSERT(aStart < aEnd && aEnd <= kTranslatedMaxLine);
|
||
mStart = aStart;
|
||
mEnd = aEnd;
|
||
}
|
||
};
|
||
|
||
/**
|
||
* A GridArea is the area in the grid for a grid item.
|
||
* The area is represented by two LineRanges, both of which can be auto
|
||
* (@see LineRange) in intermediate steps while the item is being placed.
|
||
* @see PlaceGridItems
|
||
*/
|
||
struct nsGridContainerFrame::GridArea
|
||
{
|
||
GridArea(const LineRange& aCols, const LineRange& aRows)
|
||
: mCols(aCols), mRows(aRows) {}
|
||
bool IsDefinite() const { return mCols.IsDefinite() && mRows.IsDefinite(); }
|
||
LineRange mCols;
|
||
LineRange mRows;
|
||
};
|
||
|
||
struct nsGridContainerFrame::GridItemInfo
|
||
{
|
||
/**
|
||
* Item state per axis.
|
||
*/
|
||
enum StateBits : uint8_t {
|
||
eIsFlexing = 0x1, // does the item span a flex track?
|
||
eFirstBaseline = 0x2, // participate in 'first baseline' alignment?
|
||
// ditto 'last baseline', mutually exclusive w. eFirstBaseline
|
||
eLastBaseline = 0x4,
|
||
eIsBaselineAligned = eFirstBaseline | eLastBaseline,
|
||
// One of e[Self|Content]Baseline is set when eIsBaselineAligned is true
|
||
eSelfBaseline = 0x8, // is it *-self:[last ]baseline alignment?
|
||
// Ditto *-content:[last ]baseline. Mutually exclusive w. eSelfBaseline.
|
||
eContentBaseline = 0x10,
|
||
eAllBaselineBits = eIsBaselineAligned | eSelfBaseline | eContentBaseline,
|
||
// Clamp per https://drafts.csswg.org/css-grid/#min-size-auto
|
||
eClampMarginBoxMinSize = 0x20,
|
||
};
|
||
|
||
explicit GridItemInfo(nsIFrame* aFrame,
|
||
const GridArea& aArea)
|
||
: mFrame(aFrame)
|
||
, mArea(aArea)
|
||
{
|
||
mState[eLogicalAxisBlock] = StateBits(0);
|
||
mState[eLogicalAxisInline] = StateBits(0);
|
||
mBaselineOffset[eLogicalAxisBlock] = nscoord(0);
|
||
mBaselineOffset[eLogicalAxisInline] = nscoord(0);
|
||
}
|
||
|
||
/**
|
||
* If the item is [align|justify]-self:[last ]baseline aligned in the given
|
||
* axis then set aBaselineOffset to the baseline offset and return aAlign.
|
||
* Otherwise, return a fallback alignment.
|
||
*/
|
||
uint8_t GetSelfBaseline(uint8_t aAlign, LogicalAxis aAxis,
|
||
nscoord* aBaselineOffset) const
|
||
{
|
||
MOZ_ASSERT(aAlign == NS_STYLE_ALIGN_BASELINE ||
|
||
aAlign == NS_STYLE_ALIGN_LAST_BASELINE);
|
||
if (!(mState[aAxis] & eSelfBaseline)) {
|
||
return aAlign == NS_STYLE_ALIGN_BASELINE ? NS_STYLE_ALIGN_SELF_START
|
||
: NS_STYLE_ALIGN_SELF_END;
|
||
}
|
||
*aBaselineOffset = mBaselineOffset[aAxis];
|
||
return aAlign;
|
||
}
|
||
|
||
// Return true if we should we clamp this item's Automatic Minimum Size.
|
||
// https://drafts.csswg.org/css-grid/#min-size-auto
|
||
bool ShouldClampMinSize(WritingMode aContainerWM,
|
||
LogicalAxis aContainerAxis,
|
||
nscoord aPercentageBasis) const
|
||
{
|
||
const auto pos = mFrame->StylePosition();
|
||
const auto& size = aContainerAxis == eLogicalAxisInline ?
|
||
pos->ISize(aContainerWM) : pos->BSize(aContainerWM);
|
||
// NOTE: if we have a definite or 'max-content' size then our automatic
|
||
// minimum size can't affect our size. Excluding these simplifies applying
|
||
// the clamping in the right cases later.
|
||
if (size.GetUnit() == eStyleUnit_Auto ||
|
||
::IsPercentOfIndefiniteSize(size, aPercentageBasis) || // same as 'auto'
|
||
(size.GetUnit() == eStyleUnit_Enumerated &&
|
||
size.GetIntValue() != NS_STYLE_WIDTH_MAX_CONTENT)) {
|
||
const auto& minSize = aContainerAxis == eLogicalAxisInline ?
|
||
pos->MinISize(aContainerWM) : pos->MinBSize(aContainerWM);
|
||
return minSize.GetUnit() == eStyleUnit_Auto &&
|
||
mFrame->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
void Dump() const;
|
||
#endif
|
||
|
||
static bool IsStartRowLessThan(const GridItemInfo* a, const GridItemInfo* b)
|
||
{
|
||
return a->mArea.mRows.mStart < b->mArea.mRows.mStart;
|
||
}
|
||
|
||
nsIFrame* const mFrame;
|
||
GridArea mArea;
|
||
// Offset from the margin edge to the baseline (LogicalAxis index). It's from
|
||
// the start edge when eFirstBaseline is set, end edge otherwise. It's mutable
|
||
// since we update the value fairly late (just before reflowing the item).
|
||
mutable nscoord mBaselineOffset[2];
|
||
mutable StateBits mState[2]; // state bits per axis (LogicalAxis index)
|
||
static_assert(mozilla::eLogicalAxisBlock == 0, "unexpected index value");
|
||
static_assert(mozilla::eLogicalAxisInline == 1, "unexpected index value");
|
||
};
|
||
|
||
using GridItemInfo = nsGridContainerFrame::GridItemInfo;
|
||
using ItemState = GridItemInfo::StateBits;
|
||
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(ItemState)
|
||
|
||
#ifdef DEBUG
|
||
void
|
||
nsGridContainerFrame::GridItemInfo::Dump() const
|
||
{
|
||
auto Dump1 = [this] (const char* aMsg, LogicalAxis aAxis) {
|
||
auto state = mState[aAxis];
|
||
if (!state) {
|
||
return;
|
||
}
|
||
printf("%s", aMsg);
|
||
if (state & ItemState::eIsFlexing) {
|
||
printf("flexing ");
|
||
}
|
||
if (state & ItemState::eFirstBaseline) {
|
||
printf("first baseline %s-alignment ",
|
||
(state & ItemState::eSelfBaseline) ? "self" : "content");
|
||
}
|
||
if (state & ItemState::eLastBaseline) {
|
||
printf("last baseline %s-alignment ",
|
||
(state & ItemState::eSelfBaseline) ? "self" : "content");
|
||
}
|
||
if (state & ItemState::eIsBaselineAligned) {
|
||
printf("%.2fpx", NSAppUnitsToFloatPixels(mBaselineOffset[aAxis],
|
||
AppUnitsPerCSSPixel()));
|
||
}
|
||
printf("\n");
|
||
};
|
||
printf("grid-row: %d %d\n", mArea.mRows.mStart, mArea.mRows.mEnd);
|
||
Dump1(" grid block-axis: ", eLogicalAxisBlock);
|
||
printf("grid-column: %d %d\n", mArea.mCols.mStart, mArea.mCols.mEnd);
|
||
Dump1(" grid inline-axis: ", eLogicalAxisInline);
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* Utility class to find line names. It provides an interface to lookup line
|
||
* names with a dynamic number of repeat(auto-fill/fit) tracks taken into
|
||
* account.
|
||
*/
|
||
class MOZ_STACK_CLASS nsGridContainerFrame::LineNameMap
|
||
{
|
||
public:
|
||
/**
|
||
* Create a LineNameMap.
|
||
* @param aGridTemplate is the grid-template-rows/columns data for this axis
|
||
* @param aNumRepeatTracks the number of actual tracks associated with
|
||
* a repeat(auto-fill/fit) track (zero or more), or zero if there is no
|
||
* specified repeat(auto-fill/fit) track
|
||
*/
|
||
LineNameMap(const nsStyleGridTemplate& aGridTemplate,
|
||
uint32_t aNumRepeatTracks)
|
||
: mLineNameLists(aGridTemplate.mLineNameLists)
|
||
, mRepeatAutoLineNameListBefore(aGridTemplate.mRepeatAutoLineNameListBefore)
|
||
, mRepeatAutoLineNameListAfter(aGridTemplate.mRepeatAutoLineNameListAfter)
|
||
, mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ?
|
||
aGridTemplate.mRepeatAutoIndex : 0)
|
||
, mRepeatAutoEnd(mRepeatAutoStart + aNumRepeatTracks)
|
||
, mRepeatEndDelta(aGridTemplate.HasRepeatAuto() ?
|
||
int32_t(aNumRepeatTracks) - 1 :
|
||
0)
|
||
, mTemplateLinesEnd(mLineNameLists.Length() + mRepeatEndDelta)
|
||
, mHasRepeatAuto(aGridTemplate.HasRepeatAuto())
|
||
{
|
||
MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0);
|
||
MOZ_ASSERT(mRepeatAutoStart <= mLineNameLists.Length());
|
||
MOZ_ASSERT(!mHasRepeatAuto || mLineNameLists.Length() >= 2);
|
||
}
|
||
|
||
/**
|
||
* Find the aNth occurrence of aName, searching forward if aNth is positive,
|
||
* and in reverse if aNth is negative (aNth == 0 is invalid), starting from
|
||
* aFromIndex (not inclusive), and return a 1-based line number.
|
||
* Also take into account there is an unconditional match at aImplicitLine
|
||
* unless it's zero.
|
||
* Return zero if aNth occurrences can't be found. In that case, aNth has
|
||
* been decremented with the number of occurrences that were found (if any).
|
||
*
|
||
* E.g. to search for "A 2" forward from the start of the grid: aName is "A"
|
||
* aNth is 2 and aFromIndex is zero. To search for "A -2", aNth is -2 and
|
||
* aFromIndex is ExplicitGridEnd + 1 (which is the line "before" the last
|
||
* line when we're searching in reverse). For "span A 2", aNth is 2 when
|
||
* used on a grid-[row|column]-end property and -2 for a *-start property,
|
||
* and aFromIndex is the line (which we should skip) on the opposite property.
|
||
*/
|
||
uint32_t FindNamedLine(const nsString& aName, int32_t* aNth,
|
||
uint32_t aFromIndex, uint32_t aImplicitLine) const
|
||
{
|
||
MOZ_ASSERT(aNth && *aNth != 0);
|
||
if (*aNth > 0) {
|
||
return FindLine(aName, aNth, aFromIndex, aImplicitLine);
|
||
}
|
||
int32_t nth = -*aNth;
|
||
int32_t line = RFindLine(aName, &nth, aFromIndex, aImplicitLine);
|
||
*aNth = -nth;
|
||
return line;
|
||
}
|
||
|
||
private:
|
||
/**
|
||
* @see FindNamedLine, this function searches forward.
|
||
*/
|
||
uint32_t FindLine(const nsString& aName, int32_t* aNth,
|
||
uint32_t aFromIndex, uint32_t aImplicitLine) const
|
||
{
|
||
MOZ_ASSERT(aNth && *aNth > 0);
|
||
int32_t nth = *aNth;
|
||
const uint32_t end = mTemplateLinesEnd;
|
||
uint32_t line;
|
||
uint32_t i = aFromIndex;
|
||
for (; i < end; i = line) {
|
||
line = i + 1;
|
||
if (line == aImplicitLine || Contains(i, aName)) {
|
||
if (--nth == 0) {
|
||
return line;
|
||
}
|
||
}
|
||
}
|
||
if (aImplicitLine > i) {
|
||
// aImplicitLine is after the lines we searched above so it's last.
|
||
// (grid-template-areas has more tracks than grid-template-[rows|columns])
|
||
if (--nth == 0) {
|
||
return aImplicitLine;
|
||
}
|
||
}
|
||
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
|
||
*aNth = nth;
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* @see FindNamedLine, this function searches in reverse.
|
||
*/
|
||
uint32_t RFindLine(const nsString& aName, int32_t* aNth,
|
||
uint32_t aFromIndex, uint32_t aImplicitLine) const
|
||
{
|
||
MOZ_ASSERT(aNth && *aNth > 0);
|
||
if (MOZ_UNLIKELY(aFromIndex == 0)) {
|
||
return 0; // There are no named lines beyond the start of the explicit grid.
|
||
}
|
||
--aFromIndex; // (shift aFromIndex so we can treat it as inclusive)
|
||
int32_t nth = *aNth;
|
||
// The implicit line may be beyond the explicit grid so we match
|
||
// this line first if it's within the mTemplateLinesEnd..aFromIndex range.
|
||
const uint32_t end = mTemplateLinesEnd;
|
||
if (aImplicitLine > end && aImplicitLine < aFromIndex) {
|
||
if (--nth == 0) {
|
||
return aImplicitLine;
|
||
}
|
||
}
|
||
for (uint32_t i = std::min(aFromIndex, end); i; --i) {
|
||
if (i == aImplicitLine || Contains(i - 1, aName)) {
|
||
if (--nth == 0) {
|
||
return i;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
|
||
*aNth = nth;
|
||
return 0;
|
||
}
|
||
|
||
// Return true if aName exists at aIndex.
|
||
bool Contains(uint32_t aIndex, const nsString& aName) const
|
||
{
|
||
if (!mHasRepeatAuto) {
|
||
return mLineNameLists[aIndex].Contains(aName);
|
||
}
|
||
if (aIndex < mRepeatAutoEnd && aIndex >= mRepeatAutoStart &&
|
||
mRepeatAutoLineNameListBefore.Contains(aName)) {
|
||
return true;
|
||
}
|
||
if (aIndex <= mRepeatAutoEnd && aIndex > mRepeatAutoStart &&
|
||
mRepeatAutoLineNameListAfter.Contains(aName)) {
|
||
return true;
|
||
}
|
||
if (aIndex <= mRepeatAutoStart) {
|
||
return mLineNameLists[aIndex].Contains(aName) ||
|
||
(aIndex == mRepeatAutoEnd &&
|
||
mLineNameLists[aIndex + 1].Contains(aName));
|
||
}
|
||
return aIndex >= mRepeatAutoEnd &&
|
||
mLineNameLists[aIndex - mRepeatEndDelta].Contains(aName);
|
||
}
|
||
|
||
// Some style data references, for easy access.
|
||
const nsTArray<nsTArray<nsString>>& mLineNameLists;
|
||
const nsTArray<nsString>& mRepeatAutoLineNameListBefore;
|
||
const nsTArray<nsString>& mRepeatAutoLineNameListAfter;
|
||
// The index of the repeat(auto-fill/fit) track, or zero if there is none.
|
||
const uint32_t mRepeatAutoStart;
|
||
// The (hypothetical) index of the last such repeat() track.
|
||
const uint32_t mRepeatAutoEnd;
|
||
// The difference between mTemplateLinesEnd and mLineNameLists.Length().
|
||
const int32_t mRepeatEndDelta;
|
||
// The end of the line name lists with repeat(auto-fill/fit) tracks accounted
|
||
// for. It is equal to mLineNameLists.Length() when a repeat() track
|
||
// generates one track (making mRepeatEndDelta == 0).
|
||
const uint32_t mTemplateLinesEnd;
|
||
// True if there is a specified repeat(auto-fill/fit) track.
|
||
const bool mHasRepeatAuto;
|
||
};
|
||
|
||
/**
|
||
* Encapsulates CSS track-sizing functions.
|
||
*/
|
||
struct nsGridContainerFrame::TrackSizingFunctions
|
||
{
|
||
TrackSizingFunctions(const nsStyleGridTemplate& aGridTemplate,
|
||
const nsStyleCoord& aAutoMinSizing,
|
||
const nsStyleCoord& aAutoMaxSizing)
|
||
: mMinSizingFunctions(aGridTemplate.mMinTrackSizingFunctions)
|
||
, mMaxSizingFunctions(aGridTemplate.mMaxTrackSizingFunctions)
|
||
, mAutoMinSizing(aAutoMinSizing)
|
||
, mAutoMaxSizing(aAutoMaxSizing)
|
||
, mExplicitGridOffset(0)
|
||
, mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ?
|
||
aGridTemplate.mRepeatAutoIndex : 0)
|
||
, mRepeatAutoEnd(mRepeatAutoStart)
|
||
, mRepeatEndDelta(0)
|
||
, mHasRepeatAuto(aGridTemplate.HasRepeatAuto())
|
||
{
|
||
MOZ_ASSERT(mMinSizingFunctions.Length() == mMaxSizingFunctions.Length());
|
||
MOZ_ASSERT(!mHasRepeatAuto ||
|
||
(mMinSizingFunctions.Length() >= 1 &&
|
||
mRepeatAutoStart < mMinSizingFunctions.Length()));
|
||
}
|
||
|
||
/**
|
||
* Initialize the number of auto-fill/fit tracks to use and return that.
|
||
* (zero if no auto-fill/fit track was specified)
|
||
*/
|
||
uint32_t InitRepeatTracks(const nsStyleCoord& aGridGap, nscoord aMinSize,
|
||
nscoord aSize, nscoord aMaxSize)
|
||
{
|
||
uint32_t repeatTracks =
|
||
CalculateRepeatFillCount(aGridGap, aMinSize, aSize, aMaxSize);
|
||
SetNumRepeatTracks(repeatTracks);
|
||
// Blank out the removed flags for each of these tracks.
|
||
mRemovedRepeatTracks.SetLength(repeatTracks);
|
||
for (auto& track : mRemovedRepeatTracks) {
|
||
track = false;
|
||
}
|
||
return repeatTracks;
|
||
}
|
||
|
||
uint32_t CalculateRepeatFillCount(const nsStyleCoord& aGridGap,
|
||
nscoord aMinSize,
|
||
nscoord aSize,
|
||
nscoord aMaxSize) const
|
||
{
|
||
if (!mHasRepeatAuto) {
|
||
return 0;
|
||
}
|
||
// Spec quotes are from https://drafts.csswg.org/css-grid/#repeat-notation
|
||
const uint32_t numTracks = mMinSizingFunctions.Length();
|
||
MOZ_ASSERT(numTracks >= 1, "expected at least the repeat() track");
|
||
nscoord maxFill = aSize != NS_UNCONSTRAINEDSIZE ? aSize : aMaxSize;
|
||
if (maxFill == NS_UNCONSTRAINEDSIZE && aMinSize == 0) {
|
||
// "Otherwise, the specified track list repeats only once."
|
||
return 1;
|
||
}
|
||
nscoord repeatTrackSize = 0;
|
||
// Note that the repeat() track size is included in |sum| in this loop.
|
||
nscoord sum = 0;
|
||
const nscoord percentBasis = aSize;
|
||
for (uint32_t i = 0; i < numTracks; ++i) {
|
||
// "treating each track as its max track sizing function if that is
|
||
// definite or as its minimum track sizing function otherwise"
|
||
// https://drafts.csswg.org/css-grid/#valdef-repeat-auto-fill
|
||
const auto& maxCoord = mMaxSizingFunctions[i];
|
||
const auto* coord = &maxCoord;
|
||
if (!coord->IsCoordPercentCalcUnit()) {
|
||
coord = &mMinSizingFunctions[i];
|
||
if (!coord->IsCoordPercentCalcUnit()) {
|
||
return 1;
|
||
}
|
||
}
|
||
nscoord trackSize = ::ResolveToDefiniteSize(*coord, percentBasis);
|
||
if (i == mRepeatAutoStart) {
|
||
if (percentBasis != NS_UNCONSTRAINEDSIZE) {
|
||
// Use a minimum 1px for the repeat() track-size.
|
||
if (trackSize < AppUnitsPerCSSPixel()) {
|
||
trackSize = AppUnitsPerCSSPixel();
|
||
}
|
||
}
|
||
repeatTrackSize = trackSize;
|
||
}
|
||
sum += trackSize;
|
||
}
|
||
nscoord gridGap;
|
||
float percentSum = 0.0f;
|
||
float gridGapPercent;
|
||
ResolvePercentSizeParts(aGridGap, percentBasis, &gridGap, &gridGapPercent);
|
||
if (numTracks > 1) {
|
||
// Add grid-gaps for all the tracks including the repeat() track.
|
||
sum += gridGap * (numTracks - 1);
|
||
percentSum = gridGapPercent * (numTracks - 1);
|
||
}
|
||
// Calculate the max number of tracks that fits without overflow.
|
||
nscoord available = maxFill != NS_UNCONSTRAINEDSIZE ? maxFill : aMinSize;
|
||
nscoord size = nsLayoutUtils::AddPercents(sum, percentSum);
|
||
if (available - size < 0) {
|
||
// "if any number of repetitions would overflow, then 1 repetition"
|
||
return 1;
|
||
}
|
||
uint32_t numRepeatTracks = 1;
|
||
bool exactFit = false;
|
||
while (true) {
|
||
sum += gridGap + repeatTrackSize;
|
||
percentSum += gridGapPercent;
|
||
nscoord newSize = nsLayoutUtils::AddPercents(sum, percentSum);
|
||
if (newSize <= size) {
|
||
// Adding more repeat-tracks won't make forward progress.
|
||
return numRepeatTracks;
|
||
}
|
||
size = newSize;
|
||
nscoord remaining = available - size;
|
||
exactFit = remaining == 0;
|
||
if (remaining >= 0) {
|
||
++numRepeatTracks;
|
||
}
|
||
if (remaining <= 0) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!exactFit && maxFill == NS_UNCONSTRAINEDSIZE) {
|
||
// "Otherwise, if the grid container has a definite min size in
|
||
// the relevant axis, the number of repetitions is the largest possible
|
||
// positive integer that fulfills that minimum requirement."
|
||
++numRepeatTracks; // one more to ensure the grid is at least min-size
|
||
}
|
||
// Clamp the number of repeat tracks so that the last line <= kMaxLine.
|
||
// (note that |numTracks| already includes one repeat() track)
|
||
const uint32_t maxRepeatTracks = nsStyleGridLine::kMaxLine - numTracks;
|
||
return std::min(numRepeatTracks, maxRepeatTracks);
|
||
}
|
||
|
||
/**
|
||
* Compute the explicit grid end line number (in a zero-based grid).
|
||
* @param aGridTemplateAreasEnd 'grid-template-areas' end line in this axis
|
||
*/
|
||
uint32_t ComputeExplicitGridEnd(uint32_t aGridTemplateAreasEnd)
|
||
{
|
||
uint32_t end = NumExplicitTracks() + 1;
|
||
end = std::max(end, aGridTemplateAreasEnd);
|
||
end = std::min(end, uint32_t(nsStyleGridLine::kMaxLine));
|
||
return end;
|
||
}
|
||
|
||
const nsStyleCoord& MinSizingFor(uint32_t aTrackIndex) const
|
||
{
|
||
if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
|
||
return mAutoMinSizing;
|
||
}
|
||
uint32_t index = aTrackIndex - mExplicitGridOffset;
|
||
if (index >= mRepeatAutoStart) {
|
||
if (index < mRepeatAutoEnd) {
|
||
return mMinSizingFunctions[mRepeatAutoStart];
|
||
}
|
||
index -= mRepeatEndDelta;
|
||
}
|
||
return index < mMinSizingFunctions.Length() ?
|
||
mMinSizingFunctions[index] : mAutoMinSizing;
|
||
}
|
||
const nsStyleCoord& MaxSizingFor(uint32_t aTrackIndex) const
|
||
{
|
||
if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
|
||
return mAutoMaxSizing;
|
||
}
|
||
uint32_t index = aTrackIndex - mExplicitGridOffset;
|
||
if (index >= mRepeatAutoStart) {
|
||
if (index < mRepeatAutoEnd) {
|
||
return mMaxSizingFunctions[mRepeatAutoStart];
|
||
}
|
||
index -= mRepeatEndDelta;
|
||
}
|
||
return index < mMaxSizingFunctions.Length() ?
|
||
mMaxSizingFunctions[index] : mAutoMaxSizing;
|
||
}
|
||
uint32_t NumExplicitTracks() const
|
||
{
|
||
return mMinSizingFunctions.Length() + mRepeatEndDelta;
|
||
}
|
||
uint32_t NumRepeatTracks() const
|
||
{
|
||
return mRepeatAutoEnd - mRepeatAutoStart;
|
||
}
|
||
void SetNumRepeatTracks(uint32_t aNumRepeatTracks)
|
||
{
|
||
MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0);
|
||
mRepeatAutoEnd = mRepeatAutoStart + aNumRepeatTracks;
|
||
mRepeatEndDelta = mHasRepeatAuto ?
|
||
int32_t(aNumRepeatTracks) - 1 :
|
||
0;
|
||
}
|
||
|
||
// Some style data references, for easy access.
|
||
const nsTArray<nsStyleCoord>& mMinSizingFunctions;
|
||
const nsTArray<nsStyleCoord>& mMaxSizingFunctions;
|
||
const nsStyleCoord& mAutoMinSizing;
|
||
const nsStyleCoord& mAutoMaxSizing;
|
||
// Offset from the start of the implicit grid to the first explicit track.
|
||
uint32_t mExplicitGridOffset;
|
||
// The index of the repeat(auto-fill/fit) track, or zero if there is none.
|
||
const uint32_t mRepeatAutoStart;
|
||
// The (hypothetical) index of the last such repeat() track.
|
||
uint32_t mRepeatAutoEnd;
|
||
// The difference between mExplicitGridEnd and mMinSizingFunctions.Length().
|
||
int32_t mRepeatEndDelta;
|
||
// True if there is a specified repeat(auto-fill/fit) track.
|
||
const bool mHasRepeatAuto;
|
||
// True if this track (relative to mRepeatAutoStart) is a removed auto-fit.
|
||
nsTArray<bool> mRemovedRepeatTracks;
|
||
};
|
||
|
||
/**
|
||
* State for the tracks in one dimension.
|
||
*/
|
||
struct nsGridContainerFrame::Tracks
|
||
{
|
||
explicit Tracks(LogicalAxis aAxis)
|
||
: mStateUnion(TrackSize::StateBits(0))
|
||
, mAxis(aAxis)
|
||
, mCanResolveLineRangeSize(false)
|
||
{
|
||
mBaselineSubtreeAlign[BaselineSharingGroup::eFirst] = NS_STYLE_ALIGN_AUTO;
|
||
mBaselineSubtreeAlign[BaselineSharingGroup::eLast] = NS_STYLE_ALIGN_AUTO;
|
||
mBaseline[BaselineSharingGroup::eFirst] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
mBaseline[BaselineSharingGroup::eLast] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
}
|
||
|
||
void Initialize(const TrackSizingFunctions& aFunctions,
|
||
const nsStyleCoord& aGridGap,
|
||
uint32_t aNumTracks,
|
||
nscoord aContentBoxSize);
|
||
|
||
/**
|
||
* Return true if aRange spans at least one track with an intrinsic sizing
|
||
* function and does not span any tracks with a <flex> max-sizing function.
|
||
* @param aRange the span of tracks to check
|
||
* @param aState will be set to the union of the state bits of all the spanned
|
||
* tracks, unless a flex track is found - then it only contains
|
||
* the union of the tracks up to and including the flex track.
|
||
*/
|
||
bool HasIntrinsicButNoFlexSizingInRange(const LineRange& aRange,
|
||
TrackSize::StateBits* aState) const;
|
||
|
||
// Some data we collect for aligning baseline-aligned items.
|
||
struct ItemBaselineData
|
||
{
|
||
uint32_t mBaselineTrack;
|
||
nscoord mBaseline;
|
||
nscoord mSize;
|
||
GridItemInfo* mGridItem;
|
||
static bool IsBaselineTrackLessThan(const ItemBaselineData& a,
|
||
const ItemBaselineData& b)
|
||
{
|
||
return a.mBaselineTrack < b.mBaselineTrack;
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Calculate baseline offsets for the given set of items.
|
||
* Helper for InitialzeItemBaselines.
|
||
*/
|
||
void CalculateItemBaselines(nsTArray<ItemBaselineData>& aBaselineItems,
|
||
BaselineSharingGroup aBaselineGroup);
|
||
|
||
/**
|
||
* Initialize grid item baseline state and offsets.
|
||
*/
|
||
void InitializeItemBaselines(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems);
|
||
|
||
/**
|
||
* Apply the additional alignment needed to align the baseline-aligned subtree
|
||
* the item belongs to within its baseline track.
|
||
*/
|
||
void AlignBaselineSubtree(const GridItemInfo& aGridItem) const;
|
||
|
||
/**
|
||
* Resolve Intrinsic Track Sizes.
|
||
* http://dev.w3.org/csswg/css-grid/#algo-content
|
||
*/
|
||
void ResolveIntrinsicSize(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions,
|
||
LineRange GridArea::* aRange,
|
||
nscoord aPercentageBasis,
|
||
SizingConstraint aConstraint);
|
||
|
||
/**
|
||
* Helper for ResolveIntrinsicSize. It implements step 1 "size tracks to fit
|
||
* non-spanning items" in the spec. Return true if the track has a <flex>
|
||
* max-sizing function, false otherwise.
|
||
*/
|
||
bool ResolveIntrinsicSizeStep1(GridReflowInput& aState,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aPercentageBasis,
|
||
SizingConstraint aConstraint,
|
||
const LineRange& aRange,
|
||
const GridItemInfo& aGridItem);
|
||
/**
|
||
* Collect the tracks which are growable (matching aSelector) into
|
||
* aGrowableTracks, and return the amount of space that can be used
|
||
* to grow those tracks. Specifically, we return aAvailableSpace minus
|
||
* the sum of mBase's (and corresponding grid gaps) in aPlan (clamped to 0)
|
||
* for the tracks in aRange, or zero when there are no growable tracks.
|
||
* @note aPlan[*].mBase represents a planned new base or limit.
|
||
*/
|
||
nscoord CollectGrowable(nscoord aAvailableSpace,
|
||
const nsTArray<TrackSize>& aPlan,
|
||
const LineRange& aRange,
|
||
TrackSize::StateBits aSelector,
|
||
nsTArray<uint32_t>& aGrowableTracks) const
|
||
{
|
||
MOZ_ASSERT(aAvailableSpace > 0, "why call me?");
|
||
nscoord space = aAvailableSpace - mGridGap * (aRange.Extent() - 1);
|
||
const uint32_t start = aRange.mStart;
|
||
const uint32_t end = aRange.mEnd;
|
||
for (uint32_t i = start; i < end; ++i) {
|
||
const TrackSize& sz = aPlan[i];
|
||
space -= sz.mBase;
|
||
if (space <= 0) {
|
||
return 0;
|
||
}
|
||
if ((sz.mState & aSelector) && !sz.IsFrozen()) {
|
||
aGrowableTracks.AppendElement(i);
|
||
}
|
||
}
|
||
return aGrowableTracks.IsEmpty() ? 0 : space;
|
||
}
|
||
|
||
void SetupGrowthPlan(nsTArray<TrackSize>& aPlan,
|
||
const nsTArray<uint32_t>& aTracks) const
|
||
{
|
||
for (uint32_t track : aTracks) {
|
||
aPlan[track] = mSizes[track];
|
||
}
|
||
}
|
||
|
||
void CopyPlanToBase(const nsTArray<TrackSize>& aPlan,
|
||
const nsTArray<uint32_t>& aTracks)
|
||
{
|
||
for (uint32_t track : aTracks) {
|
||
MOZ_ASSERT(mSizes[track].mBase <= aPlan[track].mBase);
|
||
mSizes[track].mBase = aPlan[track].mBase;
|
||
}
|
||
}
|
||
|
||
void CopyPlanToLimit(const nsTArray<TrackSize>& aPlan,
|
||
const nsTArray<uint32_t>& aTracks)
|
||
{
|
||
for (uint32_t track : aTracks) {
|
||
MOZ_ASSERT(mSizes[track].mLimit == NS_UNCONSTRAINEDSIZE ||
|
||
mSizes[track].mLimit <= aPlan[track].mBase);
|
||
mSizes[track].mLimit = aPlan[track].mBase;
|
||
}
|
||
}
|
||
|
||
using FitContentClamper =
|
||
std::function<bool(uint32_t aTrack, nscoord aMinSize, nscoord* aSize)>;
|
||
/**
|
||
* Grow the planned size for tracks in aGrowableTracks up to their limit
|
||
* and then freeze them (all aGrowableTracks must be unfrozen on entry).
|
||
* Subtract the space added from aAvailableSpace and return that.
|
||
*/
|
||
nscoord GrowTracksToLimit(nscoord aAvailableSpace,
|
||
nsTArray<TrackSize>& aPlan,
|
||
const nsTArray<uint32_t>& aGrowableTracks,
|
||
FitContentClamper aFitContentClamper) const
|
||
{
|
||
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0);
|
||
nscoord space = aAvailableSpace;
|
||
uint32_t numGrowable = aGrowableTracks.Length();
|
||
while (true) {
|
||
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
|
||
for (uint32_t track : aGrowableTracks) {
|
||
TrackSize& sz = aPlan[track];
|
||
if (sz.IsFrozen()) {
|
||
continue;
|
||
}
|
||
nscoord newBase = sz.mBase + spacePerTrack;
|
||
nscoord limit = sz.mLimit;
|
||
if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
|
||
aFitContentClamper)) {
|
||
// Clamp the limit to the fit-content() size, for §12.5.2 step 5/6.
|
||
aFitContentClamper(track, sz.mBase, &limit);
|
||
}
|
||
if (newBase > limit) {
|
||
nscoord consumed = limit - sz.mBase;
|
||
if (consumed > 0) {
|
||
space -= consumed;
|
||
sz.mBase = limit;
|
||
}
|
||
sz.mState |= TrackSize::eFrozen;
|
||
if (--numGrowable == 0) {
|
||
return space;
|
||
}
|
||
} else {
|
||
sz.mBase = newBase;
|
||
space -= spacePerTrack;
|
||
}
|
||
MOZ_ASSERT(space >= 0);
|
||
if (space == 0) {
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return");
|
||
return 0;
|
||
}
|
||
|
||
/**
|
||
* Helper for GrowSelectedTracksUnlimited. For the set of tracks (S) that
|
||
* match aMinSizingSelector: if a track in S doesn't match aMaxSizingSelector
|
||
* then mark it with aSkipFlag. If all tracks in S were marked then unmark
|
||
* them. Return aNumGrowable minus the number of tracks marked. It is
|
||
* assumed that aPlan have no aSkipFlag set for tracks in aGrowableTracks
|
||
* on entry to this method.
|
||
*/
|
||
uint32_t MarkExcludedTracks(nsTArray<TrackSize>& aPlan,
|
||
uint32_t aNumGrowable,
|
||
const nsTArray<uint32_t>& aGrowableTracks,
|
||
TrackSize::StateBits aMinSizingSelector,
|
||
TrackSize::StateBits aMaxSizingSelector,
|
||
TrackSize::StateBits aSkipFlag) const
|
||
{
|
||
bool foundOneSelected = false;
|
||
bool foundOneGrowable = false;
|
||
uint32_t numGrowable = aNumGrowable;
|
||
for (uint32_t track : aGrowableTracks) {
|
||
TrackSize& sz = aPlan[track];
|
||
const auto state = sz.mState;
|
||
if (state & aMinSizingSelector) {
|
||
foundOneSelected = true;
|
||
if (state & aMaxSizingSelector) {
|
||
foundOneGrowable = true;
|
||
continue;
|
||
}
|
||
sz.mState |= aSkipFlag;
|
||
MOZ_ASSERT(numGrowable != 0);
|
||
--numGrowable;
|
||
}
|
||
}
|
||
// 12.5 "if there are no such tracks, then all affected tracks"
|
||
if (foundOneSelected && !foundOneGrowable) {
|
||
for (uint32_t track : aGrowableTracks) {
|
||
aPlan[track].mState &= ~aSkipFlag;
|
||
}
|
||
numGrowable = aNumGrowable;
|
||
}
|
||
return numGrowable;
|
||
}
|
||
|
||
/**
|
||
* Increase the planned size for tracks in aGrowableTracks that match
|
||
* aSelector (or all tracks if aSelector is zero) beyond their limit.
|
||
* This implements the "Distribute space beyond growth limits" step in
|
||
* https://drafts.csswg.org/css-grid/#distribute-extra-space
|
||
*/
|
||
void GrowSelectedTracksUnlimited(nscoord aAvailableSpace,
|
||
nsTArray<TrackSize>& aPlan,
|
||
const nsTArray<uint32_t>& aGrowableTracks,
|
||
TrackSize::StateBits aSelector,
|
||
FitContentClamper aFitContentClamper) const
|
||
{
|
||
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0);
|
||
uint32_t numGrowable = aGrowableTracks.Length();
|
||
if (aSelector) {
|
||
MOZ_ASSERT(aSelector == (aSelector & TrackSize::eIntrinsicMinSizing) &&
|
||
(aSelector & TrackSize::eMaxContentMinSizing),
|
||
"Should only get here for track sizing steps 2.1 to 2.3");
|
||
// Note that eMaxContentMinSizing is always included. We do those first:
|
||
numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks,
|
||
TrackSize::eMaxContentMinSizing,
|
||
TrackSize::eMaxContentMaxSizing,
|
||
TrackSize::eSkipGrowUnlimited1);
|
||
// Now mark min-content/auto min-sizing tracks if requested.
|
||
auto minOrAutoSelector = aSelector & ~TrackSize::eMaxContentMinSizing;
|
||
if (minOrAutoSelector) {
|
||
numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks,
|
||
minOrAutoSelector,
|
||
TrackSize::eIntrinsicMaxSizing,
|
||
TrackSize::eSkipGrowUnlimited2);
|
||
}
|
||
}
|
||
nscoord space = aAvailableSpace;
|
||
DebugOnly<bool> didClamp = false;
|
||
while (numGrowable) {
|
||
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
|
||
for (uint32_t track : aGrowableTracks) {
|
||
TrackSize& sz = aPlan[track];
|
||
if (sz.mState & TrackSize::eSkipGrowUnlimited) {
|
||
continue; // an excluded track
|
||
}
|
||
nscoord delta = spacePerTrack;
|
||
nscoord newBase = sz.mBase + delta;
|
||
if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
|
||
aFitContentClamper)) {
|
||
// Clamp newBase to the fit-content() size, for §12.5.2 step 5/6.
|
||
if (aFitContentClamper(track, sz.mBase, &newBase)) {
|
||
didClamp = true;
|
||
delta = newBase - sz.mBase;
|
||
MOZ_ASSERT(delta >= 0, "track size shouldn't shrink");
|
||
sz.mState |= TrackSize::eSkipGrowUnlimited1;
|
||
--numGrowable;
|
||
}
|
||
}
|
||
sz.mBase = newBase;
|
||
space -= delta;
|
||
MOZ_ASSERT(space >= 0);
|
||
if (space == 0) {
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT(didClamp, "we don't exit the loop above except by return, "
|
||
"unless we clamped some track's size");
|
||
}
|
||
|
||
/**
|
||
* Distribute aAvailableSpace to the planned base size for aGrowableTracks
|
||
* up to their limits, then distribute the remaining space beyond the limits.
|
||
*/
|
||
void DistributeToTrackBases(nscoord aAvailableSpace,
|
||
nsTArray<TrackSize>& aPlan,
|
||
nsTArray<uint32_t>& aGrowableTracks,
|
||
TrackSize::StateBits aSelector)
|
||
{
|
||
SetupGrowthPlan(aPlan, aGrowableTracks);
|
||
nscoord space = GrowTracksToLimit(aAvailableSpace, aPlan, aGrowableTracks, nullptr);
|
||
if (space > 0) {
|
||
GrowSelectedTracksUnlimited(space, aPlan, aGrowableTracks, aSelector, nullptr);
|
||
}
|
||
CopyPlanToBase(aPlan, aGrowableTracks);
|
||
}
|
||
|
||
/**
|
||
* Distribute aAvailableSpace to the planned limits for aGrowableTracks.
|
||
*/
|
||
void DistributeToTrackLimits(nscoord aAvailableSpace,
|
||
nsTArray<TrackSize>& aPlan,
|
||
nsTArray<uint32_t>& aGrowableTracks,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aPercentageBasis)
|
||
{
|
||
auto fitContentClamper = [&aFunctions, aPercentageBasis] (uint32_t aTrack,
|
||
nscoord aMinSize,
|
||
nscoord* aSize) {
|
||
nscoord fitContentLimit =
|
||
::ResolveToDefiniteSize(aFunctions.MaxSizingFor(aTrack), aPercentageBasis);
|
||
if (*aSize > fitContentLimit) {
|
||
*aSize = std::max(aMinSize, fitContentLimit);
|
||
return true;
|
||
}
|
||
return false;
|
||
};
|
||
nscoord space = GrowTracksToLimit(aAvailableSpace, aPlan, aGrowableTracks,
|
||
fitContentClamper);
|
||
if (space > 0) {
|
||
GrowSelectedTracksUnlimited(aAvailableSpace, aPlan, aGrowableTracks,
|
||
TrackSize::StateBits(0), fitContentClamper);
|
||
}
|
||
CopyPlanToLimit(aPlan, aGrowableTracks);
|
||
}
|
||
|
||
/**
|
||
* Distribute aAvailableSize to the tracks. This implements 12.6 at:
|
||
* http://dev.w3.org/csswg/css-grid/#algo-grow-tracks
|
||
*/
|
||
void DistributeFreeSpace(nscoord aAvailableSize)
|
||
{
|
||
const uint32_t numTracks = mSizes.Length();
|
||
if (MOZ_UNLIKELY(numTracks == 0 || aAvailableSize <= 0)) {
|
||
return;
|
||
}
|
||
if (aAvailableSize == NS_UNCONSTRAINEDSIZE) {
|
||
for (TrackSize& sz : mSizes) {
|
||
sz.mBase = sz.mLimit;
|
||
}
|
||
} else {
|
||
// Compute free space and count growable tracks.
|
||
nscoord space = aAvailableSize;
|
||
uint32_t numGrowable = numTracks;
|
||
for (const TrackSize& sz : mSizes) {
|
||
space -= sz.mBase;
|
||
MOZ_ASSERT(sz.mBase <= sz.mLimit);
|
||
if (sz.mBase == sz.mLimit) {
|
||
--numGrowable;
|
||
}
|
||
}
|
||
// Distribute the free space evenly to the growable tracks. If not exactly
|
||
// divisable the remainder is added to the leading tracks.
|
||
while (space > 0 && numGrowable) {
|
||
nscoord spacePerTrack =
|
||
std::max<nscoord>(space / numGrowable, 1);
|
||
for (uint32_t i = 0; i < numTracks && space > 0; ++i) {
|
||
TrackSize& sz = mSizes[i];
|
||
if (sz.mBase == sz.mLimit) {
|
||
continue;
|
||
}
|
||
nscoord newBase = sz.mBase + spacePerTrack;
|
||
if (newBase >= sz.mLimit) {
|
||
space -= sz.mLimit - sz.mBase;
|
||
sz.mBase = sz.mLimit;
|
||
--numGrowable;
|
||
} else {
|
||
space -= spacePerTrack;
|
||
sz.mBase = newBase;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Implements "12.7.1. Find the Size of an 'fr'".
|
||
* http://dev.w3.org/csswg/css-grid/#algo-find-fr-size
|
||
* (The returned value is a 'nscoord' divided by a factor - a floating type
|
||
* is used to avoid intermediary rounding errors.)
|
||
*/
|
||
float FindFrUnitSize(const LineRange& aRange,
|
||
const nsTArray<uint32_t>& aFlexTracks,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aSpaceToFill) const;
|
||
|
||
/**
|
||
* Implements the "find the used flex fraction" part of StretchFlexibleTracks.
|
||
* (The returned value is a 'nscoord' divided by a factor - a floating type
|
||
* is used to avoid intermediary rounding errors.)
|
||
*/
|
||
float FindUsedFlexFraction(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const nsTArray<uint32_t>& aFlexTracks,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aAvailableSize) const;
|
||
|
||
/**
|
||
* Implements "12.7. Stretch Flexible Tracks"
|
||
* http://dev.w3.org/csswg/css-grid/#algo-flex-tracks
|
||
*/
|
||
void StretchFlexibleTracks(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aAvailableSize);
|
||
|
||
/**
|
||
* Implements "12.3. Track Sizing Algorithm"
|
||
* http://dev.w3.org/csswg/css-grid/#algo-track-sizing
|
||
*/
|
||
void CalculateSizes(GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aContentSize,
|
||
LineRange GridArea::* aRange,
|
||
SizingConstraint aConstraint);
|
||
|
||
/**
|
||
* Apply 'align/justify-content', whichever is relevant for this axis.
|
||
* https://drafts.csswg.org/css-align-3/#propdef-align-content
|
||
*/
|
||
void AlignJustifyContent(const nsStylePosition* aStyle,
|
||
WritingMode aWM,
|
||
const LogicalSize& aContainerSize);
|
||
|
||
/**
|
||
* Return the intrinsic size by back-computing percentages as:
|
||
* IntrinsicSize = SumOfCoordSizes / (1 - SumOfPercentages).
|
||
*/
|
||
nscoord BackComputedIntrinsicSize(const TrackSizingFunctions& aFunctions,
|
||
const nsStyleCoord& aGridGap) const;
|
||
|
||
nscoord GridLineEdge(uint32_t aLine, GridLineSide aSide) const
|
||
{
|
||
if (MOZ_UNLIKELY(mSizes.IsEmpty())) {
|
||
// https://drafts.csswg.org/css-grid/#grid-definition
|
||
// "... the explicit grid still contains one grid line in each axis."
|
||
MOZ_ASSERT(aLine == 0, "We should only resolve line 1 in an empty grid");
|
||
return nscoord(0);
|
||
}
|
||
MOZ_ASSERT(aLine <= mSizes.Length(), "mSizes is too small");
|
||
if (aSide == GridLineSide::eBeforeGridGap) {
|
||
if (aLine == 0) {
|
||
return nscoord(0);
|
||
}
|
||
const TrackSize& sz = mSizes[aLine - 1];
|
||
return sz.mPosition + sz.mBase;
|
||
}
|
||
if (aLine == mSizes.Length()) {
|
||
return mContentBoxSize;
|
||
}
|
||
return mSizes[aLine].mPosition;
|
||
}
|
||
|
||
nscoord SumOfGridGaps() const
|
||
{
|
||
auto len = mSizes.Length();
|
||
return MOZ_LIKELY(len > 1) ? (len - 1) * mGridGap : 0;
|
||
}
|
||
|
||
/**
|
||
* Break before aRow, i.e. set the eBreakBefore flag on aRow and set the grid
|
||
* gap before aRow to zero (and shift all rows after it by the removed gap).
|
||
*/
|
||
void BreakBeforeRow(uint32_t aRow)
|
||
{
|
||
MOZ_ASSERT(mAxis == eLogicalAxisBlock,
|
||
"Should only be fragmenting in the block axis (between rows)");
|
||
nscoord prevRowEndPos = 0;
|
||
if (aRow != 0) {
|
||
auto& prevSz = mSizes[aRow - 1];
|
||
prevRowEndPos = prevSz.mPosition + prevSz.mBase;
|
||
}
|
||
auto& sz = mSizes[aRow];
|
||
const nscoord gap = sz.mPosition - prevRowEndPos;
|
||
sz.mState |= TrackSize::eBreakBefore;
|
||
if (gap != 0) {
|
||
for (uint32_t i = aRow, len = mSizes.Length(); i < len; ++i) {
|
||
mSizes[i].mPosition -= gap;
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Set the size of aRow to aSize and adjust the position of all rows after it.
|
||
*/
|
||
void ResizeRow(uint32_t aRow, nscoord aNewSize)
|
||
{
|
||
MOZ_ASSERT(mAxis == eLogicalAxisBlock,
|
||
"Should only be fragmenting in the block axis (between rows)");
|
||
MOZ_ASSERT(aNewSize >= 0);
|
||
auto& sz = mSizes[aRow];
|
||
nscoord delta = aNewSize - sz.mBase;
|
||
NS_WARNING_ASSERTION(delta != nscoord(0), "Useless call to ResizeRow");
|
||
sz.mBase = aNewSize;
|
||
const uint32_t numRows = mSizes.Length();
|
||
for (uint32_t r = aRow + 1; r < numRows; ++r) {
|
||
mSizes[r].mPosition += delta;
|
||
}
|
||
}
|
||
|
||
nscoord ResolveSize(const LineRange& aRange) const
|
||
{
|
||
MOZ_ASSERT(mCanResolveLineRangeSize);
|
||
MOZ_ASSERT(aRange.Extent() > 0, "grid items cover at least one track");
|
||
nscoord pos, size;
|
||
aRange.ToPositionAndLength(mSizes, &pos, &size);
|
||
return size;
|
||
}
|
||
|
||
nsTArray<nsString> GetExplicitLineNamesAtIndex(
|
||
const nsStyleGridTemplate& aGridTemplate,
|
||
const TrackSizingFunctions& aFunctions,
|
||
uint32_t aIndex)
|
||
{
|
||
nsTArray<nsString> lineNames;
|
||
|
||
bool hasRepeatAuto = aGridTemplate.HasRepeatAuto();
|
||
const nsTArray<nsTArray<nsString>>& lineNameLists(
|
||
aGridTemplate.mLineNameLists);
|
||
|
||
if (!hasRepeatAuto) {
|
||
if (aIndex < lineNameLists.Length()) {
|
||
lineNames.AppendElements(lineNameLists[aIndex]);
|
||
}
|
||
} else {
|
||
const uint32_t repeatTrackCount = aFunctions.NumRepeatTracks();
|
||
const uint32_t repeatAutoStart = aGridTemplate.mRepeatAutoIndex;
|
||
const uint32_t repeatAutoEnd = (repeatAutoStart + repeatTrackCount);
|
||
const int32_t repeatEndDelta = int32_t(repeatTrackCount - 1);
|
||
|
||
if (aIndex <= repeatAutoStart) {
|
||
if (aIndex < lineNameLists.Length()) {
|
||
lineNames.AppendElements(lineNameLists[aIndex]);
|
||
}
|
||
if (aIndex == repeatAutoEnd) {
|
||
uint32_t i = aIndex + 1;
|
||
if (i < lineNameLists.Length()) {
|
||
lineNames.AppendElements(lineNameLists[i]);
|
||
}
|
||
}
|
||
}
|
||
if (aIndex <= repeatAutoEnd && aIndex > repeatAutoStart) {
|
||
lineNames.AppendElements(aGridTemplate.mRepeatAutoLineNameListAfter);
|
||
}
|
||
if (aIndex < repeatAutoEnd && aIndex >= repeatAutoStart) {
|
||
lineNames.AppendElements(aGridTemplate.mRepeatAutoLineNameListBefore);
|
||
}
|
||
if (aIndex >= repeatAutoEnd && aIndex > repeatAutoStart) {
|
||
uint32_t i = aIndex - repeatEndDelta;
|
||
if (i < lineNameLists.Length()) {
|
||
lineNames.AppendElements(lineNameLists[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
return lineNames;
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
void Dump() const
|
||
{
|
||
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
|
||
printf(" %d: ", i);
|
||
mSizes[i].Dump();
|
||
printf("\n");
|
||
}
|
||
}
|
||
#endif
|
||
|
||
AutoTArray<TrackSize, 32> mSizes;
|
||
nscoord mContentBoxSize;
|
||
nscoord mGridGap;
|
||
// The first(last)-baseline for the first(last) track in this axis.
|
||
nscoord mBaseline[2]; // index by BaselineSharingGroup
|
||
// The union of the track min/max-sizing state bits in this axis.
|
||
TrackSize::StateBits mStateUnion;
|
||
LogicalAxis mAxis;
|
||
// Used for aligning a baseline-aligned subtree of items. The only possible
|
||
// values are NS_STYLE_ALIGN_{START,END,CENTER,AUTO}. AUTO means there are
|
||
// no baseline-aligned items in any track in that axis.
|
||
// There is one alignment value for each BaselineSharingGroup.
|
||
uint8_t mBaselineSubtreeAlign[2];
|
||
// True if track positions and sizes are final in this axis.
|
||
bool mCanResolveLineRangeSize;
|
||
};
|
||
|
||
/**
|
||
* Grid data shared by all continuations, owned by the first-in-flow.
|
||
* The data is initialized from the first-in-flow's GridReflowInput at
|
||
* the end of its reflow. Fragmentation will modify mRows.mSizes -
|
||
* the mPosition to remove the row gap at the break boundary, the mState
|
||
* by setting the eBreakBefore flag, and mBase is modified when we decide
|
||
* to grow a row. mOriginalRowData is setup by the first-in-flow and
|
||
* not modified after that. It's used for undoing the changes to mRows.
|
||
* mCols, mGridItems, mAbsPosItems are used for initializing the grid
|
||
* reflow state for continuations, see GridReflowInput::Initialize below.
|
||
*/
|
||
struct nsGridContainerFrame::SharedGridData
|
||
{
|
||
SharedGridData() :
|
||
mCols(eLogicalAxisInline),
|
||
mRows(eLogicalAxisBlock),
|
||
mGenerateComputedGridInfo(false) {}
|
||
Tracks mCols;
|
||
Tracks mRows;
|
||
struct RowData {
|
||
nscoord mBase; // the original track size
|
||
nscoord mGap; // the original gap before a track
|
||
};
|
||
nsTArray<RowData> mOriginalRowData;
|
||
nsTArray<GridItemInfo> mGridItems;
|
||
nsTArray<GridItemInfo> mAbsPosItems;
|
||
bool mGenerateComputedGridInfo;
|
||
|
||
/**
|
||
* Only set on the first-in-flow. Continuations will Initialize() their
|
||
* GridReflowInput from it.
|
||
*/
|
||
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedGridData)
|
||
};
|
||
|
||
struct MOZ_STACK_CLASS nsGridContainerFrame::GridReflowInput
|
||
{
|
||
GridReflowInput(nsGridContainerFrame* aFrame,
|
||
const ReflowInput& aRI)
|
||
: GridReflowInput(aFrame, *aRI.mRenderingContext, &aRI, aRI.mStylePosition,
|
||
aRI.GetWritingMode())
|
||
{}
|
||
GridReflowInput(nsGridContainerFrame* aFrame,
|
||
nsRenderingContext& aRC)
|
||
: GridReflowInput(aFrame, aRC, nullptr, aFrame->StylePosition(),
|
||
aFrame->GetWritingMode())
|
||
{}
|
||
|
||
/**
|
||
* Initialize our track sizes and grid item info using the shared
|
||
* state from aGridContainerFrame first-in-flow.
|
||
*/
|
||
void InitializeForContinuation(nsGridContainerFrame* aGridContainerFrame,
|
||
nscoord aConsumedBSize)
|
||
{
|
||
MOZ_ASSERT(aGridContainerFrame->GetPrevInFlow(),
|
||
"don't call this on the first-in-flow");
|
||
MOZ_ASSERT(mGridItems.IsEmpty() && mAbsPosItems.IsEmpty(),
|
||
"shouldn't have any item data yet");
|
||
|
||
// Get the SharedGridData from the first-in-flow. Also calculate the number
|
||
// of fragments before this so that we can figure out our start row below.
|
||
uint32_t fragment = 0;
|
||
nsIFrame* firstInFlow = aGridContainerFrame;
|
||
for (auto pif = aGridContainerFrame->GetPrevInFlow();
|
||
pif; pif = pif->GetPrevInFlow()) {
|
||
++fragment;
|
||
firstInFlow = pif;
|
||
}
|
||
mSharedGridData = firstInFlow->Properties().Get(SharedGridData::Prop());
|
||
MOZ_ASSERT(mSharedGridData, "first-in-flow must have SharedGridData");
|
||
|
||
// Find the start row for this fragment and undo breaks after that row
|
||
// since the breaks might be different from the last reflow.
|
||
auto& rowSizes = mSharedGridData->mRows.mSizes;
|
||
const uint32_t numRows = rowSizes.Length();
|
||
mStartRow = numRows;
|
||
for (uint32_t row = 0, breakCount = 0; row < numRows; ++row) {
|
||
if (rowSizes[row].mState & TrackSize::eBreakBefore) {
|
||
if (fragment == ++breakCount) {
|
||
mStartRow = row;
|
||
mFragBStart = rowSizes[row].mPosition;
|
||
// Restore the original size for |row| and grid gaps / state after it.
|
||
const auto& origRowData = mSharedGridData->mOriginalRowData;
|
||
rowSizes[row].mBase = origRowData[row].mBase;
|
||
nscoord prevEndPos = rowSizes[row].mPosition + rowSizes[row].mBase;
|
||
while (++row < numRows) {
|
||
auto& sz = rowSizes[row];
|
||
const auto& orig = origRowData[row];
|
||
sz.mPosition = prevEndPos + orig.mGap;
|
||
sz.mBase = orig.mBase;
|
||
sz.mState &= ~TrackSize::eBreakBefore;
|
||
prevEndPos = sz.mPosition + sz.mBase;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if (mStartRow == numRows) {
|
||
// All of the grid's rows fit inside of previous grid-container fragments.
|
||
mFragBStart = aConsumedBSize;
|
||
}
|
||
|
||
// Copy the shared track state.
|
||
// XXX consider temporarily swapping the array elements instead and swapping
|
||
// XXX them back after we're done reflowing, for better performance.
|
||
// XXX (bug 1252002)
|
||
mCols = mSharedGridData->mCols;
|
||
mRows = mSharedGridData->mRows;
|
||
|
||
// Copy item data from each child's first-in-flow data in mSharedGridData.
|
||
// XXX NOTE: This is O(n^2) in the number of items. (bug 1252186)
|
||
mIter.Reset();
|
||
for (; !mIter.AtEnd(); mIter.Next()) {
|
||
nsIFrame* child = *mIter;
|
||
nsIFrame* childFirstInFlow = child->FirstInFlow();
|
||
DebugOnly<size_t> len = mGridItems.Length();
|
||
for (auto& itemInfo : mSharedGridData->mGridItems) {
|
||
if (itemInfo.mFrame == childFirstInFlow) {
|
||
auto item = mGridItems.AppendElement(GridItemInfo(child, itemInfo.mArea));
|
||
// Copy the item's baseline data so that the item's last fragment can do
|
||
// 'last baseline' alignment if necessary.
|
||
item->mState[0] |= itemInfo.mState[0] & ItemState::eAllBaselineBits;
|
||
item->mState[1] |= itemInfo.mState[1] & ItemState::eAllBaselineBits;
|
||
item->mBaselineOffset[0] = itemInfo.mBaselineOffset[0];
|
||
item->mBaselineOffset[1] = itemInfo.mBaselineOffset[1];
|
||
break;
|
||
}
|
||
}
|
||
MOZ_ASSERT(mGridItems.Length() == len + 1, "can't find GridItemInfo");
|
||
}
|
||
|
||
// XXX NOTE: This is O(n^2) in the number of abs.pos. items. (bug 1252186)
|
||
nsFrameList absPosChildren(aGridContainerFrame->GetChildList(
|
||
aGridContainerFrame->GetAbsoluteListID()));
|
||
for (auto f : absPosChildren) {
|
||
nsIFrame* childFirstInFlow = f->FirstInFlow();
|
||
DebugOnly<size_t> len = mAbsPosItems.Length();
|
||
for (auto& itemInfo : mSharedGridData->mAbsPosItems) {
|
||
if (itemInfo.mFrame == childFirstInFlow) {
|
||
mAbsPosItems.AppendElement(GridItemInfo(f, itemInfo.mArea));
|
||
break;
|
||
}
|
||
}
|
||
MOZ_ASSERT(mAbsPosItems.Length() == len + 1, "can't find GridItemInfo");
|
||
}
|
||
|
||
// Copy in the computed grid info state bit
|
||
if (mSharedGridData->mGenerateComputedGridInfo) {
|
||
aGridContainerFrame->AddStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Calculate our track sizes. If the given aContentBox block-axis size is
|
||
* unconstrained, it is assigned to the resulting intrinsic block-axis size.
|
||
*/
|
||
void CalculateTrackSizes(const Grid& aGrid,
|
||
LogicalSize& aContentBox,
|
||
SizingConstraint aConstraint);
|
||
|
||
/**
|
||
* Return the containing block for a grid item occupying aArea.
|
||
*/
|
||
LogicalRect ContainingBlockFor(const GridArea& aArea) const;
|
||
|
||
/**
|
||
* Return the containing block for an abs.pos. grid item occupying aArea.
|
||
* Any 'auto' lines in the grid area will be aligned with grid container
|
||
* containing block on that side.
|
||
* @param aGridOrigin the origin of the grid
|
||
* @param aGridCB the grid container containing block (its padding area)
|
||
*/
|
||
LogicalRect ContainingBlockForAbsPos(const GridArea& aArea,
|
||
const LogicalPoint& aGridOrigin,
|
||
const LogicalRect& aGridCB) const;
|
||
|
||
CSSOrderAwareFrameIterator mIter;
|
||
const nsStylePosition* const mGridStyle;
|
||
Tracks mCols;
|
||
Tracks mRows;
|
||
TrackSizingFunctions mColFunctions;
|
||
TrackSizingFunctions mRowFunctions;
|
||
/**
|
||
* Info about each (normal flow) grid item.
|
||
*/
|
||
nsTArray<GridItemInfo> mGridItems;
|
||
/**
|
||
* Info about each grid-aligned abs.pos. child.
|
||
*/
|
||
nsTArray<GridItemInfo> mAbsPosItems;
|
||
|
||
/**
|
||
* @note mReflowInput may be null when using the 2nd ctor above. In this case
|
||
* we'll construct a dummy parent reflow state if we need it to calculate
|
||
* min/max-content contributions when sizing tracks.
|
||
*/
|
||
const ReflowInput* const mReflowInput;
|
||
nsRenderingContext& mRenderingContext;
|
||
nsGridContainerFrame* const mFrame;
|
||
SharedGridData* mSharedGridData; // [weak] owned by mFrame's first-in-flow.
|
||
/** Computed border+padding with mSkipSides applied. */
|
||
LogicalMargin mBorderPadding;
|
||
/**
|
||
* BStart of this fragment in "grid space" (i.e. the concatenation of content
|
||
* areas of all fragments). Equal to mRows.mSizes[mStartRow].mPosition,
|
||
* or, if this fragment starts after the last row, the ConsumedBSize().
|
||
*/
|
||
nscoord mFragBStart;
|
||
/** The start row for this fragment. */
|
||
uint32_t mStartRow;
|
||
/**
|
||
* The start row for the next fragment, if any. If mNextFragmentStartRow ==
|
||
* mStartRow then there are no rows in this fragment.
|
||
*/
|
||
uint32_t mNextFragmentStartRow;
|
||
/** Our tentative ApplySkipSides bits. */
|
||
LogicalSides mSkipSides;
|
||
const WritingMode mWM;
|
||
/** Initialized lazily, when we find the fragmentainer. */
|
||
bool mInFragmentainer;
|
||
|
||
private:
|
||
GridReflowInput(nsGridContainerFrame* aFrame,
|
||
nsRenderingContext& aRenderingContext,
|
||
const ReflowInput* aReflowInput,
|
||
const nsStylePosition* aGridStyle,
|
||
const WritingMode& aWM)
|
||
: mIter(aFrame, kPrincipalList)
|
||
, mGridStyle(aGridStyle)
|
||
, mCols(eLogicalAxisInline)
|
||
, mRows(eLogicalAxisBlock)
|
||
, mColFunctions(mGridStyle->mGridTemplateColumns,
|
||
mGridStyle->mGridAutoColumnsMin,
|
||
mGridStyle->mGridAutoColumnsMax)
|
||
, mRowFunctions(mGridStyle->mGridTemplateRows,
|
||
mGridStyle->mGridAutoRowsMin,
|
||
mGridStyle->mGridAutoRowsMax)
|
||
, mReflowInput(aReflowInput)
|
||
, mRenderingContext(aRenderingContext)
|
||
, mFrame(aFrame)
|
||
, mSharedGridData(nullptr)
|
||
, mBorderPadding(aWM)
|
||
, mFragBStart(0)
|
||
, mStartRow(0)
|
||
, mNextFragmentStartRow(0)
|
||
, mWM(aWM)
|
||
, mInFragmentainer(false)
|
||
{
|
||
MOZ_ASSERT(!aReflowInput || aReflowInput->mFrame == mFrame);
|
||
if (aReflowInput) {
|
||
mBorderPadding = aReflowInput->ComputedLogicalBorderPadding();
|
||
mSkipSides = aFrame->PreReflowBlockLevelLogicalSkipSides();
|
||
mBorderPadding.ApplySkipSides(mSkipSides);
|
||
}
|
||
}
|
||
};
|
||
|
||
using GridReflowInput = nsGridContainerFrame::GridReflowInput;
|
||
|
||
/**
|
||
* The Grid implements grid item placement and the state of the grid -
|
||
* the size of the explicit/implicit grid, which cells are occupied etc.
|
||
*/
|
||
struct MOZ_STACK_CLASS nsGridContainerFrame::Grid
|
||
{
|
||
/**
|
||
* Place all child frames into the grid and expand the (implicit) grid as
|
||
* needed. The allocated GridAreas are stored in the GridAreaProperty
|
||
* frame property on the child frame.
|
||
* @param aComputedMinSize the container's min-size - used to determine
|
||
* the number of repeat(auto-fill/fit) tracks.
|
||
* @param aComputedSize the container's size - used to determine
|
||
* the number of repeat(auto-fill/fit) tracks.
|
||
* @param aComputedMaxSize the container's max-size - used to determine
|
||
* the number of repeat(auto-fill/fit) tracks.
|
||
*/
|
||
void PlaceGridItems(GridReflowInput& aState,
|
||
const LogicalSize& aComputedMinSize,
|
||
const LogicalSize& aComputedSize,
|
||
const LogicalSize& aComputedMaxSize);
|
||
|
||
/**
|
||
* As above but for an abs.pos. child. Any 'auto' lines will be represented
|
||
* by kAutoLine in the LineRange result.
|
||
* @param aGridStart the first line in the final, but untranslated grid
|
||
* @param aGridEnd the last line in the final, but untranslated grid
|
||
*/
|
||
LineRange ResolveAbsPosLineRange(const nsStyleGridLine& aStart,
|
||
const nsStyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap,
|
||
uint32_t GridNamedArea::* aAreaStart,
|
||
uint32_t GridNamedArea::* aAreaEnd,
|
||
uint32_t aExplicitGridEnd,
|
||
int32_t aGridStart,
|
||
int32_t aGridEnd,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Return a GridArea for abs.pos. item with non-auto lines placed at
|
||
* a definite line (1-based) with placement errors resolved. One or both
|
||
* positions may still be 'auto'.
|
||
* @param aChild the abs.pos. grid item to place
|
||
* @param aStyle the StylePosition() for the grid container
|
||
*/
|
||
GridArea PlaceAbsPos(nsIFrame* aChild,
|
||
const LineNameMap& aColLineNameMap,
|
||
const LineNameMap& aRowLineNameMap,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Find the first column in row aLockedRow starting at aStartCol where aArea
|
||
* could be placed without overlapping other items. The returned column may
|
||
* cause aArea to overflow the current implicit grid bounds if placed there.
|
||
*/
|
||
uint32_t FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
|
||
const GridArea* aArea) const;
|
||
|
||
/**
|
||
* Place aArea in the first column (in row aArea->mRows.mStart) starting at
|
||
* aStartCol without overlapping other items. The resulting aArea may
|
||
* overflow the current implicit grid bounds.
|
||
* Pre-condition: aArea->mRows.IsDefinite() is true.
|
||
* Post-condition: aArea->IsDefinite() is true.
|
||
*/
|
||
void PlaceAutoCol(uint32_t aStartCol, GridArea* aArea) const;
|
||
|
||
/**
|
||
* Find the first row in column aLockedCol starting at aStartRow where aArea
|
||
* could be placed without overlapping other items. The returned row may
|
||
* cause aArea to overflow the current implicit grid bounds if placed there.
|
||
*/
|
||
uint32_t FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
|
||
const GridArea* aArea) const;
|
||
|
||
/**
|
||
* Place aArea in the first row (in column aArea->mCols.mStart) starting at
|
||
* aStartRow without overlapping other items. The resulting aArea may
|
||
* overflow the current implicit grid bounds.
|
||
* Pre-condition: aArea->mCols.IsDefinite() is true.
|
||
* Post-condition: aArea->IsDefinite() is true.
|
||
*/
|
||
void PlaceAutoRow(uint32_t aStartRow, GridArea* aArea) const;
|
||
|
||
/**
|
||
* Place aArea in the first column starting at aStartCol,aStartRow without
|
||
* causing it to overlap other items or overflow mGridColEnd.
|
||
* If there's no such column in aStartRow, continue in position 1,aStartRow+1.
|
||
* Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
|
||
* Post-condition: aArea->IsDefinite() is true.
|
||
*/
|
||
void PlaceAutoAutoInRowOrder(uint32_t aStartCol,
|
||
uint32_t aStartRow,
|
||
GridArea* aArea) const;
|
||
|
||
/**
|
||
* Place aArea in the first row starting at aStartCol,aStartRow without
|
||
* causing it to overlap other items or overflow mGridRowEnd.
|
||
* If there's no such row in aStartCol, continue in position aStartCol+1,1.
|
||
* Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
|
||
* Post-condition: aArea->IsDefinite() is true.
|
||
*/
|
||
void PlaceAutoAutoInColOrder(uint32_t aStartCol,
|
||
uint32_t aStartRow,
|
||
GridArea* aArea) const;
|
||
|
||
/**
|
||
* Return aLine if it's inside the aMin..aMax range (inclusive),
|
||
* otherwise return kAutoLine.
|
||
*/
|
||
static int32_t
|
||
AutoIfOutside(int32_t aLine, int32_t aMin, int32_t aMax)
|
||
{
|
||
MOZ_ASSERT(aMin <= aMax);
|
||
if (aLine < aMin || aLine > aMax) {
|
||
return kAutoLine;
|
||
}
|
||
return aLine;
|
||
}
|
||
|
||
/**
|
||
* Inflate the implicit grid to include aArea.
|
||
* @param aArea may be definite or auto
|
||
*/
|
||
void InflateGridFor(const GridArea& aArea)
|
||
{
|
||
mGridColEnd = std::max(mGridColEnd, aArea.mCols.HypotheticalEnd());
|
||
mGridRowEnd = std::max(mGridRowEnd, aArea.mRows.HypotheticalEnd());
|
||
MOZ_ASSERT(mGridColEnd <= kTranslatedMaxLine &&
|
||
mGridRowEnd <= kTranslatedMaxLine);
|
||
}
|
||
|
||
enum LineRangeSide {
|
||
eLineRangeSideStart, eLineRangeSideEnd
|
||
};
|
||
/**
|
||
* Return a line number for (non-auto) aLine, per:
|
||
* http://dev.w3.org/csswg/css-grid/#line-placement
|
||
* @param aLine style data for the line (must be non-auto)
|
||
* @param aNth a number of lines to find from aFromIndex, negative if the
|
||
* search should be in reverse order. In the case aLine has
|
||
* a specified line name, it's permitted to pass in zero which
|
||
* will be treated as one.
|
||
* @param aFromIndex the zero-based index to start counting from
|
||
* @param aLineNameList the explicit named lines
|
||
* @param aAreaStart a pointer to GridNamedArea::mColumnStart/mRowStart
|
||
* @param aAreaEnd a pointer to GridNamedArea::mColumnEnd/mRowEnd
|
||
* @param aExplicitGridEnd the last line in the explicit grid
|
||
* @param aEdge indicates whether we are resolving a start or end line
|
||
* @param aStyle the StylePosition() for the grid container
|
||
* @return a definite line (1-based), clamped to the kMinLine..kMaxLine range
|
||
*/
|
||
int32_t ResolveLine(const nsStyleGridLine& aLine,
|
||
int32_t aNth,
|
||
uint32_t aFromIndex,
|
||
const LineNameMap& aNameMap,
|
||
uint32_t GridNamedArea::* aAreaStart,
|
||
uint32_t GridNamedArea::* aAreaEnd,
|
||
uint32_t aExplicitGridEnd,
|
||
LineRangeSide aSide,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Helper method for ResolveLineRange.
|
||
* @see ResolveLineRange
|
||
* @return a pair (start,end) of lines
|
||
*/
|
||
typedef std::pair<int32_t, int32_t> LinePair;
|
||
LinePair ResolveLineRangeHelper(const nsStyleGridLine& aStart,
|
||
const nsStyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap,
|
||
uint32_t GridNamedArea::* aAreaStart,
|
||
uint32_t GridNamedArea::* aAreaEnd,
|
||
uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Return a LineRange based on the given style data. Non-auto lines
|
||
* are resolved to a definite line number (1-based) per:
|
||
* http://dev.w3.org/csswg/css-grid/#line-placement
|
||
* with placement errors corrected per:
|
||
* http://dev.w3.org/csswg/css-grid/#grid-placement-errors
|
||
* @param aStyle the StylePosition() for the grid container
|
||
* @param aStart style data for the start line
|
||
* @param aEnd style data for the end line
|
||
* @param aLineNameList the explicit named lines
|
||
* @param aAreaStart a pointer to GridNamedArea::mColumnStart/mRowStart
|
||
* @param aAreaEnd a pointer to GridNamedArea::mColumnEnd/mRowEnd
|
||
* @param aExplicitGridEnd the last line in the explicit grid
|
||
* @param aStyle the StylePosition() for the grid container
|
||
*/
|
||
LineRange ResolveLineRange(const nsStyleGridLine& aStart,
|
||
const nsStyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap,
|
||
uint32_t GridNamedArea::* aAreaStart,
|
||
uint32_t GridNamedArea::* aAreaEnd,
|
||
uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle);
|
||
|
||
/**
|
||
* Return a GridArea with non-auto lines placed at a definite line (1-based)
|
||
* with placement errors resolved. One or both positions may still
|
||
* be 'auto'.
|
||
* @param aChild the grid item
|
||
* @param aStyle the StylePosition() for the grid container
|
||
*/
|
||
GridArea PlaceDefinite(nsIFrame* aChild,
|
||
const LineNameMap& aColLineNameMap,
|
||
const LineNameMap& aRowLineNameMap,
|
||
const nsStylePosition* aStyle);
|
||
|
||
bool HasImplicitNamedArea(const nsString& aName) const
|
||
{
|
||
return mAreas && mAreas->Contains(aName);
|
||
}
|
||
|
||
/**
|
||
* A convenience method to lookup a name in 'grid-template-areas'.
|
||
* @param aStyle the StylePosition() for the grid container
|
||
* @return null if not found
|
||
*/
|
||
static const css::GridNamedArea*
|
||
FindNamedArea(const nsSubstring& aName, const nsStylePosition* aStyle)
|
||
{
|
||
if (!aStyle->mGridTemplateAreas) {
|
||
return nullptr;
|
||
}
|
||
const nsTArray<css::GridNamedArea>& areas =
|
||
aStyle->mGridTemplateAreas->mNamedAreas;
|
||
size_t len = areas.Length();
|
||
for (size_t i = 0; i < len; ++i) {
|
||
const css::GridNamedArea& area = areas[i];
|
||
if (area.mName == aName) {
|
||
return &area;
|
||
}
|
||
}
|
||
return nullptr;
|
||
}
|
||
|
||
// Return true if aString ends in aSuffix and has at least one character before
|
||
// the suffix. Assign aIndex to where the suffix starts.
|
||
static bool
|
||
IsNameWithSuffix(const nsString& aString, const nsString& aSuffix,
|
||
uint32_t* aIndex)
|
||
{
|
||
if (StringEndsWith(aString, aSuffix)) {
|
||
*aIndex = aString.Length() - aSuffix.Length();
|
||
return *aIndex != 0;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static bool
|
||
IsNameWithEndSuffix(const nsString& aString, uint32_t* aIndex)
|
||
{
|
||
return IsNameWithSuffix(aString, NS_LITERAL_STRING("-end"), aIndex);
|
||
}
|
||
|
||
static bool
|
||
IsNameWithStartSuffix(const nsString& aString, uint32_t* aIndex)
|
||
{
|
||
return IsNameWithSuffix(aString, NS_LITERAL_STRING("-start"), aIndex);
|
||
}
|
||
|
||
/**
|
||
* A CellMap holds state for each cell in the grid.
|
||
* It's row major. It's sparse in the sense that it only has enough rows to
|
||
* cover the last row that has a grid item. Each row only has enough entries
|
||
* to cover columns that are occupied *on that row*, i.e. it's not a full
|
||
* matrix covering the entire implicit grid. An absent Cell means that it's
|
||
* unoccupied by any grid item.
|
||
*/
|
||
struct CellMap {
|
||
struct Cell {
|
||
Cell() : mIsOccupied(false) {}
|
||
bool mIsOccupied : 1;
|
||
};
|
||
|
||
void Fill(const GridArea& aGridArea)
|
||
{
|
||
MOZ_ASSERT(aGridArea.IsDefinite());
|
||
MOZ_ASSERT(aGridArea.mRows.mStart < aGridArea.mRows.mEnd);
|
||
MOZ_ASSERT(aGridArea.mCols.mStart < aGridArea.mCols.mEnd);
|
||
const auto numRows = aGridArea.mRows.mEnd;
|
||
const auto numCols = aGridArea.mCols.mEnd;
|
||
mCells.EnsureLengthAtLeast(numRows);
|
||
for (auto i = aGridArea.mRows.mStart; i < numRows; ++i) {
|
||
nsTArray<Cell>& cellsInRow = mCells[i];
|
||
cellsInRow.EnsureLengthAtLeast(numCols);
|
||
for (auto j = aGridArea.mCols.mStart; j < numCols; ++j) {
|
||
cellsInRow[j].mIsOccupied = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
uint32_t IsEmptyCol(uint32_t aCol) const
|
||
{
|
||
for (auto& row : mCells) {
|
||
if (aCol < row.Length() && row[aCol].mIsOccupied) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
uint32_t IsEmptyRow(uint32_t aRow) const
|
||
{
|
||
if (aRow >= mCells.Length()) {
|
||
return true;
|
||
}
|
||
for (const Cell& cell : mCells[aRow]) {
|
||
if (cell.mIsOccupied) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
#ifdef DEBUG
|
||
void Dump() const
|
||
{
|
||
const size_t numRows = mCells.Length();
|
||
for (size_t i = 0; i < numRows; ++i) {
|
||
const nsTArray<Cell>& cellsInRow = mCells[i];
|
||
const size_t numCols = cellsInRow.Length();
|
||
printf("%lu:\t", (unsigned long)i + 1);
|
||
for (size_t j = 0; j < numCols; ++j) {
|
||
printf(cellsInRow[j].mIsOccupied ? "X " : ". ");
|
||
}
|
||
printf("\n");
|
||
}
|
||
}
|
||
#endif
|
||
|
||
nsTArray<nsTArray<Cell>> mCells;
|
||
};
|
||
|
||
/**
|
||
* State for each cell in the grid.
|
||
*/
|
||
CellMap mCellMap;
|
||
/**
|
||
* @see HasImplicitNamedArea.
|
||
*/
|
||
ImplicitNamedAreas* mAreas;
|
||
/**
|
||
* The last column grid line (1-based) in the explicit grid.
|
||
* (i.e. the number of explicit columns + 1)
|
||
*/
|
||
uint32_t mExplicitGridColEnd;
|
||
/**
|
||
* The last row grid line (1-based) in the explicit grid.
|
||
* (i.e. the number of explicit rows + 1)
|
||
*/
|
||
uint32_t mExplicitGridRowEnd;
|
||
// Same for the implicit grid, except these become zero-based after
|
||
// resolving definite lines.
|
||
uint32_t mGridColEnd;
|
||
uint32_t mGridRowEnd;
|
||
|
||
/**
|
||
* Offsets from the start of the implicit grid to the start of the translated
|
||
* explicit grid. They are zero if there are no implicit lines before 1,1.
|
||
* e.g. "grid-column: span 3 / 1" makes mExplicitGridOffsetCol = 3 and the
|
||
* corresponding GridArea::mCols will be 0 / 3 in the zero-based translated
|
||
* grid.
|
||
*/
|
||
uint32_t mExplicitGridOffsetCol;
|
||
uint32_t mExplicitGridOffsetRow;
|
||
};
|
||
|
||
void
|
||
nsGridContainerFrame::GridReflowInput::CalculateTrackSizes(
|
||
const Grid& aGrid,
|
||
LogicalSize& aContentBox,
|
||
SizingConstraint aConstraint)
|
||
{
|
||
mCols.Initialize(mColFunctions, mGridStyle->mGridColumnGap,
|
||
aGrid.mGridColEnd, aContentBox.ISize(mWM));
|
||
mRows.Initialize(mRowFunctions, mGridStyle->mGridRowGap,
|
||
aGrid.mGridRowEnd, aContentBox.BSize(mWM));
|
||
|
||
mCols.CalculateSizes(*this, mGridItems, mColFunctions,
|
||
aContentBox.ISize(mWM), &GridArea::mCols,
|
||
aConstraint);
|
||
mCols.AlignJustifyContent(mGridStyle, mWM, aContentBox);
|
||
// Column positions and sizes are now final.
|
||
mCols.mCanResolveLineRangeSize = true;
|
||
|
||
mRows.CalculateSizes(*this, mGridItems, mRowFunctions,
|
||
aContentBox.BSize(mWM), &GridArea::mRows,
|
||
aConstraint);
|
||
if (aContentBox.BSize(mWM) == NS_AUTOHEIGHT) {
|
||
aContentBox.BSize(mWM) =
|
||
mRows.BackComputedIntrinsicSize(mRowFunctions, mGridStyle->mGridRowGap);
|
||
mRows.mGridGap =
|
||
::ResolveToDefiniteSize(mGridStyle->mGridRowGap, aContentBox.BSize(mWM));
|
||
}
|
||
}
|
||
|
||
/**
|
||
* (XXX share this utility function with nsFlexContainerFrame at some point)
|
||
*
|
||
* Helper for BuildDisplayList, to implement this special-case for grid
|
||
* items from the spec:
|
||
* The painting order of grid items is exactly the same as inline blocks,
|
||
* except that [...] 'z-index' values other than 'auto' create a stacking
|
||
* context even if 'position' is 'static'.
|
||
* http://dev.w3.org/csswg/css-grid/#z-order
|
||
*/
|
||
static uint32_t
|
||
GetDisplayFlagsForGridItem(nsIFrame* aFrame)
|
||
{
|
||
const nsStylePosition* pos = aFrame->StylePosition();
|
||
if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) {
|
||
return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT;
|
||
}
|
||
return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT;
|
||
}
|
||
|
||
// Align an item's margin box in its aAxis inside aCBSize.
|
||
static void
|
||
AlignJustifySelf(uint8_t aAlignment, LogicalAxis aAxis,
|
||
AlignJustifyFlags aFlags,
|
||
nscoord aBaselineAdjust, nscoord aCBSize,
|
||
const ReflowInput& aRI, const LogicalSize& aChildSize,
|
||
LogicalPoint* aPos)
|
||
{
|
||
MOZ_ASSERT(aAlignment != NS_STYLE_ALIGN_AUTO, "unexpected 'auto' "
|
||
"computed value for normal flow grid item");
|
||
|
||
// NOTE: this is the resulting frame offset (border box).
|
||
nscoord offset =
|
||
CSSAlignUtils::AlignJustifySelf(aAlignment, aAxis, aFlags,
|
||
aBaselineAdjust, aCBSize,
|
||
aRI, aChildSize);
|
||
|
||
// Set the position (aPos) for the requested alignment.
|
||
if (offset != 0) {
|
||
WritingMode wm = aRI.GetWritingMode();
|
||
nscoord& pos = aAxis == eLogicalAxisBlock ? aPos->B(wm) : aPos->I(wm);
|
||
pos += MOZ_LIKELY(aFlags & AlignJustifyFlags::eSameSide) ? offset : -offset;
|
||
}
|
||
}
|
||
|
||
static void
|
||
AlignSelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
|
||
uint8_t aAlignSelf, nscoord aCBSize, const WritingMode aCBWM,
|
||
const ReflowInput& aRI, const LogicalSize& aSize,
|
||
LogicalPoint* aPos)
|
||
{
|
||
auto alignSelf = aAlignSelf;
|
||
|
||
AlignJustifyFlags flags = AlignJustifyFlags::eNoFlags;
|
||
if (alignSelf & NS_STYLE_ALIGN_SAFE) {
|
||
flags |= AlignJustifyFlags::eOverflowSafe;
|
||
}
|
||
alignSelf &= ~NS_STYLE_ALIGN_FLAG_BITS;
|
||
|
||
WritingMode childWM = aRI.GetWritingMode();
|
||
if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisBlock, childWM)) {
|
||
flags |= AlignJustifyFlags::eSameSide;
|
||
}
|
||
|
||
// Grid's 'align-self' axis is never parallel to the container's inline axis.
|
||
if (alignSelf == NS_STYLE_ALIGN_LEFT || alignSelf == NS_STYLE_ALIGN_RIGHT) {
|
||
alignSelf = NS_STYLE_ALIGN_START;
|
||
}
|
||
if (MOZ_LIKELY(alignSelf == NS_STYLE_ALIGN_NORMAL)) {
|
||
alignSelf = NS_STYLE_ALIGN_STRETCH;
|
||
}
|
||
|
||
nscoord baselineAdjust = 0;
|
||
if (alignSelf == NS_STYLE_ALIGN_BASELINE ||
|
||
alignSelf == NS_STYLE_ALIGN_LAST_BASELINE) {
|
||
alignSelf = aGridItem.GetSelfBaseline(alignSelf, eLogicalAxisBlock,
|
||
&baselineAdjust);
|
||
}
|
||
|
||
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
|
||
LogicalAxis axis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock;
|
||
AlignJustifySelf(alignSelf, axis, flags, baselineAdjust,
|
||
aCBSize, aRI, aSize, aPos);
|
||
}
|
||
|
||
static void
|
||
JustifySelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
|
||
uint8_t aJustifySelf, nscoord aCBSize, const WritingMode aCBWM,
|
||
const ReflowInput& aRI, const LogicalSize& aSize,
|
||
LogicalPoint* aPos)
|
||
{
|
||
auto justifySelf = aJustifySelf;
|
||
|
||
AlignJustifyFlags flags = AlignJustifyFlags::eNoFlags;
|
||
if (justifySelf & NS_STYLE_JUSTIFY_SAFE) {
|
||
flags |= AlignJustifyFlags::eOverflowSafe;
|
||
}
|
||
justifySelf &= ~NS_STYLE_JUSTIFY_FLAG_BITS;
|
||
|
||
WritingMode childWM = aRI.GetWritingMode();
|
||
if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisInline, childWM)) {
|
||
flags |= AlignJustifyFlags::eSameSide;
|
||
}
|
||
|
||
if (MOZ_LIKELY(justifySelf == NS_STYLE_ALIGN_NORMAL)) {
|
||
justifySelf = NS_STYLE_ALIGN_STRETCH;
|
||
}
|
||
|
||
nscoord baselineAdjust = 0;
|
||
// Grid's 'justify-self' axis is always parallel to the container's inline
|
||
// axis, so justify-self:left|right always applies.
|
||
switch (justifySelf) {
|
||
case NS_STYLE_JUSTIFY_LEFT:
|
||
justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_START
|
||
: NS_STYLE_JUSTIFY_END;
|
||
break;
|
||
case NS_STYLE_JUSTIFY_RIGHT:
|
||
justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_END
|
||
: NS_STYLE_JUSTIFY_START;
|
||
break;
|
||
case NS_STYLE_JUSTIFY_BASELINE:
|
||
case NS_STYLE_JUSTIFY_LAST_BASELINE:
|
||
justifySelf = aGridItem.GetSelfBaseline(justifySelf, eLogicalAxisInline,
|
||
&baselineAdjust);
|
||
break;
|
||
}
|
||
|
||
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
|
||
LogicalAxis axis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
|
||
AlignJustifySelf(justifySelf, axis, flags, baselineAdjust,
|
||
aCBSize, aRI, aSize, aPos);
|
||
}
|
||
|
||
static uint16_t
|
||
GetAlignJustifyValue(uint16_t aAlignment, const WritingMode aWM,
|
||
const bool aIsAlign, bool* aOverflowSafe)
|
||
{
|
||
*aOverflowSafe = aAlignment & NS_STYLE_ALIGN_SAFE;
|
||
aAlignment &= (NS_STYLE_ALIGN_ALL_BITS & ~NS_STYLE_ALIGN_FLAG_BITS);
|
||
|
||
// Map some alignment values to 'start' / 'end'.
|
||
switch (aAlignment) {
|
||
case NS_STYLE_ALIGN_LEFT:
|
||
case NS_STYLE_ALIGN_RIGHT: {
|
||
if (aIsAlign) {
|
||
// Grid's 'align-content' axis is never parallel to the inline axis.
|
||
return NS_STYLE_ALIGN_START;
|
||
}
|
||
bool isStart = aWM.IsBidiLTR() == (aAlignment == NS_STYLE_ALIGN_LEFT);
|
||
return isStart ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END;
|
||
}
|
||
case NS_STYLE_ALIGN_FLEX_START: // same as 'start' for Grid
|
||
return NS_STYLE_ALIGN_START;
|
||
case NS_STYLE_ALIGN_FLEX_END: // same as 'end' for Grid
|
||
return NS_STYLE_ALIGN_END;
|
||
}
|
||
return aAlignment;
|
||
}
|
||
|
||
static uint16_t
|
||
GetAlignJustifyFallbackIfAny(uint16_t aAlignment, const WritingMode aWM,
|
||
const bool aIsAlign, bool* aOverflowSafe)
|
||
{
|
||
uint16_t fallback = aAlignment >> NS_STYLE_ALIGN_ALL_SHIFT;
|
||
if (fallback) {
|
||
return GetAlignJustifyValue(fallback, aWM, aIsAlign, aOverflowSafe);
|
||
}
|
||
// https://drafts.csswg.org/css-align-3/#fallback-alignment
|
||
switch (aAlignment) {
|
||
case NS_STYLE_ALIGN_STRETCH:
|
||
case NS_STYLE_ALIGN_SPACE_BETWEEN:
|
||
return NS_STYLE_ALIGN_START;
|
||
case NS_STYLE_ALIGN_SPACE_AROUND:
|
||
case NS_STYLE_ALIGN_SPACE_EVENLY:
|
||
return NS_STYLE_ALIGN_CENTER;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
//----------------------------------------------------------------------
|
||
|
||
// Frame class boilerplate
|
||
// =======================
|
||
|
||
NS_QUERYFRAME_HEAD(nsGridContainerFrame)
|
||
NS_QUERYFRAME_ENTRY(nsGridContainerFrame)
|
||
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
|
||
|
||
NS_IMPL_FRAMEARENA_HELPERS(nsGridContainerFrame)
|
||
|
||
nsContainerFrame*
|
||
NS_NewGridContainerFrame(nsIPresShell* aPresShell,
|
||
nsStyleContext* aContext)
|
||
{
|
||
return new (aPresShell) nsGridContainerFrame(aContext);
|
||
}
|
||
|
||
|
||
//----------------------------------------------------------------------
|
||
|
||
// nsGridContainerFrame Method Implementations
|
||
// ===========================================
|
||
|
||
/*static*/ const nsRect&
|
||
nsGridContainerFrame::GridItemCB(nsIFrame* aChild)
|
||
{
|
||
MOZ_ASSERT((aChild->GetStateBits() & NS_FRAME_OUT_OF_FLOW) &&
|
||
aChild->IsAbsolutelyPositioned());
|
||
nsRect* cb = aChild->Properties().Get(GridItemContainingBlockRect());
|
||
MOZ_ASSERT(cb, "this method must only be called on grid items, and the grid "
|
||
"container should've reflowed this item by now and set up cb");
|
||
return *cb;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::AddImplicitNamedAreas(
|
||
const nsTArray<nsTArray<nsString>>& aLineNameLists)
|
||
{
|
||
// http://dev.w3.org/csswg/css-grid/#implicit-named-areas
|
||
// Note: recording these names for fast lookup later is just an optimization.
|
||
const uint32_t len =
|
||
std::min(aLineNameLists.Length(), size_t(nsStyleGridLine::kMaxLine));
|
||
nsTHashtable<nsStringHashKey> currentStarts;
|
||
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
|
||
for (uint32_t i = 0; i < len; ++i) {
|
||
for (const nsString& name : aLineNameLists[i]) {
|
||
uint32_t indexOfSuffix;
|
||
if (Grid::IsNameWithStartSuffix(name, &indexOfSuffix) ||
|
||
Grid::IsNameWithEndSuffix(name, &indexOfSuffix)) {
|
||
// Extract the name that was found earlier.
|
||
nsDependentSubstring areaName(name, 0, indexOfSuffix);
|
||
|
||
// Lazily create the ImplicitNamedAreas.
|
||
if (!areas) {
|
||
areas = new ImplicitNamedAreas;
|
||
Properties().Set(ImplicitNamedAreasProperty(), areas);
|
||
}
|
||
|
||
mozilla::css::GridNamedArea area;
|
||
if (!areas->Get(areaName, &area)) {
|
||
// Not found, so prep the newly-seen area with a name and empty
|
||
// boundary information, which will get filled in later.
|
||
area.mName = areaName;
|
||
area.mRowStart = 0;
|
||
area.mRowEnd = 0;
|
||
area.mColumnStart = 0;
|
||
area.mColumnEnd = 0;
|
||
|
||
areas->Put(areaName, area);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::InitImplicitNamedAreas(const nsStylePosition* aStyle)
|
||
{
|
||
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
|
||
if (areas) {
|
||
// Clear it, but reuse the hashtable itself for now. We'll remove it
|
||
// below if it isn't needed anymore.
|
||
areas->Clear();
|
||
}
|
||
AddImplicitNamedAreas(aStyle->mGridTemplateColumns.mLineNameLists);
|
||
AddImplicitNamedAreas(aStyle->mGridTemplateRows.mLineNameLists);
|
||
if (areas && areas->Count() == 0) {
|
||
Properties().Delete(ImplicitNamedAreasProperty());
|
||
}
|
||
}
|
||
|
||
int32_t
|
||
nsGridContainerFrame::Grid::ResolveLine(const nsStyleGridLine& aLine,
|
||
int32_t aNth,
|
||
uint32_t aFromIndex,
|
||
const LineNameMap& aNameMap,
|
||
uint32_t GridNamedArea::* aAreaStart,
|
||
uint32_t GridNamedArea::* aAreaEnd,
|
||
uint32_t aExplicitGridEnd,
|
||
LineRangeSide aSide,
|
||
const nsStylePosition* aStyle)
|
||
{
|
||
MOZ_ASSERT(!aLine.IsAuto());
|
||
int32_t line = 0;
|
||
if (aLine.mLineName.IsEmpty()) {
|
||
MOZ_ASSERT(aNth != 0, "css-grid 9.2: <integer> must not be zero.");
|
||
line = int32_t(aFromIndex) + aNth;
|
||
} else {
|
||
if (aNth == 0) {
|
||
// <integer> was omitted; treat it as 1.
|
||
aNth = 1;
|
||
}
|
||
bool isNameOnly = !aLine.mHasSpan && aLine.mInteger == 0;
|
||
if (isNameOnly) {
|
||
const GridNamedArea* area = FindNamedArea(aLine.mLineName, aStyle);
|
||
if (area || HasImplicitNamedArea(aLine.mLineName)) {
|
||
// The given name is a named area - look for explicit lines named
|
||
// <name>-start/-end depending on which side we're resolving.
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-slot
|
||
uint32_t implicitLine = 0;
|
||
nsAutoString lineName(aLine.mLineName);
|
||
if (aSide == eLineRangeSideStart) {
|
||
lineName.AppendLiteral("-start");
|
||
implicitLine = area ? area->*aAreaStart : 0;
|
||
} else {
|
||
lineName.AppendLiteral("-end");
|
||
implicitLine = area ? area->*aAreaEnd : 0;
|
||
}
|
||
line = aNameMap.FindNamedLine(lineName, &aNth, aFromIndex,
|
||
implicitLine);
|
||
}
|
||
}
|
||
|
||
if (line == 0) {
|
||
// If mLineName ends in -start/-end, try the prefix as a named area.
|
||
uint32_t implicitLine = 0;
|
||
uint32_t index;
|
||
auto GridNamedArea::* areaEdge = aAreaStart;
|
||
bool found = IsNameWithStartSuffix(aLine.mLineName, &index);
|
||
if (!found) {
|
||
found = IsNameWithEndSuffix(aLine.mLineName, &index);
|
||
areaEdge = aAreaEnd;
|
||
}
|
||
if (found) {
|
||
const GridNamedArea* area =
|
||
FindNamedArea(nsDependentSubstring(aLine.mLineName, 0, index),
|
||
aStyle);
|
||
if (area) {
|
||
implicitLine = area->*areaEdge;
|
||
}
|
||
}
|
||
line = aNameMap.FindNamedLine(aLine.mLineName, &aNth, aFromIndex,
|
||
implicitLine);
|
||
}
|
||
|
||
if (line == 0) {
|
||
MOZ_ASSERT(aNth != 0, "we found all N named lines but 'line' is zero!");
|
||
int32_t edgeLine;
|
||
if (aLine.mHasSpan) {
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-span-int
|
||
// 'span <custom-ident> N'
|
||
edgeLine = aSide == eLineRangeSideStart ? 1 : aExplicitGridEnd;
|
||
} else {
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-int
|
||
// '<custom-ident> N'
|
||
edgeLine = aNth < 0 ? 1 : aExplicitGridEnd;
|
||
}
|
||
// "If not enough lines with that name exist, all lines in the implicit
|
||
// grid are assumed to have that name..."
|
||
line = edgeLine + aNth;
|
||
}
|
||
}
|
||
return clamped(line, nsStyleGridLine::kMinLine, nsStyleGridLine::kMaxLine);
|
||
}
|
||
|
||
nsGridContainerFrame::Grid::LinePair
|
||
nsGridContainerFrame::Grid::ResolveLineRangeHelper(
|
||
const nsStyleGridLine& aStart,
|
||
const nsStyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap,
|
||
uint32_t GridNamedArea::* aAreaStart,
|
||
uint32_t GridNamedArea::* aAreaEnd,
|
||
uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle)
|
||
{
|
||
MOZ_ASSERT(int32_t(nsGridContainerFrame::kAutoLine) > nsStyleGridLine::kMaxLine);
|
||
|
||
if (aStart.mHasSpan) {
|
||
if (aEnd.mHasSpan || aEnd.IsAuto()) {
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
|
||
if (aStart.mLineName.IsEmpty()) {
|
||
// span <integer> / span *
|
||
// span <integer> / auto
|
||
return LinePair(kAutoLine, aStart.mInteger);
|
||
}
|
||
// span <custom-ident> / span *
|
||
// span <custom-ident> / auto
|
||
return LinePair(kAutoLine, 1); // XXX subgrid explicit size instead of 1?
|
||
}
|
||
|
||
uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0;
|
||
auto end = ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, aAreaStart,
|
||
aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd,
|
||
aStyle);
|
||
int32_t span = aStart.mInteger == 0 ? 1 : aStart.mInteger;
|
||
if (end <= 1) {
|
||
// The end is at or before the first explicit line, thus all lines before
|
||
// it match <custom-ident> since they're implicit.
|
||
int32_t start = std::max(end - span, nsStyleGridLine::kMinLine);
|
||
return LinePair(start, end);
|
||
}
|
||
auto start = ResolveLine(aStart, -span, end, aNameMap, aAreaStart,
|
||
aAreaEnd, aExplicitGridEnd, eLineRangeSideStart,
|
||
aStyle);
|
||
return LinePair(start, end);
|
||
}
|
||
|
||
int32_t start = kAutoLine;
|
||
if (aStart.IsAuto()) {
|
||
if (aEnd.IsAuto()) {
|
||
// auto / auto
|
||
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
|
||
}
|
||
if (aEnd.mHasSpan) {
|
||
if (aEnd.mLineName.IsEmpty()) {
|
||
// auto / span <integer>
|
||
MOZ_ASSERT(aEnd.mInteger != 0);
|
||
return LinePair(start, aEnd.mInteger);
|
||
}
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
|
||
// auto / span <custom-ident>
|
||
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
|
||
}
|
||
} else {
|
||
uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0;
|
||
start = ResolveLine(aStart, aStart.mInteger, from, aNameMap,
|
||
aAreaStart, aAreaEnd, aExplicitGridEnd,
|
||
eLineRangeSideStart, aStyle);
|
||
if (aEnd.IsAuto()) {
|
||
// A "definite line / auto" should resolve the auto to 'span 1'.
|
||
// The error handling in ResolveLineRange will make that happen and also
|
||
// clamp the end line correctly if we return "start / start".
|
||
return LinePair(start, start);
|
||
}
|
||
}
|
||
|
||
uint32_t from;
|
||
int32_t nth = aEnd.mInteger == 0 ? 1 : aEnd.mInteger;
|
||
if (aEnd.mHasSpan) {
|
||
if (MOZ_UNLIKELY(start < 0)) {
|
||
if (aEnd.mLineName.IsEmpty()) {
|
||
return LinePair(start, start + nth);
|
||
}
|
||
from = 0;
|
||
} else {
|
||
if (start >= int32_t(aExplicitGridEnd)) {
|
||
// The start is at or after the last explicit line, thus all lines
|
||
// after it match <custom-ident> since they're implicit.
|
||
return LinePair(start, std::min(start + nth, nsStyleGridLine::kMaxLine));
|
||
}
|
||
from = start;
|
||
}
|
||
} else {
|
||
from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0;
|
||
}
|
||
auto end = ResolveLine(aEnd, nth, from, aNameMap, aAreaStart,
|
||
aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle);
|
||
if (start == int32_t(kAutoLine)) {
|
||
// auto / definite line
|
||
start = std::max(nsStyleGridLine::kMinLine, end - 1);
|
||
}
|
||
return LinePair(start, end);
|
||
}
|
||
|
||
nsGridContainerFrame::LineRange
|
||
nsGridContainerFrame::Grid::ResolveLineRange(
|
||
const nsStyleGridLine& aStart,
|
||
const nsStyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap,
|
||
uint32_t GridNamedArea::* aAreaStart,
|
||
uint32_t GridNamedArea::* aAreaEnd,
|
||
uint32_t aExplicitGridEnd,
|
||
const nsStylePosition* aStyle)
|
||
{
|
||
LinePair r = ResolveLineRangeHelper(aStart, aEnd, aNameMap, aAreaStart,
|
||
aAreaEnd, aExplicitGridEnd, aStyle);
|
||
MOZ_ASSERT(r.second != int32_t(kAutoLine));
|
||
|
||
if (r.first == int32_t(kAutoLine)) {
|
||
// r.second is a span, clamp it to kMaxLine - 1 so that the returned
|
||
// range has a HypotheticalEnd <= kMaxLine.
|
||
// http://dev.w3.org/csswg/css-grid/#overlarge-grids
|
||
r.second = std::min(r.second, nsStyleGridLine::kMaxLine - 1);
|
||
} else {
|
||
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
|
||
if (r.first > r.second) {
|
||
Swap(r.first, r.second);
|
||
} else if (r.first == r.second) {
|
||
if (MOZ_UNLIKELY(r.first == nsStyleGridLine::kMaxLine)) {
|
||
r.first = nsStyleGridLine::kMaxLine - 1;
|
||
}
|
||
r.second = r.first + 1; // XXX subgrid explicit size instead of 1?
|
||
}
|
||
}
|
||
return LineRange(r.first, r.second);
|
||
}
|
||
|
||
nsGridContainerFrame::GridArea
|
||
nsGridContainerFrame::Grid::PlaceDefinite(nsIFrame* aChild,
|
||
const LineNameMap& aColLineNameMap,
|
||
const LineNameMap& aRowLineNameMap,
|
||
const nsStylePosition* aStyle)
|
||
{
|
||
const nsStylePosition* itemStyle = aChild->StylePosition();
|
||
return GridArea(
|
||
ResolveLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
|
||
aColLineNameMap,
|
||
&GridNamedArea::mColumnStart, &GridNamedArea::mColumnEnd,
|
||
mExplicitGridColEnd, aStyle),
|
||
ResolveLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
|
||
aRowLineNameMap,
|
||
&GridNamedArea::mRowStart, &GridNamedArea::mRowEnd,
|
||
mExplicitGridRowEnd, aStyle));
|
||
}
|
||
|
||
nsGridContainerFrame::LineRange
|
||
nsGridContainerFrame::Grid::ResolveAbsPosLineRange(
|
||
const nsStyleGridLine& aStart,
|
||
const nsStyleGridLine& aEnd,
|
||
const LineNameMap& aNameMap,
|
||
uint32_t GridNamedArea::* aAreaStart,
|
||
uint32_t GridNamedArea::* aAreaEnd,
|
||
uint32_t aExplicitGridEnd,
|
||
int32_t aGridStart,
|
||
int32_t aGridEnd,
|
||
const nsStylePosition* aStyle)
|
||
{
|
||
if (aStart.IsAuto()) {
|
||
if (aEnd.IsAuto()) {
|
||
return LineRange(kAutoLine, kAutoLine);
|
||
}
|
||
uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0;
|
||
int32_t end =
|
||
ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, aAreaStart,
|
||
aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle);
|
||
if (aEnd.mHasSpan) {
|
||
++end;
|
||
}
|
||
// A line outside the existing grid is treated as 'auto' for abs.pos (10.1).
|
||
end = AutoIfOutside(end, aGridStart, aGridEnd);
|
||
return LineRange(kAutoLine, end);
|
||
}
|
||
|
||
if (aEnd.IsAuto()) {
|
||
uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0;
|
||
int32_t start =
|
||
ResolveLine(aStart, aStart.mInteger, from, aNameMap, aAreaStart,
|
||
aAreaEnd, aExplicitGridEnd, eLineRangeSideStart, aStyle);
|
||
if (aStart.mHasSpan) {
|
||
start = std::max(aGridEnd - start, aGridStart);
|
||
}
|
||
start = AutoIfOutside(start, aGridStart, aGridEnd);
|
||
return LineRange(start, kAutoLine);
|
||
}
|
||
|
||
LineRange r = ResolveLineRange(aStart, aEnd, aNameMap, aAreaStart,
|
||
aAreaEnd, aExplicitGridEnd, aStyle);
|
||
if (r.IsAuto()) {
|
||
MOZ_ASSERT(aStart.mHasSpan && aEnd.mHasSpan, "span / span is the only case "
|
||
"leading to IsAuto here -- we dealt with the other cases above");
|
||
// The second span was ignored per 9.2.1. For abs.pos., 10.1 says that this
|
||
// case should result in "auto / auto" unlike normal flow grid items.
|
||
return LineRange(kAutoLine, kAutoLine);
|
||
}
|
||
|
||
return LineRange(AutoIfOutside(r.mUntranslatedStart, aGridStart, aGridEnd),
|
||
AutoIfOutside(r.mUntranslatedEnd, aGridStart, aGridEnd));
|
||
}
|
||
|
||
nsGridContainerFrame::GridArea
|
||
nsGridContainerFrame::Grid::PlaceAbsPos(nsIFrame* aChild,
|
||
const LineNameMap& aColLineNameMap,
|
||
const LineNameMap& aRowLineNameMap,
|
||
const nsStylePosition* aStyle)
|
||
{
|
||
const nsStylePosition* itemStyle = aChild->StylePosition();
|
||
int32_t gridColStart = 1 - mExplicitGridOffsetCol;
|
||
int32_t gridRowStart = 1 - mExplicitGridOffsetRow;
|
||
return GridArea(
|
||
ResolveAbsPosLineRange(itemStyle->mGridColumnStart,
|
||
itemStyle->mGridColumnEnd,
|
||
aColLineNameMap,
|
||
&GridNamedArea::mColumnStart,
|
||
&GridNamedArea::mColumnEnd,
|
||
mExplicitGridColEnd, gridColStart, mGridColEnd,
|
||
aStyle),
|
||
ResolveAbsPosLineRange(itemStyle->mGridRowStart,
|
||
itemStyle->mGridRowEnd,
|
||
aRowLineNameMap,
|
||
&GridNamedArea::mRowStart,
|
||
&GridNamedArea::mRowEnd,
|
||
mExplicitGridRowEnd, gridRowStart, mGridRowEnd,
|
||
aStyle));
|
||
}
|
||
|
||
uint32_t
|
||
nsGridContainerFrame::Grid::FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
|
||
const GridArea* aArea) const
|
||
{
|
||
const uint32_t extent = aArea->mCols.Extent();
|
||
const uint32_t iStart = aLockedRow;
|
||
const uint32_t iEnd = iStart + aArea->mRows.Extent();
|
||
uint32_t candidate = aStartCol;
|
||
for (uint32_t i = iStart; i < iEnd; ) {
|
||
if (i >= mCellMap.mCells.Length()) {
|
||
break;
|
||
}
|
||
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
|
||
const uint32_t len = cellsInRow.Length();
|
||
const uint32_t lastCandidate = candidate;
|
||
// Find the first gap in the current row that's at least 'extent' wide.
|
||
// ('gap' tracks how wide the current column gap is.)
|
||
for (uint32_t j = candidate, gap = 0; j < len && gap < extent; ++j) {
|
||
if (!cellsInRow[j].mIsOccupied) {
|
||
++gap;
|
||
continue;
|
||
}
|
||
candidate = j + 1;
|
||
gap = 0;
|
||
}
|
||
if (lastCandidate < candidate && i != iStart) {
|
||
// Couldn't fit 'extent' tracks at 'lastCandidate' here so we must
|
||
// restart from the beginning with the new 'candidate'.
|
||
i = iStart;
|
||
} else {
|
||
++i;
|
||
}
|
||
}
|
||
return candidate;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Grid::PlaceAutoCol(uint32_t aStartCol,
|
||
GridArea* aArea) const
|
||
{
|
||
MOZ_ASSERT(aArea->mRows.IsDefinite() && aArea->mCols.IsAuto());
|
||
uint32_t col = FindAutoCol(aStartCol, aArea->mRows.mStart, aArea);
|
||
aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
|
||
MOZ_ASSERT(aArea->IsDefinite());
|
||
}
|
||
|
||
uint32_t
|
||
nsGridContainerFrame::Grid::FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
|
||
const GridArea* aArea) const
|
||
{
|
||
const uint32_t extent = aArea->mRows.Extent();
|
||
const uint32_t jStart = aLockedCol;
|
||
const uint32_t jEnd = jStart + aArea->mCols.Extent();
|
||
const uint32_t iEnd = mCellMap.mCells.Length();
|
||
uint32_t candidate = aStartRow;
|
||
// Find the first gap in the rows that's at least 'extent' tall.
|
||
// ('gap' tracks how tall the current row gap is.)
|
||
for (uint32_t i = candidate, gap = 0; i < iEnd && gap < extent; ++i) {
|
||
++gap; // tentative, but we may reset it below if a column is occupied
|
||
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
|
||
const uint32_t clampedJEnd = std::min<uint32_t>(jEnd, cellsInRow.Length());
|
||
// Check if the current row is unoccupied from jStart to jEnd.
|
||
for (uint32_t j = jStart; j < clampedJEnd; ++j) {
|
||
if (cellsInRow[j].mIsOccupied) {
|
||
// Couldn't fit 'extent' rows at 'candidate' here; we hit something
|
||
// at row 'i'. So, try the row after 'i' as our next candidate.
|
||
candidate = i + 1;
|
||
gap = 0;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
return candidate;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Grid::PlaceAutoRow(uint32_t aStartRow,
|
||
GridArea* aArea) const
|
||
{
|
||
MOZ_ASSERT(aArea->mCols.IsDefinite() && aArea->mRows.IsAuto());
|
||
uint32_t row = FindAutoRow(aArea->mCols.mStart, aStartRow, aArea);
|
||
aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
|
||
MOZ_ASSERT(aArea->IsDefinite());
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Grid::PlaceAutoAutoInRowOrder(uint32_t aStartCol,
|
||
uint32_t aStartRow,
|
||
GridArea* aArea) const
|
||
{
|
||
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
|
||
const uint32_t colExtent = aArea->mCols.Extent();
|
||
const uint32_t gridRowEnd = mGridRowEnd;
|
||
const uint32_t gridColEnd = mGridColEnd;
|
||
uint32_t col = aStartCol;
|
||
uint32_t row = aStartRow;
|
||
for (; row < gridRowEnd; ++row) {
|
||
col = FindAutoCol(col, row, aArea);
|
||
if (col + colExtent <= gridColEnd) {
|
||
break;
|
||
}
|
||
col = 0;
|
||
}
|
||
MOZ_ASSERT(row < gridRowEnd || col == 0,
|
||
"expected column 0 for placing in a new row");
|
||
aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
|
||
aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
|
||
MOZ_ASSERT(aArea->IsDefinite());
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Grid::PlaceAutoAutoInColOrder(uint32_t aStartCol,
|
||
uint32_t aStartRow,
|
||
GridArea* aArea) const
|
||
{
|
||
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
|
||
const uint32_t rowExtent = aArea->mRows.Extent();
|
||
const uint32_t gridRowEnd = mGridRowEnd;
|
||
const uint32_t gridColEnd = mGridColEnd;
|
||
uint32_t col = aStartCol;
|
||
uint32_t row = aStartRow;
|
||
for (; col < gridColEnd; ++col) {
|
||
row = FindAutoRow(col, row, aArea);
|
||
if (row + rowExtent <= gridRowEnd) {
|
||
break;
|
||
}
|
||
row = 0;
|
||
}
|
||
MOZ_ASSERT(col < gridColEnd || row == 0,
|
||
"expected row 0 for placing in a new column");
|
||
aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol);
|
||
aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow);
|
||
MOZ_ASSERT(aArea->IsDefinite());
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Grid::PlaceGridItems(GridReflowInput& aState,
|
||
const LogicalSize& aComputedMinSize,
|
||
const LogicalSize& aComputedSize,
|
||
const LogicalSize& aComputedMaxSize)
|
||
{
|
||
mAreas = aState.mFrame->GetImplicitNamedAreas();
|
||
const nsStylePosition* const gridStyle = aState.mGridStyle;
|
||
MOZ_ASSERT(mCellMap.mCells.IsEmpty(), "unexpected entries in cell map");
|
||
|
||
// http://dev.w3.org/csswg/css-grid/#grid-definition
|
||
// Initialize the end lines of the Explicit Grid (mExplicitGridCol[Row]End).
|
||
// This is determined by the larger of the number of rows/columns defined
|
||
// by 'grid-template-areas' and the 'grid-template-rows'/'-columns', plus one.
|
||
// Also initialize the Implicit Grid (mGridCol[Row]End) to the same values.
|
||
// Note that this is for a grid with a 1,1 origin. We'll change that
|
||
// to a 0,0 based grid after placing definite lines.
|
||
auto areas = gridStyle->mGridTemplateAreas.get();
|
||
uint32_t numRepeatCols = aState.mColFunctions.InitRepeatTracks(
|
||
gridStyle->mGridColumnGap,
|
||
aComputedMinSize.ISize(aState.mWM),
|
||
aComputedSize.ISize(aState.mWM),
|
||
aComputedMaxSize.ISize(aState.mWM));
|
||
mGridColEnd = mExplicitGridColEnd =
|
||
aState.mColFunctions.ComputeExplicitGridEnd(areas ? areas->mNColumns + 1 : 1);
|
||
LineNameMap colLineNameMap(gridStyle->mGridTemplateColumns, numRepeatCols);
|
||
|
||
uint32_t numRepeatRows = aState.mRowFunctions.InitRepeatTracks(
|
||
gridStyle->mGridRowGap,
|
||
aComputedMinSize.BSize(aState.mWM),
|
||
aComputedSize.BSize(aState.mWM),
|
||
aComputedMaxSize.BSize(aState.mWM));
|
||
mGridRowEnd = mExplicitGridRowEnd =
|
||
aState.mRowFunctions.ComputeExplicitGridEnd(areas ? areas->NRows() + 1 : 1);
|
||
LineNameMap rowLineNameMap(gridStyle->mGridTemplateRows, numRepeatRows);
|
||
|
||
// http://dev.w3.org/csswg/css-grid/#line-placement
|
||
// Resolve definite positions per spec chap 9.2.
|
||
int32_t minCol = 1;
|
||
int32_t minRow = 1;
|
||
aState.mGridItems.ClearAndRetainStorage();
|
||
aState.mIter.Reset();
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
nsIFrame* child = *aState.mIter;
|
||
GridItemInfo* info =
|
||
aState.mGridItems.AppendElement(GridItemInfo(child,
|
||
PlaceDefinite(child,
|
||
colLineNameMap,
|
||
rowLineNameMap,
|
||
gridStyle)));
|
||
MOZ_ASSERT(aState.mIter.ItemIndex() == aState.mGridItems.Length() - 1,
|
||
"ItemIndex() is broken");
|
||
GridArea& area = info->mArea;
|
||
if (area.mCols.IsDefinite()) {
|
||
minCol = std::min(minCol, area.mCols.mUntranslatedStart);
|
||
}
|
||
if (area.mRows.IsDefinite()) {
|
||
minRow = std::min(minRow, area.mRows.mUntranslatedStart);
|
||
}
|
||
}
|
||
|
||
// Translate the whole grid so that the top-/left-most area is at 0,0.
|
||
mExplicitGridOffsetCol = 1 - minCol; // minCol/Row is always <= 1, see above
|
||
mExplicitGridOffsetRow = 1 - minRow;
|
||
aState.mColFunctions.mExplicitGridOffset = mExplicitGridOffsetCol;
|
||
aState.mRowFunctions.mExplicitGridOffset = mExplicitGridOffsetRow;
|
||
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
|
||
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
|
||
mGridColEnd += offsetToColZero;
|
||
mGridRowEnd += offsetToRowZero;
|
||
aState.mIter.Reset();
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
GridArea& area = aState.mGridItems[aState.mIter.ItemIndex()].mArea;
|
||
if (area.mCols.IsDefinite()) {
|
||
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
|
||
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
|
||
}
|
||
if (area.mRows.IsDefinite()) {
|
||
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
|
||
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
|
||
}
|
||
if (area.IsDefinite()) {
|
||
mCellMap.Fill(area);
|
||
InflateGridFor(area);
|
||
}
|
||
}
|
||
|
||
// http://dev.w3.org/csswg/css-grid/#auto-placement-algo
|
||
// Step 1, place 'auto' items that have one definite position -
|
||
// definite row (column) for grid-auto-flow:row (column).
|
||
auto flowStyle = gridStyle->mGridAutoFlow;
|
||
const bool isRowOrder = (flowStyle & NS_STYLE_GRID_AUTO_FLOW_ROW);
|
||
const bool isSparse = !(flowStyle & NS_STYLE_GRID_AUTO_FLOW_DENSE);
|
||
// We need 1 cursor per row (or column) if placement is sparse.
|
||
{
|
||
Maybe<nsDataHashtable<nsUint32HashKey, uint32_t>> cursors;
|
||
if (isSparse) {
|
||
cursors.emplace();
|
||
}
|
||
auto placeAutoMinorFunc = isRowOrder ? &Grid::PlaceAutoCol
|
||
: &Grid::PlaceAutoRow;
|
||
aState.mIter.Reset();
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
GridArea& area = aState.mGridItems[aState.mIter.ItemIndex()].mArea;
|
||
LineRange& major = isRowOrder ? area.mRows : area.mCols;
|
||
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
|
||
if (major.IsDefinite() && minor.IsAuto()) {
|
||
// Items with 'auto' in the minor dimension only.
|
||
uint32_t cursor = 0;
|
||
if (isSparse) {
|
||
cursors->Get(major.mStart, &cursor);
|
||
}
|
||
(this->*placeAutoMinorFunc)(cursor, &area);
|
||
mCellMap.Fill(area);
|
||
if (isSparse) {
|
||
cursors->Put(major.mStart, minor.mEnd);
|
||
}
|
||
}
|
||
InflateGridFor(area); // Step 2, inflating for auto items too
|
||
}
|
||
}
|
||
|
||
// XXX NOTE possible spec issue.
|
||
// XXX It's unclear if the remaining major-dimension auto and
|
||
// XXX auto in both dimensions should use the same cursor or not,
|
||
// XXX https://www.w3.org/Bugs/Public/show_bug.cgi?id=16044
|
||
// XXX seems to indicate it shouldn't.
|
||
// XXX http://dev.w3.org/csswg/css-grid/#auto-placement-cursor
|
||
// XXX now says it should (but didn't in earlier versions)
|
||
|
||
// Step 3, place the remaining grid items
|
||
uint32_t cursorMajor = 0; // for 'dense' these two cursors will stay at 0,0
|
||
uint32_t cursorMinor = 0;
|
||
auto placeAutoMajorFunc = isRowOrder ? &Grid::PlaceAutoRow
|
||
: &Grid::PlaceAutoCol;
|
||
aState.mIter.Reset();
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
GridArea& area = aState.mGridItems[aState.mIter.ItemIndex()].mArea;
|
||
MOZ_ASSERT(*aState.mIter == aState.mGridItems[aState.mIter.ItemIndex()].mFrame,
|
||
"iterator out of sync with aState.mGridItems");
|
||
LineRange& major = isRowOrder ? area.mRows : area.mCols;
|
||
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
|
||
if (major.IsAuto()) {
|
||
if (minor.IsDefinite()) {
|
||
// Items with 'auto' in the major dimension only.
|
||
if (isSparse) {
|
||
if (minor.mStart < cursorMinor) {
|
||
++cursorMajor;
|
||
}
|
||
cursorMinor = minor.mStart;
|
||
}
|
||
(this->*placeAutoMajorFunc)(cursorMajor, &area);
|
||
if (isSparse) {
|
||
cursorMajor = major.mStart;
|
||
}
|
||
} else {
|
||
// Items with 'auto' in both dimensions.
|
||
if (isRowOrder) {
|
||
PlaceAutoAutoInRowOrder(cursorMinor, cursorMajor, &area);
|
||
} else {
|
||
PlaceAutoAutoInColOrder(cursorMajor, cursorMinor, &area);
|
||
}
|
||
if (isSparse) {
|
||
cursorMajor = major.mStart;
|
||
cursorMinor = minor.mEnd;
|
||
#ifdef DEBUG
|
||
uint32_t gridMajorEnd = isRowOrder ? mGridRowEnd : mGridColEnd;
|
||
uint32_t gridMinorEnd = isRowOrder ? mGridColEnd : mGridRowEnd;
|
||
MOZ_ASSERT(cursorMajor <= gridMajorEnd,
|
||
"we shouldn't need to place items further than 1 track "
|
||
"past the current end of the grid, in major dimension");
|
||
MOZ_ASSERT(cursorMinor <= gridMinorEnd,
|
||
"we shouldn't add implicit minor tracks for auto/auto");
|
||
#endif
|
||
}
|
||
}
|
||
mCellMap.Fill(area);
|
||
InflateGridFor(area);
|
||
}
|
||
}
|
||
|
||
if (aState.mFrame->IsAbsoluteContainer()) {
|
||
// 9.4 Absolutely-positioned Grid Items
|
||
// http://dev.w3.org/csswg/css-grid/#abspos-items
|
||
// We only resolve definite lines here; we'll align auto positions to the
|
||
// grid container later during reflow.
|
||
nsFrameList children(aState.mFrame->GetChildList(
|
||
aState.mFrame->GetAbsoluteListID()));
|
||
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
|
||
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
|
||
// Untranslate the grid again temporarily while resolving abs.pos. lines.
|
||
AutoRestore<uint32_t> save1(mGridColEnd);
|
||
AutoRestore<uint32_t> save2(mGridRowEnd);
|
||
mGridColEnd -= offsetToColZero;
|
||
mGridRowEnd -= offsetToRowZero;
|
||
aState.mAbsPosItems.ClearAndRetainStorage();
|
||
size_t i = 0;
|
||
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
|
||
nsIFrame* child = e.get();
|
||
GridItemInfo* info =
|
||
aState.mAbsPosItems.AppendElement(GridItemInfo(child,
|
||
PlaceAbsPos(child,
|
||
colLineNameMap,
|
||
rowLineNameMap,
|
||
gridStyle)));
|
||
GridArea& area = info->mArea;
|
||
if (area.mCols.mUntranslatedStart != int32_t(kAutoLine)) {
|
||
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
|
||
}
|
||
if (area.mCols.mUntranslatedEnd != int32_t(kAutoLine)) {
|
||
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
|
||
}
|
||
if (area.mRows.mUntranslatedStart != int32_t(kAutoLine)) {
|
||
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
|
||
}
|
||
if (area.mRows.mUntranslatedEnd != int32_t(kAutoLine)) {
|
||
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Count empty 'auto-fit' tracks in the repeat() range.
|
||
// |colAdjust| will have a count for each line in the grid of how many
|
||
// tracks were empty between the start of the grid and that line.
|
||
Maybe<nsTArray<uint32_t>> colAdjust;
|
||
uint32_t numEmptyCols = 0;
|
||
if (aState.mColFunctions.mHasRepeatAuto &&
|
||
!gridStyle->mGridTemplateColumns.mIsAutoFill &&
|
||
aState.mColFunctions.NumRepeatTracks() > 0) {
|
||
for (uint32_t col = aState.mColFunctions.mRepeatAutoStart,
|
||
endRepeat = aState.mColFunctions.mRepeatAutoEnd,
|
||
numColLines = mGridColEnd + 1;
|
||
col < numColLines; ++col) {
|
||
if (numEmptyCols) {
|
||
(*colAdjust)[col] = numEmptyCols;
|
||
}
|
||
if (col < endRepeat && mCellMap.IsEmptyCol(col)) {
|
||
++numEmptyCols;
|
||
if (colAdjust.isNothing()) {
|
||
colAdjust.emplace(numColLines);
|
||
colAdjust->SetLength(numColLines);
|
||
PodZero(colAdjust->Elements(), colAdjust->Length());
|
||
}
|
||
|
||
uint32_t repeatIndex = col - aState.mColFunctions.mRepeatAutoStart;
|
||
MOZ_ASSERT(aState.mColFunctions.mRemovedRepeatTracks.Length() >
|
||
repeatIndex);
|
||
aState.mColFunctions.mRemovedRepeatTracks[repeatIndex] = true;
|
||
}
|
||
}
|
||
}
|
||
Maybe<nsTArray<uint32_t>> rowAdjust;
|
||
uint32_t numEmptyRows = 0;
|
||
if (aState.mRowFunctions.mHasRepeatAuto &&
|
||
!gridStyle->mGridTemplateRows.mIsAutoFill &&
|
||
aState.mRowFunctions.NumRepeatTracks() > 0) {
|
||
for (uint32_t row = aState.mRowFunctions.mRepeatAutoStart,
|
||
endRepeat = aState.mRowFunctions.mRepeatAutoEnd,
|
||
numRowLines = mGridRowEnd + 1;
|
||
row < numRowLines; ++row) {
|
||
if (numEmptyRows) {
|
||
(*rowAdjust)[row] = numEmptyRows;
|
||
}
|
||
if (row < endRepeat && mCellMap.IsEmptyRow(row)) {
|
||
++numEmptyRows;
|
||
if (rowAdjust.isNothing()) {
|
||
rowAdjust.emplace(numRowLines);
|
||
rowAdjust->SetLength(numRowLines);
|
||
PodZero(rowAdjust->Elements(), rowAdjust->Length());
|
||
}
|
||
|
||
uint32_t repeatIndex = row - aState.mRowFunctions.mRepeatAutoStart;
|
||
MOZ_ASSERT(aState.mRowFunctions.mRemovedRepeatTracks.Length() >
|
||
repeatIndex);
|
||
aState.mRowFunctions.mRemovedRepeatTracks[repeatIndex] = true;
|
||
}
|
||
}
|
||
}
|
||
// Remove the empty 'auto-fit' tracks we found above, if any.
|
||
if (numEmptyCols || numEmptyRows) {
|
||
// Adjust the line numbers in the grid areas.
|
||
for (auto& item : aState.mGridItems) {
|
||
GridArea& area = item.mArea;
|
||
if (numEmptyCols) {
|
||
area.mCols.AdjustForRemovedTracks(*colAdjust);
|
||
}
|
||
if (numEmptyRows) {
|
||
area.mRows.AdjustForRemovedTracks(*rowAdjust);
|
||
}
|
||
}
|
||
for (auto& item : aState.mAbsPosItems) {
|
||
GridArea& area = item.mArea;
|
||
if (numEmptyCols) {
|
||
area.mCols.AdjustAbsPosForRemovedTracks(*colAdjust);
|
||
}
|
||
if (numEmptyRows) {
|
||
area.mRows.AdjustAbsPosForRemovedTracks(*rowAdjust);
|
||
}
|
||
}
|
||
// Adjust the grid size.
|
||
mGridColEnd -= numEmptyCols;
|
||
mExplicitGridColEnd -= numEmptyCols;
|
||
mGridRowEnd -= numEmptyRows;
|
||
mExplicitGridRowEnd -= numEmptyRows;
|
||
// Adjust the track mapping to unmap the removed tracks.
|
||
auto colRepeatCount = aState.mColFunctions.NumRepeatTracks();
|
||
aState.mColFunctions.SetNumRepeatTracks(colRepeatCount - numEmptyCols);
|
||
auto rowRepeatCount = aState.mRowFunctions.NumRepeatTracks();
|
||
aState.mRowFunctions.SetNumRepeatTracks(rowRepeatCount - numEmptyRows);
|
||
}
|
||
|
||
// Update the line boundaries of the implicit grid areas, if needed.
|
||
if (mAreas &&
|
||
aState.mFrame->HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES)) {
|
||
for (auto iter = mAreas->Iter(); !iter.Done(); iter.Next()) {
|
||
auto& areaInfo = iter.Data();
|
||
|
||
// Resolve the lines for the area. We use the name of the area as the
|
||
// name of the lines, knowing that the line placement algorithm will
|
||
// add the -start and -end suffixes as appropriate for layout.
|
||
nsStyleGridLine lineStartAndEnd;
|
||
lineStartAndEnd.mLineName = areaInfo.mName;
|
||
|
||
LineRange columnLines = ResolveLineRange(
|
||
lineStartAndEnd, lineStartAndEnd,
|
||
colLineNameMap,
|
||
&GridNamedArea::mColumnStart, &GridNamedArea::mColumnEnd,
|
||
mExplicitGridColEnd, gridStyle);
|
||
|
||
LineRange rowLines = ResolveLineRange(
|
||
lineStartAndEnd, lineStartAndEnd,
|
||
rowLineNameMap,
|
||
&GridNamedArea::mRowStart, &GridNamedArea::mRowEnd,
|
||
mExplicitGridRowEnd, gridStyle);
|
||
|
||
// Put the resolved line indices back into the area structure.
|
||
areaInfo.mColumnStart = columnLines.mStart + mExplicitGridOffsetCol;
|
||
areaInfo.mColumnEnd = columnLines.mEnd + mExplicitGridOffsetCol;
|
||
areaInfo.mRowStart = rowLines.mStart + mExplicitGridOffsetRow;
|
||
areaInfo.mRowEnd = rowLines.mEnd + mExplicitGridOffsetRow;
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Tracks::Initialize(
|
||
const TrackSizingFunctions& aFunctions,
|
||
const nsStyleCoord& aGridGap,
|
||
uint32_t aNumTracks,
|
||
nscoord aContentBoxSize)
|
||
{
|
||
MOZ_ASSERT(aNumTracks >= aFunctions.mExplicitGridOffset +
|
||
aFunctions.NumExplicitTracks());
|
||
mSizes.SetLength(aNumTracks);
|
||
PodZero(mSizes.Elements(), mSizes.Length());
|
||
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
|
||
mStateUnion |= mSizes[i].Initialize(aContentBoxSize,
|
||
aFunctions.MinSizingFor(i),
|
||
aFunctions.MaxSizingFor(i));
|
||
}
|
||
mGridGap = ::ResolveToDefiniteSize(aGridGap, aContentBoxSize);
|
||
mContentBoxSize = aContentBoxSize;
|
||
}
|
||
|
||
/**
|
||
* Reflow aChild in the given aAvailableSize.
|
||
*/
|
||
static nscoord
|
||
MeasuringReflow(nsIFrame* aChild,
|
||
const ReflowInput* aReflowInput,
|
||
nsRenderingContext* aRC,
|
||
const LogicalSize& aAvailableSize,
|
||
const LogicalSize& aCBSize,
|
||
nscoord aIMinSizeClamp = NS_MAXSIZE,
|
||
nscoord aBMinSizeClamp = NS_MAXSIZE)
|
||
{
|
||
nsContainerFrame* parent = aChild->GetParent();
|
||
nsPresContext* pc = aChild->PresContext();
|
||
Maybe<ReflowInput> dummyParentState;
|
||
const ReflowInput* rs = aReflowInput;
|
||
if (!aReflowInput) {
|
||
MOZ_ASSERT(!parent->HasAnyStateBits(NS_FRAME_IN_REFLOW));
|
||
dummyParentState.emplace(pc, parent, aRC,
|
||
LogicalSize(parent->GetWritingMode(), 0,
|
||
NS_UNCONSTRAINEDSIZE),
|
||
ReflowInput::DUMMY_PARENT_REFLOW_STATE);
|
||
rs = dummyParentState.ptr();
|
||
}
|
||
#ifdef DEBUG
|
||
// This will suppress various CRAZY_SIZE warnings for this reflow.
|
||
parent->Properties().Set(
|
||
nsContainerFrame::DebugReflowingWithInfiniteISize(), true);
|
||
#endif
|
||
uint32_t riFlags = ReflowInput::COMPUTE_SIZE_SHRINK_WRAP |
|
||
ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE;
|
||
if (aIMinSizeClamp != NS_MAXSIZE) {
|
||
riFlags |= ReflowInput::I_CLAMP_MARGIN_BOX_MIN_SIZE;
|
||
}
|
||
if (aBMinSizeClamp != NS_MAXSIZE) {
|
||
riFlags |= ReflowInput::B_CLAMP_MARGIN_BOX_MIN_SIZE;
|
||
aChild->Properties().Set(nsIFrame::BClampMarginBoxMinSizeProperty(),
|
||
aBMinSizeClamp);
|
||
} else {
|
||
aChild->Properties().Delete(nsIFrame::BClampMarginBoxMinSizeProperty());
|
||
}
|
||
ReflowInput childRI(pc, *rs, aChild, aAvailableSize, &aCBSize, riFlags);
|
||
|
||
// Because we pass ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE, and the
|
||
// previous reflow of the child might not have, set the child's
|
||
// block-resize flag to true.
|
||
// FIXME (perf): It would be faster to do this only if the previous
|
||
// reflow of the child was not a measuring reflow, and only if the
|
||
// child does some of the things that are affected by
|
||
// ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE.
|
||
childRI.SetBResize(true);
|
||
|
||
ReflowOutput childSize(childRI);
|
||
nsReflowStatus childStatus;
|
||
const uint32_t flags = NS_FRAME_NO_MOVE_FRAME | NS_FRAME_NO_SIZE_VIEW;
|
||
WritingMode wm = childRI.GetWritingMode();
|
||
parent->ReflowChild(aChild, pc, childSize, childRI, wm,
|
||
LogicalPoint(wm), nsSize(), flags, childStatus);
|
||
parent->FinishReflowChild(aChild, pc, childSize, &childRI, wm,
|
||
LogicalPoint(wm), nsSize(), flags);
|
||
#ifdef DEBUG
|
||
parent->Properties().Delete(nsContainerFrame::DebugReflowingWithInfiniteISize());
|
||
#endif
|
||
return childSize.BSize(wm);
|
||
}
|
||
|
||
/**
|
||
* Return the [min|max]-content contribution of aChild to its parent (i.e.
|
||
* the child's margin-box) in aAxis.
|
||
*/
|
||
static nscoord
|
||
ContentContribution(const GridItemInfo& aGridItem,
|
||
const GridReflowInput& aState,
|
||
nsRenderingContext* aRC,
|
||
WritingMode aCBWM,
|
||
LogicalAxis aAxis,
|
||
IntrinsicISizeType aConstraint,
|
||
nscoord aMinSizeClamp = NS_MAXSIZE,
|
||
uint32_t aFlags = 0)
|
||
{
|
||
nsIFrame* child = aGridItem.mFrame;
|
||
PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
|
||
nscoord size = nsLayoutUtils::IntrinsicForAxis(axis, aRC, child, aConstraint,
|
||
aFlags | nsLayoutUtils::BAIL_IF_REFLOW_NEEDED |
|
||
nsLayoutUtils::ADD_PERCENTS,
|
||
aMinSizeClamp);
|
||
if (size == NS_INTRINSIC_WIDTH_UNKNOWN) {
|
||
// We need to reflow the child to find its BSize contribution.
|
||
// XXX this will give mostly correct results for now (until bug 1174569).
|
||
nscoord availISize = INFINITE_ISIZE_COORD;
|
||
nscoord availBSize = NS_UNCONSTRAINEDSIZE;
|
||
auto childWM = child->GetWritingMode();
|
||
const bool isOrthogonal = childWM.IsOrthogonalTo(aCBWM);
|
||
// The next two variables are MinSizeClamp values in the child's axes.
|
||
nscoord iMinSizeClamp = NS_MAXSIZE;
|
||
nscoord bMinSizeClamp = NS_MAXSIZE;
|
||
LogicalSize cbSize(childWM, 0, 0);
|
||
if (aState.mCols.mCanResolveLineRangeSize) {
|
||
nscoord sz = aState.mCols.ResolveSize(aGridItem.mArea.mCols);
|
||
if (isOrthogonal) {
|
||
availBSize = sz;
|
||
cbSize.BSize(childWM) = sz;
|
||
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
|
||
bMinSizeClamp = sz;
|
||
}
|
||
} else {
|
||
availISize = sz;
|
||
cbSize.ISize(childWM) = sz;
|
||
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
|
||
iMinSizeClamp = sz;
|
||
}
|
||
}
|
||
}
|
||
if (isOrthogonal == (aAxis == eLogicalAxisInline)) {
|
||
bMinSizeClamp = aMinSizeClamp;
|
||
} else {
|
||
iMinSizeClamp = aMinSizeClamp;
|
||
}
|
||
LogicalSize availableSize(childWM, availISize, availBSize);
|
||
size = ::MeasuringReflow(child, aState.mReflowInput, aRC, availableSize,
|
||
cbSize, iMinSizeClamp, bMinSizeClamp);
|
||
nsIFrame::IntrinsicISizeOffsetData offsets = child->IntrinsicBSizeOffsets();
|
||
size += offsets.hMargin;
|
||
auto percent = offsets.hPctMargin;
|
||
if (availBSize == NS_UNCONSTRAINEDSIZE) {
|
||
// We always want to add in percent padding too, unless we already did so
|
||
// using a resolved column size above.
|
||
percent += offsets.hPctPadding;
|
||
}
|
||
size = nsLayoutUtils::AddPercents(size, percent);
|
||
nscoord overflow = size - aMinSizeClamp;
|
||
if (MOZ_UNLIKELY(overflow > 0)) {
|
||
nscoord contentSize = child->ContentBSize(childWM);
|
||
nscoord newContentSize = std::max(nscoord(0), contentSize - overflow);
|
||
// XXXmats deal with percentages better, see bug 1300369 comment 27.
|
||
size -= contentSize - newContentSize;
|
||
}
|
||
}
|
||
MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
|
||
"baseline offset should be non-negative at this point");
|
||
MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
|
||
aGridItem.mBaselineOffset[aAxis] == nscoord(0),
|
||
"baseline offset should be zero when not baseline-aligned");
|
||
size += aGridItem.mBaselineOffset[aAxis];
|
||
return std::max(size, 0);
|
||
}
|
||
|
||
struct CachedIntrinsicSizes
|
||
{
|
||
Maybe<nscoord> mMinSize;
|
||
Maybe<nscoord> mMinContentContribution;
|
||
Maybe<nscoord> mMaxContentContribution;
|
||
// "if the grid item spans only grid tracks that have a fixed max track
|
||
// sizing function, its automatic minimum size in that dimension is
|
||
// further clamped to less than or equal to the size necessary to fit its
|
||
// margin box within the resulting grid area (flooring at zero)"
|
||
// https://drafts.csswg.org/css-grid/#min-size-auto
|
||
// This is the clamp value to use for that:
|
||
nscoord mMinSizeClamp = NS_MAXSIZE;
|
||
};
|
||
|
||
static nscoord
|
||
MinContentContribution(const GridItemInfo& aGridItem,
|
||
const GridReflowInput& aState,
|
||
nsRenderingContext* aRC,
|
||
WritingMode aCBWM,
|
||
LogicalAxis aAxis,
|
||
CachedIntrinsicSizes* aCache)
|
||
{
|
||
if (aCache->mMinContentContribution.isSome()) {
|
||
return aCache->mMinContentContribution.value();
|
||
}
|
||
nscoord s = ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
|
||
nsLayoutUtils::MIN_ISIZE,
|
||
aCache->mMinSizeClamp);
|
||
aCache->mMinContentContribution.emplace(s);
|
||
return s;
|
||
}
|
||
|
||
static nscoord
|
||
MaxContentContribution(const GridItemInfo& aGridItem,
|
||
const GridReflowInput& aState,
|
||
nsRenderingContext* aRC,
|
||
WritingMode aCBWM,
|
||
LogicalAxis aAxis,
|
||
CachedIntrinsicSizes* aCache)
|
||
{
|
||
if (aCache->mMaxContentContribution.isSome()) {
|
||
return aCache->mMaxContentContribution.value();
|
||
}
|
||
nscoord s = ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
|
||
nsLayoutUtils::PREF_ISIZE,
|
||
aCache->mMinSizeClamp);
|
||
aCache->mMaxContentContribution.emplace(s);
|
||
return s;
|
||
}
|
||
|
||
// Computes the min-size contribution for a grid item, as defined at
|
||
// https://drafts.csswg.org/css-grid/#min-size-contributions
|
||
static nscoord
|
||
MinSize(const GridItemInfo& aGridItem,
|
||
const GridReflowInput& aState,
|
||
nsRenderingContext* aRC,
|
||
WritingMode aCBWM,
|
||
LogicalAxis aAxis,
|
||
CachedIntrinsicSizes* aCache)
|
||
{
|
||
if (aCache->mMinSize.isSome()) {
|
||
return aCache->mMinSize.value();
|
||
}
|
||
nsIFrame* child = aGridItem.mFrame;
|
||
PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
|
||
const nsStylePosition* stylePos = child->StylePosition();
|
||
const nsStyleCoord& sizeStyle =
|
||
axis == eAxisHorizontal ? stylePos->mWidth : stylePos->mHeight;
|
||
if (sizeStyle.GetUnit() != eStyleUnit_Auto) {
|
||
nscoord s =
|
||
MinContentContribution(aGridItem, aState, aRC, aCBWM, aAxis, aCache);
|
||
aCache->mMinSize.emplace(s);
|
||
return s;
|
||
}
|
||
|
||
// https://drafts.csswg.org/css-grid/#min-size-auto
|
||
// This calculates the min-content contribution from either a definite
|
||
// min-width (or min-height depending on aAxis), or the "specified /
|
||
// transferred size" for min-width:auto if overflow == visible (as min-width:0
|
||
// otherwise), or NS_UNCONSTRAINEDSIZE for other min-width intrinsic values
|
||
// (which results in always taking the "content size" part below).
|
||
MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
|
||
"baseline offset should be non-negative at this point");
|
||
MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
|
||
aGridItem.mBaselineOffset[aAxis] == nscoord(0),
|
||
"baseline offset should be zero when not baseline-aligned");
|
||
nscoord sz = aGridItem.mBaselineOffset[aAxis] +
|
||
nsLayoutUtils::MinSizeContributionForAxis(axis, aRC, child,
|
||
nsLayoutUtils::MIN_ISIZE);
|
||
const nsStyleCoord& style = axis == eAxisHorizontal ? stylePos->mMinWidth
|
||
: stylePos->mMinHeight;
|
||
auto unit = style.GetUnit();
|
||
if (unit == eStyleUnit_Enumerated ||
|
||
(unit == eStyleUnit_Auto &&
|
||
child->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE)) {
|
||
// Now calculate the "content size" part and return whichever is smaller.
|
||
MOZ_ASSERT(unit != eStyleUnit_Enumerated || sz == NS_UNCONSTRAINEDSIZE);
|
||
sz = std::min(sz, ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
|
||
nsLayoutUtils::MIN_ISIZE,
|
||
aCache->mMinSizeClamp,
|
||
nsLayoutUtils::MIN_INTRINSIC_ISIZE));
|
||
}
|
||
aCache->mMinSize.emplace(sz);
|
||
return sz;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Tracks::CalculateSizes(
|
||
GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aContentBoxSize,
|
||
LineRange GridArea::* aRange,
|
||
SizingConstraint aConstraint)
|
||
{
|
||
nscoord percentageBasis = aContentBoxSize;
|
||
if (percentageBasis == NS_UNCONSTRAINEDSIZE) {
|
||
percentageBasis = 0;
|
||
}
|
||
InitializeItemBaselines(aState, aGridItems);
|
||
ResolveIntrinsicSize(aState, aGridItems, aFunctions, aRange, percentageBasis,
|
||
aConstraint);
|
||
if (aConstraint != SizingConstraint::eMinContent) {
|
||
nscoord freeSpace = aContentBoxSize;
|
||
if (freeSpace != NS_UNCONSTRAINEDSIZE) {
|
||
freeSpace -= SumOfGridGaps();
|
||
}
|
||
DistributeFreeSpace(freeSpace);
|
||
StretchFlexibleTracks(aState, aGridItems, aFunctions, freeSpace);
|
||
}
|
||
}
|
||
|
||
bool
|
||
nsGridContainerFrame::Tracks::HasIntrinsicButNoFlexSizingInRange(
|
||
const LineRange& aRange,
|
||
TrackSize::StateBits* aState) const
|
||
{
|
||
MOZ_ASSERT(!aRange.IsAuto(), "must have a definite range");
|
||
const uint32_t start = aRange.mStart;
|
||
const uint32_t end = aRange.mEnd;
|
||
const TrackSize::StateBits selector =
|
||
TrackSize::eIntrinsicMinSizing | TrackSize::eIntrinsicMaxSizing;
|
||
bool foundIntrinsic = false;
|
||
for (uint32_t i = start; i < end; ++i) {
|
||
TrackSize::StateBits state = mSizes[i].mState;
|
||
*aState |= state;
|
||
if (state & TrackSize::eFlexMaxSizing) {
|
||
return false;
|
||
}
|
||
if (state & selector) {
|
||
foundIntrinsic = true;
|
||
}
|
||
}
|
||
return foundIntrinsic;
|
||
}
|
||
|
||
bool
|
||
nsGridContainerFrame::Tracks::ResolveIntrinsicSizeStep1(
|
||
GridReflowInput& aState,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aPercentageBasis,
|
||
SizingConstraint aConstraint,
|
||
const LineRange& aRange,
|
||
const GridItemInfo& aGridItem)
|
||
{
|
||
CachedIntrinsicSizes cache;
|
||
TrackSize& sz = mSizes[aRange.mStart];
|
||
WritingMode wm = aState.mWM;
|
||
// Calculate data for "Automatic Minimum Size" clamping, if needed.
|
||
bool needed = ((sz.mState & TrackSize::eIntrinsicMinSizing) ||
|
||
aConstraint == SizingConstraint::eNoConstraint);
|
||
if (needed && TrackSize::IsDefiniteMaxSizing(sz.mState) &&
|
||
aGridItem.ShouldClampMinSize(wm, mAxis, aPercentageBasis)) {
|
||
if (sz.mState & TrackSize::eIntrinsicMinSizing) {
|
||
auto maxCoord = aFunctions.MaxSizingFor(aRange.mStart);
|
||
cache.mMinSizeClamp =
|
||
nsRuleNode::ComputeCoordPercentCalc(maxCoord, aPercentageBasis);
|
||
}
|
||
aGridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
|
||
}
|
||
// min sizing
|
||
nsRenderingContext* rc = &aState.mRenderingContext;
|
||
if (sz.mState & TrackSize::eAutoMinSizing) {
|
||
nscoord s;
|
||
if (aConstraint == SizingConstraint::eMinContent) {
|
||
s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
} else if (aConstraint == SizingConstraint::eMaxContent) {
|
||
s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
} else {
|
||
MOZ_ASSERT(aConstraint == SizingConstraint::eNoConstraint);
|
||
s = MinSize(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
}
|
||
sz.mBase = std::max(sz.mBase, s);
|
||
} else if (sz.mState & TrackSize::eMinContentMinSizing) {
|
||
auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
sz.mBase = std::max(sz.mBase, s);
|
||
} else if (sz.mState & TrackSize::eMaxContentMinSizing) {
|
||
auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
sz.mBase = std::max(sz.mBase, s);
|
||
}
|
||
// max sizing
|
||
if (sz.mState & TrackSize::eMinContentMaxSizing) {
|
||
auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
|
||
sz.mLimit = s;
|
||
} else {
|
||
sz.mLimit = std::max(sz.mLimit, s);
|
||
}
|
||
} else if (sz.mState & (TrackSize::eAutoMaxSizing |
|
||
TrackSize::eMaxContentMaxSizing)) {
|
||
auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
|
||
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
|
||
sz.mLimit = s;
|
||
} else {
|
||
sz.mLimit = std::max(sz.mLimit, s);
|
||
}
|
||
if (MOZ_UNLIKELY(sz.mState & TrackSize::eFitContent)) {
|
||
// Clamp mLimit to the fit-content() size, for §12.5.1.
|
||
auto maxCoord = aFunctions.MaxSizingFor(aRange.mStart);
|
||
nscoord fitContentClamp =
|
||
nsRuleNode::ComputeCoordPercentCalc(maxCoord, aPercentageBasis);
|
||
sz.mLimit = std::min(sz.mLimit, fitContentClamp);
|
||
}
|
||
}
|
||
if (sz.mLimit < sz.mBase) {
|
||
sz.mLimit = sz.mBase;
|
||
}
|
||
return sz.mState & TrackSize::eFlexMaxSizing;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Tracks::CalculateItemBaselines(
|
||
nsTArray<ItemBaselineData>& aBaselineItems,
|
||
BaselineSharingGroup aBaselineGroup)
|
||
{
|
||
if (aBaselineItems.IsEmpty()) {
|
||
return;
|
||
}
|
||
|
||
// Sort the collected items on their baseline track.
|
||
std::sort(aBaselineItems.begin(), aBaselineItems.end(),
|
||
ItemBaselineData::IsBaselineTrackLessThan);
|
||
|
||
MOZ_ASSERT(mSizes.Length() > 0, "having an item implies at least one track");
|
||
const uint32_t lastTrack = mSizes.Length() - 1;
|
||
nscoord maxBaseline = 0;
|
||
nscoord maxDescent = 0;
|
||
uint32_t currentTrack = kAutoLine; // guaranteed to not match any item
|
||
uint32_t trackStartIndex = 0;
|
||
for (uint32_t i = 0, len = aBaselineItems.Length(); true ; ++i) {
|
||
// Find the maximum baseline and descent in the current track.
|
||
if (i != len) {
|
||
const ItemBaselineData& item = aBaselineItems[i];
|
||
if (currentTrack == item.mBaselineTrack) {
|
||
maxBaseline = std::max(maxBaseline, item.mBaseline);
|
||
maxDescent = std::max(maxDescent, item.mSize - item.mBaseline);
|
||
continue;
|
||
}
|
||
}
|
||
// Iterate the current track again and update the baseline offsets making
|
||
// all items baseline-aligned within this group in this track.
|
||
for (uint32_t j = trackStartIndex; j < i; ++j) {
|
||
const ItemBaselineData& item = aBaselineItems[j];
|
||
item.mGridItem->mBaselineOffset[mAxis] = maxBaseline - item.mBaseline;
|
||
MOZ_ASSERT(item.mGridItem->mBaselineOffset[mAxis] >= 0);
|
||
}
|
||
if (i != 0) {
|
||
// Store the size of this baseline-aligned subtree.
|
||
mSizes[currentTrack].mBaselineSubtreeSize[aBaselineGroup] =
|
||
maxBaseline + maxDescent;
|
||
// Record the first(last) baseline for the first(last) track.
|
||
if (currentTrack == 0 && aBaselineGroup == BaselineSharingGroup::eFirst) {
|
||
mBaseline[aBaselineGroup] = maxBaseline;
|
||
}
|
||
if (currentTrack == lastTrack &&
|
||
aBaselineGroup == BaselineSharingGroup::eLast) {
|
||
mBaseline[aBaselineGroup] = maxBaseline;
|
||
}
|
||
}
|
||
if (i == len) {
|
||
break;
|
||
}
|
||
// Initialize data for the next track with baseline-aligned items.
|
||
const ItemBaselineData& item = aBaselineItems[i];
|
||
currentTrack = item.mBaselineTrack;
|
||
trackStartIndex = i;
|
||
maxBaseline = item.mBaseline;
|
||
maxDescent = item.mSize - item.mBaseline;
|
||
}
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Tracks::InitializeItemBaselines(
|
||
GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems)
|
||
{
|
||
|
||
nsTArray<ItemBaselineData> firstBaselineItems;
|
||
nsTArray<ItemBaselineData> lastBaselineItems;
|
||
WritingMode wm = aState.mWM;
|
||
nsStyleContext* containerSC = aState.mFrame->StyleContext();
|
||
CSSOrderAwareFrameIterator& iter = aState.mIter;
|
||
iter.Reset();
|
||
for (; !iter.AtEnd(); iter.Next()) {
|
||
nsIFrame* child = *iter;
|
||
GridItemInfo& gridItem = aGridItems[iter.ItemIndex()];
|
||
uint32_t baselineTrack = kAutoLine;
|
||
auto state = ItemState(0);
|
||
auto childWM = child->GetWritingMode();
|
||
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
|
||
const bool isInlineAxis = mAxis == eLogicalAxisInline; // i.e. columns
|
||
// XXX update the line below to include orthogonal grid/table boxes
|
||
// XXX since they have baselines in both dimensions. And flexbox with
|
||
// XXX reversed main/cross axis?
|
||
const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal;
|
||
if (itemHasBaselineParallelToTrack) {
|
||
// [align|justify]-self:[last ]baseline.
|
||
auto selfAlignment = isOrthogonal ?
|
||
child->StylePosition()->UsedJustifySelf(containerSC) :
|
||
child->StylePosition()->UsedAlignSelf(containerSC);
|
||
selfAlignment &= ~NS_STYLE_ALIGN_FLAG_BITS;
|
||
if (selfAlignment == NS_STYLE_ALIGN_BASELINE) {
|
||
state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline;
|
||
const GridArea& area = gridItem.mArea;
|
||
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
|
||
} else if (selfAlignment == NS_STYLE_ALIGN_LAST_BASELINE) {
|
||
state |= ItemState::eLastBaseline | ItemState::eSelfBaseline;
|
||
const GridArea& area = gridItem.mArea;
|
||
baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
|
||
}
|
||
|
||
// [align|justify]-content:[last ]baseline.
|
||
// https://drafts.csswg.org/css-align-3/#baseline-align-content
|
||
// "[...] and its computed 'align-self' or 'justify-self' (whichever
|
||
// affects its block axis) is 'stretch' or 'self-start' ('self-end').
|
||
// For this purpose, the 'start', 'end', 'flex-start', and 'flex-end'
|
||
// values of 'align-self' are treated as either 'self-start' or
|
||
// 'self-end', whichever they end up equivalent to.
|
||
auto alignContent = child->StylePosition()->mAlignContent;
|
||
alignContent &= ~NS_STYLE_ALIGN_FLAG_BITS;
|
||
if (alignContent == NS_STYLE_ALIGN_BASELINE ||
|
||
alignContent == NS_STYLE_ALIGN_LAST_BASELINE) {
|
||
const auto selfAlignEdge = alignContent == NS_STYLE_ALIGN_BASELINE ?
|
||
NS_STYLE_ALIGN_SELF_START : NS_STYLE_ALIGN_SELF_END;
|
||
bool validCombo = selfAlignment == NS_STYLE_ALIGN_NORMAL ||
|
||
selfAlignment == NS_STYLE_ALIGN_STRETCH ||
|
||
selfAlignment == selfAlignEdge;
|
||
if (!validCombo) {
|
||
// We're doing alignment in the axis that's orthogonal to mAxis here.
|
||
LogicalAxis alignAxis = GetOrthogonalAxis(mAxis);
|
||
// |sameSide| is true if the container's start side in this axis is
|
||
// the same as the child's start side, in the child's parallel axis.
|
||
bool sameSide = wm.ParallelAxisStartsOnSameSide(alignAxis, childWM);
|
||
switch (selfAlignment) {
|
||
case NS_STYLE_ALIGN_LEFT:
|
||
selfAlignment = !isInlineAxis || wm.IsBidiLTR() ? NS_STYLE_ALIGN_START
|
||
: NS_STYLE_ALIGN_END;
|
||
break;
|
||
case NS_STYLE_ALIGN_RIGHT:
|
||
selfAlignment = isInlineAxis && wm.IsBidiLTR() ? NS_STYLE_ALIGN_END
|
||
: NS_STYLE_ALIGN_START;
|
||
break;
|
||
}
|
||
switch (selfAlignment) {
|
||
case NS_STYLE_ALIGN_START:
|
||
case NS_STYLE_ALIGN_FLEX_START:
|
||
validCombo = sameSide ==
|
||
(alignContent == NS_STYLE_ALIGN_BASELINE);
|
||
break;
|
||
case NS_STYLE_ALIGN_END:
|
||
case NS_STYLE_ALIGN_FLEX_END:
|
||
validCombo = sameSide ==
|
||
(alignContent == NS_STYLE_ALIGN_LAST_BASELINE);
|
||
break;
|
||
}
|
||
}
|
||
if (validCombo) {
|
||
const GridArea& area = gridItem.mArea;
|
||
if (alignContent == NS_STYLE_ALIGN_BASELINE) {
|
||
state |= ItemState::eFirstBaseline | ItemState::eContentBaseline;
|
||
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
|
||
} else if (alignContent == NS_STYLE_ALIGN_LAST_BASELINE) {
|
||
state |= ItemState::eLastBaseline | ItemState::eContentBaseline;
|
||
baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (state & ItemState::eIsBaselineAligned) {
|
||
// XXX available size issue
|
||
LogicalSize avail(childWM, INFINITE_ISIZE_COORD, NS_UNCONSTRAINEDSIZE);
|
||
auto* rc = &aState.mRenderingContext;
|
||
// XXX figure out if we can avoid/merge this reflow with the main reflow.
|
||
// XXX (after bug 1174569 is sorted out)
|
||
//
|
||
// XXX How should we handle percentage padding here? (bug 1330866)
|
||
// XXX (see ::ContentContribution and how it deals with percentages)
|
||
// XXX What if the true baseline after line-breaking differs from this
|
||
// XXX hypothetical baseline based on an infinite inline size?
|
||
// XXX Maybe we should just call ::ContentContribution here instead?
|
||
// XXX For now we just pass a zero-sized CB:
|
||
LogicalSize cbSize(childWM, 0, 0);
|
||
::MeasuringReflow(child, aState.mReflowInput, rc, avail, cbSize);
|
||
nscoord baseline;
|
||
nsGridContainerFrame* grid = do_QueryFrame(child);
|
||
if (state & ItemState::eFirstBaseline) {
|
||
if (grid) {
|
||
if (isOrthogonal == isInlineAxis) {
|
||
grid->GetBBaseline(BaselineSharingGroup::eFirst, &baseline);
|
||
} else {
|
||
grid->GetIBaseline(BaselineSharingGroup::eFirst, &baseline);
|
||
}
|
||
}
|
||
if (grid ||
|
||
nsLayoutUtils::GetFirstLineBaseline(wm, child, &baseline)) {
|
||
NS_ASSERTION(baseline != NS_INTRINSIC_WIDTH_UNKNOWN,
|
||
"about to use an unknown baseline");
|
||
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
|
||
auto m = child->GetLogicalUsedMargin(wm);
|
||
baseline += isInlineAxis ? m.IStart(wm) : m.BStart(wm);
|
||
auto alignSize = frameSize + (isInlineAxis ? m.IStartEnd(wm)
|
||
: m.BStartEnd(wm));
|
||
firstBaselineItems.AppendElement(ItemBaselineData(
|
||
{ baselineTrack, baseline, alignSize, &gridItem }));
|
||
} else {
|
||
state &= ~ItemState::eAllBaselineBits;
|
||
}
|
||
} else {
|
||
if (grid) {
|
||
if (isOrthogonal == isInlineAxis) {
|
||
grid->GetBBaseline(BaselineSharingGroup::eLast, &baseline);
|
||
} else {
|
||
grid->GetIBaseline(BaselineSharingGroup::eLast, &baseline);
|
||
}
|
||
}
|
||
if (grid ||
|
||
nsLayoutUtils::GetLastLineBaseline(wm, child, &baseline)) {
|
||
NS_ASSERTION(baseline != NS_INTRINSIC_WIDTH_UNKNOWN,
|
||
"about to use an unknown baseline");
|
||
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
|
||
auto m = child->GetLogicalUsedMargin(wm);
|
||
if (!grid) {
|
||
// Convert to distance from border-box end.
|
||
baseline = frameSize - baseline;
|
||
}
|
||
auto descent = baseline + (isInlineAxis ? m.IEnd(wm) : m.BEnd(wm));
|
||
auto alignSize = frameSize + (isInlineAxis ? m.IStartEnd(wm)
|
||
: m.BStartEnd(wm));
|
||
lastBaselineItems.AppendElement(ItemBaselineData(
|
||
{ baselineTrack, descent, alignSize, &gridItem }));
|
||
} else {
|
||
state &= ~ItemState::eAllBaselineBits;
|
||
}
|
||
}
|
||
}
|
||
MOZ_ASSERT((state &
|
||
(ItemState::eFirstBaseline | ItemState::eLastBaseline)) !=
|
||
(ItemState::eFirstBaseline | ItemState::eLastBaseline),
|
||
"first/last baseline bits are mutually exclusive");
|
||
MOZ_ASSERT((state &
|
||
(ItemState::eSelfBaseline | ItemState::eContentBaseline)) !=
|
||
(ItemState::eSelfBaseline | ItemState::eContentBaseline),
|
||
"*-self and *-content baseline bits are mutually exclusive");
|
||
MOZ_ASSERT(!(state &
|
||
(ItemState::eFirstBaseline | ItemState::eLastBaseline)) ==
|
||
!(state &
|
||
(ItemState::eSelfBaseline | ItemState::eContentBaseline)),
|
||
"first/last bit requires self/content bit and vice versa");
|
||
gridItem.mState[mAxis] = state;
|
||
gridItem.mBaselineOffset[mAxis] = nscoord(0);
|
||
}
|
||
|
||
if (firstBaselineItems.IsEmpty() && lastBaselineItems.IsEmpty()) {
|
||
return;
|
||
}
|
||
|
||
// TODO: CSS Align spec issue - how to align a baseline subtree in a track?
|
||
// https://lists.w3.org/Archives/Public/www-style/2016May/0141.html
|
||
mBaselineSubtreeAlign[BaselineSharingGroup::eFirst] = NS_STYLE_ALIGN_START;
|
||
mBaselineSubtreeAlign[BaselineSharingGroup::eLast] = NS_STYLE_ALIGN_END;
|
||
|
||
CalculateItemBaselines(firstBaselineItems, BaselineSharingGroup::eFirst);
|
||
CalculateItemBaselines(lastBaselineItems, BaselineSharingGroup::eLast);
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Tracks::AlignBaselineSubtree(
|
||
const GridItemInfo& aGridItem) const
|
||
{
|
||
auto state = aGridItem.mState[mAxis];
|
||
if (!(state & ItemState::eIsBaselineAligned)) {
|
||
return;
|
||
}
|
||
const GridArea& area = aGridItem.mArea;
|
||
int32_t baselineTrack;
|
||
const bool isFirstBaseline = state & ItemState::eFirstBaseline;
|
||
if (isFirstBaseline) {
|
||
baselineTrack = mAxis == eLogicalAxisBlock ? area.mRows.mStart
|
||
: area.mCols.mStart;
|
||
} else {
|
||
baselineTrack = (mAxis == eLogicalAxisBlock ? area.mRows.mEnd
|
||
: area.mCols.mEnd) - 1;
|
||
}
|
||
const TrackSize& sz = mSizes[baselineTrack];
|
||
auto baselineGroup = isFirstBaseline ? BaselineSharingGroup::eFirst
|
||
: BaselineSharingGroup::eLast;
|
||
nscoord delta = sz.mBase - sz.mBaselineSubtreeSize[baselineGroup];
|
||
const auto subtreeAlign = mBaselineSubtreeAlign[baselineGroup];
|
||
switch (subtreeAlign) {
|
||
case NS_STYLE_ALIGN_START:
|
||
if (state & ItemState::eLastBaseline) {
|
||
aGridItem.mBaselineOffset[mAxis] += delta;
|
||
}
|
||
break;
|
||
case NS_STYLE_ALIGN_END:
|
||
if (isFirstBaseline) {
|
||
aGridItem.mBaselineOffset[mAxis] += delta;
|
||
}
|
||
break;
|
||
case NS_STYLE_ALIGN_CENTER:
|
||
aGridItem.mBaselineOffset[mAxis] += delta / 2;
|
||
break;
|
||
default:
|
||
MOZ_ASSERT_UNREACHABLE("unexpected baseline subtree alignment");
|
||
}
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Tracks::ResolveIntrinsicSize(
|
||
GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions,
|
||
LineRange GridArea::* aRange,
|
||
nscoord aPercentageBasis,
|
||
SizingConstraint aConstraint)
|
||
{
|
||
// Some data we collect on each item for Step 2 of the algorithm below.
|
||
struct Step2ItemData
|
||
{
|
||
uint32_t mSpan;
|
||
TrackSize::StateBits mState;
|
||
LineRange mLineRange;
|
||
nscoord mMinSize;
|
||
nscoord mMinContentContribution;
|
||
nscoord mMaxContentContribution;
|
||
nsIFrame* mFrame;
|
||
static bool IsSpanLessThan(const Step2ItemData& a, const Step2ItemData& b)
|
||
{
|
||
return a.mSpan < b.mSpan;
|
||
}
|
||
};
|
||
|
||
// Resolve Intrinsic Track Sizes
|
||
// http://dev.w3.org/csswg/css-grid/#algo-content
|
||
// We're also setting eIsFlexing on the item state here to speed up
|
||
// FindUsedFlexFraction later.
|
||
AutoTArray<TrackSize::StateBits, 16> stateBitsPerSpan;
|
||
nsTArray<Step2ItemData> step2Items;
|
||
CSSOrderAwareFrameIterator& iter = aState.mIter;
|
||
nsRenderingContext* rc = &aState.mRenderingContext;
|
||
WritingMode wm = aState.mWM;
|
||
uint32_t maxSpan = 0; // max span of the step2Items items
|
||
// Setup track selector for step 2.2:
|
||
const auto contentBasedMinSelector =
|
||
aConstraint == SizingConstraint::eMinContent ?
|
||
TrackSize::eIntrinsicMinSizing : TrackSize::eMinOrMaxContentMinSizing;
|
||
// Setup track selector for step 2.3:
|
||
const auto maxContentMinSelector =
|
||
aConstraint == SizingConstraint::eMaxContent ?
|
||
(TrackSize::eMaxContentMinSizing | TrackSize::eAutoMinSizing) :
|
||
TrackSize::eMaxContentMinSizing;
|
||
iter.Reset();
|
||
for (; !iter.AtEnd(); iter.Next()) {
|
||
auto& gridItem = aGridItems[iter.ItemIndex()];
|
||
const GridArea& area = gridItem.mArea;
|
||
const LineRange& lineRange = area.*aRange;
|
||
uint32_t span = lineRange.Extent();
|
||
if (span == 1) {
|
||
// Step 1. Size tracks to fit non-spanning items.
|
||
if (ResolveIntrinsicSizeStep1(aState, aFunctions, aPercentageBasis,
|
||
aConstraint, lineRange, gridItem)) {
|
||
gridItem.mState[mAxis] |= ItemState::eIsFlexing;
|
||
}
|
||
} else {
|
||
TrackSize::StateBits state = TrackSize::StateBits(0);
|
||
if (HasIntrinsicButNoFlexSizingInRange(lineRange, &state)) {
|
||
// Collect data for Step 2.
|
||
maxSpan = std::max(maxSpan, span);
|
||
if (span >= stateBitsPerSpan.Length()) {
|
||
uint32_t len = 2 * span;
|
||
stateBitsPerSpan.SetCapacity(len);
|
||
for (uint32_t i = stateBitsPerSpan.Length(); i < len; ++i) {
|
||
stateBitsPerSpan.AppendElement(TrackSize::StateBits(0));
|
||
}
|
||
}
|
||
stateBitsPerSpan[span] |= state;
|
||
CachedIntrinsicSizes cache;
|
||
// Calculate data for "Automatic Minimum Size" clamping, if needed.
|
||
bool needed = ((state & TrackSize::eIntrinsicMinSizing) ||
|
||
aConstraint == SizingConstraint::eNoConstraint);
|
||
if (needed && TrackSize::IsDefiniteMaxSizing(state) &&
|
||
gridItem.ShouldClampMinSize(wm, mAxis, aPercentageBasis)) {
|
||
nscoord minSizeClamp = 0;
|
||
for (auto i = lineRange.mStart, end = lineRange.mEnd; i < end; ++i) {
|
||
auto maxCoord = aFunctions.MaxSizingFor(i);
|
||
minSizeClamp +=
|
||
nsRuleNode::ComputeCoordPercentCalc(maxCoord, aPercentageBasis);
|
||
}
|
||
minSizeClamp += mGridGap * (span - 1);
|
||
cache.mMinSizeClamp = minSizeClamp;
|
||
gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
|
||
}
|
||
// Collect the various grid item size contributions we need.
|
||
nscoord minSize = 0;
|
||
if (state & (TrackSize::eIntrinsicMinSizing | // for 2.1
|
||
TrackSize::eIntrinsicMaxSizing)) { // for 2.5
|
||
minSize = MinSize(gridItem, aState, rc, wm, mAxis, &cache);
|
||
}
|
||
nscoord minContent = 0;
|
||
if (state & contentBasedMinSelector) { // for 2.2
|
||
minContent = MinContentContribution(gridItem, aState,
|
||
rc, wm, mAxis, &cache);
|
||
}
|
||
nscoord maxContent = 0;
|
||
if (state & (maxContentMinSelector | // for 2.3
|
||
TrackSize::eAutoOrMaxContentMaxSizing)) { // for 2.6
|
||
maxContent = MaxContentContribution(gridItem, aState,
|
||
rc, wm, mAxis, &cache);
|
||
}
|
||
step2Items.AppendElement(
|
||
Step2ItemData({span, state, lineRange, minSize,
|
||
minContent, maxContent, *iter}));
|
||
} else {
|
||
if (state & TrackSize::eFlexMaxSizing) {
|
||
gridItem.mState[mAxis] |= ItemState::eIsFlexing;
|
||
} else if (aConstraint == SizingConstraint::eNoConstraint &&
|
||
TrackSize::IsDefiniteMaxSizing(state) &&
|
||
gridItem.ShouldClampMinSize(wm, mAxis, aPercentageBasis)) {
|
||
gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Step 2.
|
||
if (maxSpan) {
|
||
// Sort the collected items on span length, shortest first.
|
||
std::stable_sort(step2Items.begin(), step2Items.end(),
|
||
Step2ItemData::IsSpanLessThan);
|
||
|
||
nsTArray<uint32_t> tracks(maxSpan);
|
||
nsTArray<TrackSize> plan(mSizes.Length());
|
||
plan.SetLength(mSizes.Length());
|
||
for (uint32_t i = 0, len = step2Items.Length(); i < len; ) {
|
||
// Start / end index for items of the same span length:
|
||
const uint32_t spanGroupStartIndex = i;
|
||
uint32_t spanGroupEndIndex = len;
|
||
const uint32_t span = step2Items[i].mSpan;
|
||
for (++i; i < len; ++i) {
|
||
if (step2Items[i].mSpan != span) {
|
||
spanGroupEndIndex = i;
|
||
break;
|
||
}
|
||
}
|
||
|
||
bool updatedBase = false; // Did we update any mBase in step 2.1 - 2.3?
|
||
TrackSize::StateBits selector(TrackSize::eIntrinsicMinSizing);
|
||
if (stateBitsPerSpan[span] & selector) {
|
||
// Step 2.1 MinSize to intrinsic min-sizing.
|
||
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
|
||
Step2ItemData& item = step2Items[i];
|
||
if (!(item.mState & selector)) {
|
||
continue;
|
||
}
|
||
nscoord space = item.mMinSize;
|
||
if (space <= 0) {
|
||
continue;
|
||
}
|
||
tracks.ClearAndRetainStorage();
|
||
space = CollectGrowable(space, mSizes, item.mLineRange, selector,
|
||
tracks);
|
||
if (space > 0) {
|
||
DistributeToTrackBases(space, plan, tracks, selector);
|
||
updatedBase = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
selector = contentBasedMinSelector;
|
||
if (stateBitsPerSpan[span] & selector) {
|
||
// Step 2.2 MinContentContribution to min-/max-content (and 'auto' when
|
||
// sizing under a min-content constraint) min-sizing.
|
||
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
|
||
Step2ItemData& item = step2Items[i];
|
||
if (!(item.mState & selector)) {
|
||
continue;
|
||
}
|
||
nscoord space = item.mMinContentContribution;
|
||
if (space <= 0) {
|
||
continue;
|
||
}
|
||
tracks.ClearAndRetainStorage();
|
||
space = CollectGrowable(space, mSizes, item.mLineRange, selector,
|
||
tracks);
|
||
if (space > 0) {
|
||
DistributeToTrackBases(space, plan, tracks, selector);
|
||
updatedBase = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
selector = maxContentMinSelector;
|
||
if (stateBitsPerSpan[span] & selector) {
|
||
// Step 2.3 MaxContentContribution to max-content (and 'auto' when
|
||
// sizing under a max-content constraint) min-sizing.
|
||
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
|
||
Step2ItemData& item = step2Items[i];
|
||
if (!(item.mState & selector)) {
|
||
continue;
|
||
}
|
||
nscoord space = item.mMaxContentContribution;
|
||
if (space <= 0) {
|
||
continue;
|
||
}
|
||
tracks.ClearAndRetainStorage();
|
||
space = CollectGrowable(space, mSizes, item.mLineRange, selector,
|
||
tracks);
|
||
if (space > 0) {
|
||
DistributeToTrackBases(space, plan, tracks, selector);
|
||
updatedBase = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (updatedBase) {
|
||
// Step 2.4
|
||
for (TrackSize& sz : mSizes) {
|
||
if (sz.mBase > sz.mLimit) {
|
||
sz.mLimit = sz.mBase;
|
||
}
|
||
}
|
||
}
|
||
if (stateBitsPerSpan[span] & TrackSize::eIntrinsicMaxSizing) {
|
||
plan = mSizes;
|
||
for (TrackSize& sz : plan) {
|
||
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
|
||
// use mBase as the planned limit
|
||
} else {
|
||
sz.mBase = sz.mLimit;
|
||
}
|
||
}
|
||
|
||
// Step 2.5 MinSize to intrinsic max-sizing.
|
||
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
|
||
Step2ItemData& item = step2Items[i];
|
||
if (!(item.mState & TrackSize::eIntrinsicMaxSizing)) {
|
||
continue;
|
||
}
|
||
nscoord space = item.mMinSize;
|
||
if (space <= 0) {
|
||
continue;
|
||
}
|
||
tracks.ClearAndRetainStorage();
|
||
space = CollectGrowable(space, plan, item.mLineRange,
|
||
TrackSize::eIntrinsicMaxSizing,
|
||
tracks);
|
||
if (space > 0) {
|
||
DistributeToTrackLimits(space, plan, tracks, aFunctions,
|
||
aPercentageBasis);
|
||
}
|
||
}
|
||
for (size_t j = 0, len = mSizes.Length(); j < len; ++j) {
|
||
TrackSize& sz = plan[j];
|
||
sz.mState &= ~(TrackSize::eFrozen | TrackSize::eSkipGrowUnlimited);
|
||
if (sz.mLimit != NS_UNCONSTRAINEDSIZE) {
|
||
sz.mLimit = sz.mBase; // collect the results from 2.5
|
||
}
|
||
}
|
||
|
||
if (stateBitsPerSpan[span] & TrackSize::eAutoOrMaxContentMaxSizing) {
|
||
// Step 2.6 MaxContentContribution to max-content max-sizing.
|
||
for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) {
|
||
Step2ItemData& item = step2Items[i];
|
||
if (!(item.mState & TrackSize::eAutoOrMaxContentMaxSizing)) {
|
||
continue;
|
||
}
|
||
nscoord space = item.mMaxContentContribution;
|
||
if (space <= 0) {
|
||
continue;
|
||
}
|
||
tracks.ClearAndRetainStorage();
|
||
space = CollectGrowable(space, plan, item.mLineRange,
|
||
TrackSize::eAutoOrMaxContentMaxSizing,
|
||
tracks);
|
||
if (space > 0) {
|
||
DistributeToTrackLimits(space, plan, tracks, aFunctions,
|
||
aPercentageBasis);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Step 3.
|
||
for (TrackSize& sz : mSizes) {
|
||
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
|
||
sz.mLimit = sz.mBase;
|
||
}
|
||
}
|
||
}
|
||
|
||
float
|
||
nsGridContainerFrame::Tracks::FindFrUnitSize(
|
||
const LineRange& aRange,
|
||
const nsTArray<uint32_t>& aFlexTracks,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aSpaceToFill) const
|
||
{
|
||
MOZ_ASSERT(aSpaceToFill > 0 && !aFlexTracks.IsEmpty());
|
||
float flexFactorSum = 0.0f;
|
||
nscoord leftOverSpace = aSpaceToFill;
|
||
for (uint32_t i = aRange.mStart, end = aRange.mEnd; i < end; ++i) {
|
||
const TrackSize& sz = mSizes[i];
|
||
if (sz.mState & TrackSize::eFlexMaxSizing) {
|
||
flexFactorSum += aFunctions.MaxSizingFor(i).GetFlexFractionValue();
|
||
} else {
|
||
leftOverSpace -= sz.mBase;
|
||
if (leftOverSpace <= 0) {
|
||
return 0.0f;
|
||
}
|
||
}
|
||
}
|
||
bool restart;
|
||
float hypotheticalFrSize;
|
||
nsTArray<uint32_t> flexTracks(aFlexTracks);
|
||
uint32_t numFlexTracks = flexTracks.Length();
|
||
do {
|
||
restart = false;
|
||
hypotheticalFrSize = leftOverSpace / std::max(flexFactorSum, 1.0f);
|
||
for (uint32_t i = 0, len = flexTracks.Length(); i < len; ++i) {
|
||
uint32_t track = flexTracks[i];
|
||
if (track == kAutoLine) {
|
||
continue; // Track marked as inflexible in a prev. iter of this loop.
|
||
}
|
||
float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue();
|
||
const nscoord base = mSizes[track].mBase;
|
||
if (flexFactor * hypotheticalFrSize < base) {
|
||
// 12.7.1.4: Treat this track as inflexible.
|
||
flexTracks[i] = kAutoLine;
|
||
flexFactorSum -= flexFactor;
|
||
leftOverSpace -= base;
|
||
--numFlexTracks;
|
||
if (numFlexTracks == 0 || leftOverSpace <= 0) {
|
||
return 0.0f;
|
||
}
|
||
restart = true;
|
||
// break; XXX (bug 1176621 comment 16) measure which is more common
|
||
}
|
||
}
|
||
} while (restart);
|
||
return hypotheticalFrSize;
|
||
}
|
||
|
||
float
|
||
nsGridContainerFrame::Tracks::FindUsedFlexFraction(
|
||
GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const nsTArray<uint32_t>& aFlexTracks,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aAvailableSize) const
|
||
{
|
||
if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
|
||
// Use all of the grid tracks and a 'space to fill' of the available space.
|
||
const TranslatedLineRange range(0, mSizes.Length());
|
||
return FindFrUnitSize(range, aFlexTracks, aFunctions, aAvailableSize);
|
||
}
|
||
|
||
// The used flex fraction is the maximum of:
|
||
// ... each flexible track's base size divided by its flex factor (which is
|
||
// floored at 1).
|
||
float fr = 0.0f;
|
||
for (uint32_t track : aFlexTracks) {
|
||
float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue();
|
||
float possiblyDividedBaseSize = (flexFactor > 1.0f)
|
||
? mSizes[track].mBase / flexFactor
|
||
: mSizes[track].mBase;
|
||
fr = std::max(fr, possiblyDividedBaseSize);
|
||
}
|
||
WritingMode wm = aState.mWM;
|
||
nsRenderingContext* rc = &aState.mRenderingContext;
|
||
CSSOrderAwareFrameIterator& iter = aState.mIter;
|
||
iter.Reset();
|
||
// ... the result of 'finding the size of an fr' for each item that spans
|
||
// a flex track with its max-content contribution as 'space to fill'
|
||
for (; !iter.AtEnd(); iter.Next()) {
|
||
const GridItemInfo& item = aGridItems[iter.ItemIndex()];
|
||
if (item.mState[mAxis] & ItemState::eIsFlexing) {
|
||
// XXX optimize: bug 1194446
|
||
nscoord spaceToFill = ContentContribution(item, aState, rc, wm, mAxis,
|
||
nsLayoutUtils::PREF_ISIZE);
|
||
if (spaceToFill <= 0) {
|
||
continue;
|
||
}
|
||
// ... and all its spanned tracks as input.
|
||
const LineRange& range =
|
||
mAxis == eLogicalAxisInline ? item.mArea.mCols : item.mArea.mRows;
|
||
nsTArray<uint32_t> itemFlexTracks;
|
||
for (uint32_t i = range.mStart, end = range.mEnd; i < end; ++i) {
|
||
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
|
||
itemFlexTracks.AppendElement(i);
|
||
}
|
||
}
|
||
float itemFr =
|
||
FindFrUnitSize(range, itemFlexTracks, aFunctions, spaceToFill);
|
||
fr = std::max(fr, itemFr);
|
||
}
|
||
}
|
||
return fr;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Tracks::StretchFlexibleTracks(
|
||
GridReflowInput& aState,
|
||
nsTArray<GridItemInfo>& aGridItems,
|
||
const TrackSizingFunctions& aFunctions,
|
||
nscoord aAvailableSize)
|
||
{
|
||
if (aAvailableSize <= 0) {
|
||
return;
|
||
}
|
||
nsTArray<uint32_t> flexTracks(mSizes.Length());
|
||
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
|
||
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
|
||
flexTracks.AppendElement(i);
|
||
}
|
||
}
|
||
if (flexTracks.IsEmpty()) {
|
||
return;
|
||
}
|
||
nscoord minSize = 0;
|
||
nscoord maxSize = NS_UNCONSTRAINEDSIZE;
|
||
if (aState.mReflowInput) {
|
||
auto* ri = aState.mReflowInput;
|
||
minSize = mAxis == eLogicalAxisBlock ? ri->ComputedMinBSize()
|
||
: ri->ComputedMinISize();
|
||
maxSize = mAxis == eLogicalAxisBlock ? ri->ComputedMaxBSize()
|
||
: ri->ComputedMaxISize();
|
||
}
|
||
Maybe<nsTArray<TrackSize>> origSizes;
|
||
bool applyMinMax = (minSize != 0 || maxSize != NS_UNCONSTRAINEDSIZE) &&
|
||
aAvailableSize == NS_UNCONSTRAINEDSIZE;
|
||
// We iterate twice at most. The 2nd time if the grid size changed after
|
||
// applying a min/max-size (can only occur if aAvailableSize is indefinite).
|
||
while (true) {
|
||
float fr = FindUsedFlexFraction(aState, aGridItems, flexTracks,
|
||
aFunctions, aAvailableSize);
|
||
if (fr != 0.0f) {
|
||
for (uint32_t i : flexTracks) {
|
||
float flexFactor = aFunctions.MaxSizingFor(i).GetFlexFractionValue();
|
||
nscoord flexLength = NSToCoordRound(flexFactor * fr);
|
||
nscoord& base = mSizes[i].mBase;
|
||
if (flexLength > base) {
|
||
if (applyMinMax && origSizes.isNothing()) {
|
||
origSizes.emplace(mSizes);
|
||
}
|
||
base = flexLength;
|
||
}
|
||
}
|
||
}
|
||
if (applyMinMax) {
|
||
applyMinMax = false;
|
||
// https://drafts.csswg.org/css-grid/#algo-flex-tracks
|
||
// "If using this flex fraction would cause the grid to be smaller than
|
||
// the grid container’s min-width/height (or larger than the grid
|
||
// container’s max-width/height), then redo this step, treating the free
|
||
// space as definite [...]"
|
||
nscoord newSize = 0;
|
||
for (auto& sz : mSizes) {
|
||
newSize += sz.mBase;
|
||
}
|
||
const auto sumOfGridGaps = SumOfGridGaps();
|
||
newSize += sumOfGridGaps;
|
||
if (newSize > maxSize) {
|
||
aAvailableSize = maxSize;
|
||
} else if (newSize < minSize) {
|
||
aAvailableSize = minSize;
|
||
}
|
||
if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
|
||
aAvailableSize = std::max(0, aAvailableSize - sumOfGridGaps);
|
||
// Restart with the original track sizes and definite aAvailableSize.
|
||
if (origSizes.isSome()) {
|
||
mSizes = Move(*origSizes);
|
||
origSizes.reset();
|
||
} // else, no mSizes[].mBase were changed above so it's still correct
|
||
if (aAvailableSize == 0) {
|
||
break; // zero available size wouldn't change any sizes though...
|
||
}
|
||
continue;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Tracks::AlignJustifyContent(
|
||
const nsStylePosition* aStyle,
|
||
WritingMode aWM,
|
||
const LogicalSize& aContainerSize)
|
||
{
|
||
if (mSizes.IsEmpty()) {
|
||
return;
|
||
}
|
||
|
||
const bool isAlign = mAxis == eLogicalAxisBlock;
|
||
auto valueAndFallback = isAlign ? aStyle->mAlignContent :
|
||
aStyle->mJustifyContent;
|
||
bool overflowSafe;
|
||
auto alignment = ::GetAlignJustifyValue(valueAndFallback, aWM, isAlign,
|
||
&overflowSafe);
|
||
if (alignment == NS_STYLE_ALIGN_NORMAL) {
|
||
MOZ_ASSERT(valueAndFallback == NS_STYLE_ALIGN_NORMAL,
|
||
"*-content:normal cannot be specified with explicit fallback");
|
||
alignment = NS_STYLE_ALIGN_STRETCH;
|
||
valueAndFallback = alignment; // we may need a fallback for 'stretch' below
|
||
}
|
||
|
||
// Compute the free space and count auto-sized tracks.
|
||
size_t numAutoTracks = 0;
|
||
nscoord space;
|
||
if (alignment != NS_STYLE_ALIGN_START) {
|
||
nscoord trackSizeSum = 0;
|
||
for (const TrackSize& sz : mSizes) {
|
||
trackSizeSum += sz.mBase;
|
||
if (sz.mState & TrackSize::eAutoMaxSizing) {
|
||
++numAutoTracks;
|
||
}
|
||
}
|
||
nscoord cbSize = isAlign ? aContainerSize.BSize(aWM)
|
||
: aContainerSize.ISize(aWM);
|
||
space = cbSize - trackSizeSum - SumOfGridGaps();
|
||
// Use the fallback value instead when applicable.
|
||
if (space < 0 ||
|
||
(alignment == NS_STYLE_ALIGN_SPACE_BETWEEN && mSizes.Length() == 1)) {
|
||
auto fallback = ::GetAlignJustifyFallbackIfAny(valueAndFallback, aWM,
|
||
isAlign, &overflowSafe);
|
||
if (fallback) {
|
||
alignment = fallback;
|
||
}
|
||
}
|
||
if (space == 0 || (space < 0 && overflowSafe)) {
|
||
// XXX check that this makes sense also for [last ]baseline (bug 1151204).
|
||
alignment = NS_STYLE_ALIGN_START;
|
||
}
|
||
}
|
||
|
||
// Optimize the cases where we just need to set each track's position.
|
||
nscoord pos = 0;
|
||
bool distribute = true;
|
||
switch (alignment) {
|
||
case NS_STYLE_ALIGN_BASELINE:
|
||
case NS_STYLE_ALIGN_LAST_BASELINE:
|
||
NS_WARNING("NYI: 'first/last baseline' (bug 1151204)"); // XXX
|
||
MOZ_FALLTHROUGH;
|
||
case NS_STYLE_ALIGN_START:
|
||
distribute = false;
|
||
break;
|
||
case NS_STYLE_ALIGN_END:
|
||
pos = space;
|
||
distribute = false;
|
||
break;
|
||
case NS_STYLE_ALIGN_CENTER:
|
||
pos = space / 2;
|
||
distribute = false;
|
||
break;
|
||
case NS_STYLE_ALIGN_STRETCH:
|
||
distribute = numAutoTracks != 0;
|
||
break;
|
||
}
|
||
if (!distribute) {
|
||
for (TrackSize& sz : mSizes) {
|
||
sz.mPosition = pos;
|
||
pos += sz.mBase + mGridGap;
|
||
}
|
||
return;
|
||
}
|
||
|
||
// Distribute free space to/between tracks and set their position.
|
||
MOZ_ASSERT(space > 0, "should've handled that on the fallback path above");
|
||
nscoord between, roundingError;
|
||
switch (alignment) {
|
||
case NS_STYLE_ALIGN_STRETCH: {
|
||
MOZ_ASSERT(numAutoTracks > 0, "we handled numAutoTracks == 0 above");
|
||
nscoord spacePerTrack;
|
||
roundingError = NSCoordDivRem(space, numAutoTracks, &spacePerTrack);
|
||
for (TrackSize& sz : mSizes) {
|
||
sz.mPosition = pos;
|
||
if (!(sz.mState & TrackSize::eAutoMaxSizing)) {
|
||
pos += sz.mBase + mGridGap;
|
||
continue;
|
||
}
|
||
nscoord stretch = spacePerTrack;
|
||
if (roundingError) {
|
||
roundingError -= 1;
|
||
stretch += 1;
|
||
}
|
||
nscoord newBase = sz.mBase + stretch;
|
||
sz.mBase = newBase;
|
||
pos += newBase + mGridGap;
|
||
}
|
||
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
|
||
return;
|
||
}
|
||
case NS_STYLE_ALIGN_SPACE_BETWEEN:
|
||
MOZ_ASSERT(mSizes.Length() > 1, "should've used a fallback above");
|
||
roundingError = NSCoordDivRem(space, mSizes.Length() - 1, &between);
|
||
break;
|
||
case NS_STYLE_ALIGN_SPACE_AROUND:
|
||
roundingError = NSCoordDivRem(space, mSizes.Length(), &between);
|
||
pos = between / 2;
|
||
break;
|
||
case NS_STYLE_ALIGN_SPACE_EVENLY:
|
||
roundingError = NSCoordDivRem(space, mSizes.Length() + 1, &between);
|
||
pos = between;
|
||
break;
|
||
default:
|
||
MOZ_ASSERT_UNREACHABLE("unknown align-/justify-content value");
|
||
between = 0; // just to avoid a compiler warning
|
||
}
|
||
between += mGridGap;
|
||
for (TrackSize& sz : mSizes) {
|
||
sz.mPosition = pos;
|
||
nscoord spacing = between;
|
||
if (roundingError) {
|
||
roundingError -= 1;
|
||
spacing += 1;
|
||
}
|
||
pos += sz.mBase + spacing;
|
||
}
|
||
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
|
||
}
|
||
|
||
nscoord
|
||
nsGridContainerFrame::Tracks::BackComputedIntrinsicSize(
|
||
const TrackSizingFunctions& aFunctions,
|
||
const nsStyleCoord& aGridGap) const
|
||
{
|
||
// Sum up the current sizes (where percentage tracks were treated as 'auto')
|
||
// in 'size'.
|
||
nscoord size = 0;
|
||
for (size_t i = 0, len = mSizes.Length(); i < len; ++i) {
|
||
size += mSizes[i].mBase;
|
||
}
|
||
|
||
// Add grid-gap contributions to 'size' and calculate a 'percent' sum.
|
||
float percent = 0.0f;
|
||
size_t numTracks = mSizes.Length();
|
||
if (numTracks > 1) {
|
||
const size_t gridGapCount = numTracks - 1;
|
||
nscoord gridGapLength;
|
||
float gridGapPercent;
|
||
if (::GetPercentSizeParts(aGridGap, &gridGapLength, &gridGapPercent)) {
|
||
percent = gridGapCount * gridGapPercent;
|
||
} else {
|
||
gridGapLength = aGridGap.ToLength();
|
||
}
|
||
size += gridGapCount * gridGapLength;
|
||
}
|
||
|
||
return std::max(0, nsLayoutUtils::AddPercents(size, percent));
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::LineRange::ToPositionAndLength(
|
||
const nsTArray<TrackSize>& aTrackSizes, nscoord* aPos, nscoord* aLength) const
|
||
{
|
||
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
|
||
"expected a definite LineRange");
|
||
MOZ_ASSERT(mStart < mEnd);
|
||
nscoord startPos = aTrackSizes[mStart].mPosition;
|
||
const TrackSize& sz = aTrackSizes[mEnd - 1];
|
||
*aPos = startPos;
|
||
*aLength = (sz.mPosition + sz.mBase) - startPos;
|
||
}
|
||
|
||
nscoord
|
||
nsGridContainerFrame::LineRange::ToLength(
|
||
const nsTArray<TrackSize>& aTrackSizes) const
|
||
{
|
||
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
|
||
"expected a definite LineRange");
|
||
MOZ_ASSERT(mStart < mEnd);
|
||
nscoord startPos = aTrackSizes[mStart].mPosition;
|
||
const TrackSize& sz = aTrackSizes[mEnd - 1];
|
||
return (sz.mPosition + sz.mBase) - startPos;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::LineRange::ToPositionAndLengthForAbsPos(
|
||
const Tracks& aTracks, nscoord aGridOrigin,
|
||
nscoord* aPos, nscoord* aLength) const
|
||
{
|
||
// kAutoLine for abspos children contributes the corresponding edge
|
||
// of the grid container's padding-box.
|
||
if (mEnd == kAutoLine) {
|
||
if (mStart == kAutoLine) {
|
||
// done
|
||
} else {
|
||
const nscoord endPos = *aPos + *aLength;
|
||
auto side = mStart == aTracks.mSizes.Length() ? GridLineSide::eBeforeGridGap
|
||
: GridLineSide::eAfterGridGap;
|
||
nscoord startPos = aTracks.GridLineEdge(mStart, side);
|
||
*aPos = aGridOrigin + startPos;
|
||
*aLength = std::max(endPos - *aPos, 0);
|
||
}
|
||
} else {
|
||
if (mStart == kAutoLine) {
|
||
auto side = mEnd == 0 ? GridLineSide::eAfterGridGap
|
||
: GridLineSide::eBeforeGridGap;
|
||
nscoord endPos = aTracks.GridLineEdge(mEnd, side);
|
||
*aLength = std::max(aGridOrigin + endPos, 0);
|
||
} else {
|
||
nscoord pos;
|
||
ToPositionAndLength(aTracks.mSizes, &pos, aLength);
|
||
*aPos = aGridOrigin + pos;
|
||
}
|
||
}
|
||
}
|
||
|
||
LogicalRect
|
||
nsGridContainerFrame::GridReflowInput::ContainingBlockFor(const GridArea& aArea) const
|
||
{
|
||
nscoord i, b, iSize, bSize;
|
||
MOZ_ASSERT(aArea.mCols.Extent() > 0, "grid items cover at least one track");
|
||
MOZ_ASSERT(aArea.mRows.Extent() > 0, "grid items cover at least one track");
|
||
aArea.mCols.ToPositionAndLength(mCols.mSizes, &i, &iSize);
|
||
aArea.mRows.ToPositionAndLength(mRows.mSizes, &b, &bSize);
|
||
return LogicalRect(mWM, i, b, iSize, bSize);
|
||
}
|
||
|
||
LogicalRect
|
||
nsGridContainerFrame::GridReflowInput::ContainingBlockForAbsPos(
|
||
const GridArea& aArea,
|
||
const LogicalPoint& aGridOrigin,
|
||
const LogicalRect& aGridCB) const
|
||
{
|
||
nscoord i = aGridCB.IStart(mWM);
|
||
nscoord b = aGridCB.BStart(mWM);
|
||
nscoord iSize = aGridCB.ISize(mWM);
|
||
nscoord bSize = aGridCB.BSize(mWM);
|
||
aArea.mCols.ToPositionAndLengthForAbsPos(mCols, aGridOrigin.I(mWM),
|
||
&i, &iSize);
|
||
aArea.mRows.ToPositionAndLengthForAbsPos(mRows, aGridOrigin.B(mWM),
|
||
&b, &bSize);
|
||
return LogicalRect(mWM, i, b, iSize, bSize);
|
||
}
|
||
|
||
/**
|
||
* Return a Fragmentainer object if we have a fragmentainer frame in our
|
||
* ancestor chain of containing block (CB) reflow states. We'll only
|
||
* continue traversing the ancestor chain as long as the CBs have
|
||
* the same writing-mode and have overflow:visible.
|
||
*/
|
||
Maybe<nsGridContainerFrame::Fragmentainer>
|
||
nsGridContainerFrame::GetNearestFragmentainer(const GridReflowInput& aState) const
|
||
{
|
||
Maybe<nsGridContainerFrame::Fragmentainer> data;
|
||
const ReflowInput* gridRI = aState.mReflowInput;
|
||
if (gridRI->AvailableBSize() == NS_UNCONSTRAINEDSIZE) {
|
||
return data;
|
||
}
|
||
WritingMode wm = aState.mWM;
|
||
const ReflowInput* cbRI = gridRI->mCBReflowInput;
|
||
for ( ; cbRI; cbRI = cbRI->mCBReflowInput) {
|
||
nsIScrollableFrame* sf = do_QueryFrame(cbRI->mFrame);
|
||
if (sf) {
|
||
break;
|
||
}
|
||
if (wm.IsOrthogonalTo(cbRI->GetWritingMode())) {
|
||
break;
|
||
}
|
||
nsIAtom* frameType = cbRI->mFrame->GetType();
|
||
if ((frameType == nsGkAtoms::canvasFrame &&
|
||
PresContext()->IsPaginated()) ||
|
||
frameType == nsGkAtoms::columnSetFrame) {
|
||
data.emplace();
|
||
data->mIsTopOfPage = gridRI->mFlags.mIsTopOfPage;
|
||
data->mToFragmentainerEnd = aState.mFragBStart +
|
||
gridRI->AvailableBSize() - aState.mBorderPadding.BStart(wm);
|
||
const auto numRows = aState.mRows.mSizes.Length();
|
||
data->mCanBreakAtStart =
|
||
numRows > 0 && aState.mRows.mSizes[0].mPosition > 0;
|
||
nscoord bSize = gridRI->ComputedBSize();
|
||
data->mIsAutoBSize = bSize == NS_AUTOHEIGHT;
|
||
if (data->mIsAutoBSize) {
|
||
bSize = gridRI->ComputedMinBSize();
|
||
} else {
|
||
bSize = NS_CSS_MINMAX(bSize,
|
||
gridRI->ComputedMinBSize(),
|
||
gridRI->ComputedMaxBSize());
|
||
}
|
||
nscoord gridEnd =
|
||
aState.mRows.GridLineEdge(numRows, GridLineSide::eBeforeGridGap);
|
||
data->mCanBreakAtEnd = bSize > gridEnd &&
|
||
bSize > aState.mFragBStart;
|
||
break;
|
||
}
|
||
}
|
||
return data;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::ReflowInFlowChild(nsIFrame* aChild,
|
||
const GridItemInfo* aGridItemInfo,
|
||
nsSize aContainerSize,
|
||
const Maybe<nscoord>& aStretchBSize,
|
||
const Fragmentainer* aFragmentainer,
|
||
const GridReflowInput& aState,
|
||
const LogicalRect& aContentArea,
|
||
ReflowOutput& aDesiredSize,
|
||
nsReflowStatus& aStatus)
|
||
{
|
||
nsPresContext* pc = PresContext();
|
||
nsStyleContext* containerSC = StyleContext();
|
||
WritingMode wm = aState.mReflowInput->GetWritingMode();
|
||
LogicalMargin pad(aState.mReflowInput->ComputedLogicalPadding());
|
||
const LogicalPoint padStart(wm, pad.IStart(wm), pad.BStart(wm));
|
||
const bool isGridItem = !!aGridItemInfo;
|
||
auto childType = aChild->GetType();
|
||
MOZ_ASSERT(isGridItem == (childType != nsGkAtoms::placeholderFrame));
|
||
LogicalRect cb(wm);
|
||
WritingMode childWM = aChild->GetWritingMode();
|
||
bool isConstrainedBSize = false;
|
||
nscoord toFragmentainerEnd;
|
||
// The part of the child's grid area that's in previous container fragments.
|
||
nscoord consumedGridAreaBSize = 0;
|
||
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
|
||
if (MOZ_LIKELY(isGridItem)) {
|
||
MOZ_ASSERT(aGridItemInfo->mFrame == aChild);
|
||
const GridArea& area = aGridItemInfo->mArea;
|
||
MOZ_ASSERT(area.IsDefinite());
|
||
cb = aState.ContainingBlockFor(area);
|
||
isConstrainedBSize = aFragmentainer && !wm.IsOrthogonalTo(childWM);
|
||
if (isConstrainedBSize) {
|
||
// |gridAreaBOffset| is the offset of the child's grid area in this
|
||
// container fragment (if negative, that distance is the child CB size
|
||
// consumed in previous container fragments). Note that cb.BStart
|
||
// (initially) and aState.mFragBStart are in "global" grid coordinates
|
||
// (like all track positions).
|
||
nscoord gridAreaBOffset = cb.BStart(wm) - aState.mFragBStart;
|
||
consumedGridAreaBSize = std::max(0, -gridAreaBOffset);
|
||
cb.BStart(wm) = std::max(0, gridAreaBOffset);
|
||
toFragmentainerEnd = aFragmentainer->mToFragmentainerEnd -
|
||
aState.mFragBStart - cb.BStart(wm);
|
||
toFragmentainerEnd = std::max(toFragmentainerEnd, 0);
|
||
}
|
||
cb += aContentArea.Origin(wm);
|
||
aState.mRows.AlignBaselineSubtree(*aGridItemInfo);
|
||
aState.mCols.AlignBaselineSubtree(*aGridItemInfo);
|
||
// Setup [align|justify]-content:[last ]baseline related frame properties.
|
||
// These are added to the padding in SizeComputationInput::InitOffsets.
|
||
// (a negative value signals the value is for 'last baseline' and should be
|
||
// added to the (logical) end padding)
|
||
typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
|
||
auto SetProp = [aGridItemInfo, aChild] (LogicalAxis aGridAxis,
|
||
Prop aProp) {
|
||
auto state = aGridItemInfo->mState[aGridAxis];
|
||
auto baselineAdjust = (state & ItemState::eContentBaseline) ?
|
||
aGridItemInfo->mBaselineOffset[aGridAxis] : nscoord(0);
|
||
if (baselineAdjust < nscoord(0)) {
|
||
// This happens when the subtree overflows its track.
|
||
// XXX spec issue? it's unclear how to handle this.
|
||
baselineAdjust = nscoord(0);
|
||
} else if (baselineAdjust > nscoord(0) &&
|
||
(state & ItemState::eLastBaseline)) {
|
||
baselineAdjust = -baselineAdjust;
|
||
}
|
||
if (baselineAdjust != nscoord(0)) {
|
||
aChild->Properties().Set(aProp, baselineAdjust);
|
||
} else {
|
||
aChild->Properties().Delete(aProp);
|
||
}
|
||
};
|
||
SetProp(eLogicalAxisBlock, isOrthogonal ? IBaselinePadProperty() :
|
||
BBaselinePadProperty());
|
||
SetProp(eLogicalAxisInline, isOrthogonal ? BBaselinePadProperty() :
|
||
IBaselinePadProperty());
|
||
} else {
|
||
// By convention, for frames that perform CSS Box Alignment, we position
|
||
// placeholder children at the start corner of their alignment container,
|
||
// and in this case that's usually the grid's padding box.
|
||
// ("Usually" - the exception is when the grid *also* forms the
|
||
// abs.pos. containing block. In that case, the alignment container isn't
|
||
// the padding box -- it's some grid area instead. But that case doesn't
|
||
// require any special handling here, because we handle it later using a
|
||
// special flag (STATIC_POS_IS_CB_ORIGIN) which will make us ignore the
|
||
// placeholder's position entirely.)
|
||
cb = aContentArea - padStart;
|
||
aChild->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
|
||
}
|
||
|
||
LogicalSize reflowSize(cb.Size(wm));
|
||
if (isConstrainedBSize) {
|
||
reflowSize.BSize(wm) = toFragmentainerEnd;
|
||
}
|
||
LogicalSize childCBSize = reflowSize.ConvertTo(childWM, wm);
|
||
|
||
// Setup the ClampMarginBoxMinSize reflow flags and property, if needed.
|
||
uint32_t flags = 0;
|
||
if (aGridItemInfo) {
|
||
auto childIAxis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
|
||
if (aGridItemInfo->mState[childIAxis] & ItemState::eClampMarginBoxMinSize) {
|
||
flags |= ReflowInput::I_CLAMP_MARGIN_BOX_MIN_SIZE;
|
||
}
|
||
auto childBAxis = GetOrthogonalAxis(childIAxis);
|
||
if (aGridItemInfo->mState[childBAxis] & ItemState::eClampMarginBoxMinSize) {
|
||
flags |= ReflowInput::B_CLAMP_MARGIN_BOX_MIN_SIZE;
|
||
aChild->Properties().Set(BClampMarginBoxMinSizeProperty(),
|
||
childCBSize.BSize(childWM));
|
||
} else {
|
||
aChild->Properties().Delete(BClampMarginBoxMinSizeProperty());
|
||
}
|
||
}
|
||
|
||
if (!isConstrainedBSize) {
|
||
childCBSize.BSize(childWM) = NS_UNCONSTRAINEDSIZE;
|
||
}
|
||
LogicalSize percentBasis(cb.Size(wm).ConvertTo(childWM, wm));
|
||
ReflowInput childRI(pc, *aState.mReflowInput, aChild, childCBSize,
|
||
&percentBasis, flags);
|
||
childRI.mFlags.mIsTopOfPage = aFragmentainer ? aFragmentainer->mIsTopOfPage : false;
|
||
|
||
// Because we pass ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE, and the
|
||
// previous reflow of the child might not have, set the child's
|
||
// block-resize flag to true.
|
||
// FIXME (perf): It would be faster to do this only if the previous
|
||
// reflow of the child was a measuring reflow, and only if the child
|
||
// does some of the things that are affected by
|
||
// ReflowInput::COMPUTE_SIZE_USE_AUTO_BSIZE.
|
||
childRI.SetBResize(true);
|
||
|
||
// A table-wrapper needs to propagate the CB size we give it to its
|
||
// inner table frame later. @see nsTableWrapperFrame::InitChildReflowInput.
|
||
if (childType == nsGkAtoms::tableWrapperFrame) {
|
||
const auto& props = aChild->Properties();
|
||
LogicalSize* cb = props.Get(nsTableWrapperFrame::GridItemCBSizeProperty());
|
||
if (!cb) {
|
||
cb = new LogicalSize(childWM);
|
||
props.Set(nsTableWrapperFrame::GridItemCBSizeProperty(), cb);
|
||
}
|
||
*cb = percentBasis;
|
||
}
|
||
|
||
// If the child is stretching in its block axis, and we might be fragmenting
|
||
// it in that axis, then setup a frame property to tell
|
||
// nsBlockFrame::ComputeFinalSize the size.
|
||
if (isConstrainedBSize && !wm.IsOrthogonalTo(childWM)) {
|
||
bool stretch = false;
|
||
if (!childRI.mStyleMargin->HasBlockAxisAuto(childWM) &&
|
||
childRI.mStylePosition->BSize(childWM).GetUnit() == eStyleUnit_Auto) {
|
||
auto blockAxisAlignment =
|
||
childRI.mStylePosition->UsedAlignSelf(StyleContext());
|
||
if (blockAxisAlignment == NS_STYLE_ALIGN_NORMAL ||
|
||
blockAxisAlignment == NS_STYLE_ALIGN_STRETCH) {
|
||
stretch = true;
|
||
}
|
||
}
|
||
if (stretch) {
|
||
aChild->Properties().Set(FragStretchBSizeProperty(), *aStretchBSize);
|
||
} else {
|
||
aChild->Properties().Delete(FragStretchBSizeProperty());
|
||
}
|
||
}
|
||
|
||
// We need the width of the child before we can correctly convert
|
||
// the writing-mode of its origin, so we reflow at (0, 0) using a dummy
|
||
// aContainerSize, and then pass the correct position to FinishReflowChild.
|
||
ReflowOutput childSize(childRI);
|
||
const nsSize dummyContainerSize;
|
||
ReflowChild(aChild, pc, childSize, childRI, childWM, LogicalPoint(childWM),
|
||
dummyContainerSize, 0, aStatus);
|
||
LogicalPoint childPos =
|
||
cb.Origin(wm).ConvertTo(childWM, wm,
|
||
aContainerSize - childSize.PhysicalSize());
|
||
// Apply align/justify-self and reflow again if that affects the size.
|
||
if (MOZ_LIKELY(isGridItem)) {
|
||
LogicalSize size = childSize.Size(childWM); // from the ReflowChild()
|
||
if (aStatus.IsComplete()) {
|
||
auto align = childRI.mStylePosition->UsedAlignSelf(containerSC);
|
||
auto state = aGridItemInfo->mState[eLogicalAxisBlock];
|
||
if (state & ItemState::eContentBaseline) {
|
||
align = (state & ItemState::eFirstBaseline) ? NS_STYLE_ALIGN_SELF_START
|
||
: NS_STYLE_ALIGN_SELF_END;
|
||
}
|
||
nscoord cbsz = cb.BSize(wm) - consumedGridAreaBSize;
|
||
AlignSelf(*aGridItemInfo, align, cbsz, wm, childRI, size, &childPos);
|
||
}
|
||
auto justify = childRI.mStylePosition->UsedJustifySelf(containerSC);
|
||
auto state = aGridItemInfo->mState[eLogicalAxisInline];
|
||
if (state & ItemState::eContentBaseline) {
|
||
justify = (state & ItemState::eFirstBaseline) ? NS_STYLE_JUSTIFY_SELF_START
|
||
: NS_STYLE_JUSTIFY_SELF_END;
|
||
}
|
||
nscoord cbsz = cb.ISize(wm);
|
||
JustifySelf(*aGridItemInfo, justify, cbsz, wm, childRI, size, &childPos);
|
||
} // else, nsAbsoluteContainingBlock.cpp will handle align/justify-self.
|
||
|
||
childRI.ApplyRelativePositioning(&childPos, aContainerSize);
|
||
FinishReflowChild(aChild, pc, childSize, &childRI, childWM, childPos,
|
||
aContainerSize, 0);
|
||
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, aChild);
|
||
}
|
||
|
||
nscoord
|
||
nsGridContainerFrame::ReflowInFragmentainer(GridReflowInput& aState,
|
||
const LogicalRect& aContentArea,
|
||
ReflowOutput& aDesiredSize,
|
||
nsReflowStatus& aStatus,
|
||
Fragmentainer& aFragmentainer,
|
||
const nsSize& aContainerSize)
|
||
{
|
||
MOZ_ASSERT(aStatus.IsEmpty());
|
||
MOZ_ASSERT(aState.mReflowInput);
|
||
|
||
// Collect our grid items and sort them in row order. Collect placeholders
|
||
// and put them in a separate array.
|
||
nsTArray<const GridItemInfo*> sortedItems(aState.mGridItems.Length());
|
||
nsTArray<nsIFrame*> placeholders(aState.mAbsPosItems.Length());
|
||
aState.mIter.Reset(CSSOrderAwareFrameIterator::eIncludeAll);
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
nsIFrame* child = *aState.mIter;
|
||
if (child->GetType() != nsGkAtoms::placeholderFrame) {
|
||
const GridItemInfo* info = &aState.mGridItems[aState.mIter.ItemIndex()];
|
||
sortedItems.AppendElement(info);
|
||
} else {
|
||
placeholders.AppendElement(child);
|
||
}
|
||
}
|
||
// NOTE: no need to use stable_sort here, there are no dependencies on
|
||
// having content order between items on the same row in the code below.
|
||
std::sort(sortedItems.begin(), sortedItems.end(),
|
||
GridItemInfo::IsStartRowLessThan);
|
||
|
||
// Reflow our placeholder children; they must all be complete.
|
||
for (auto child : placeholders) {
|
||
nsReflowStatus childStatus;
|
||
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), &aFragmentainer,
|
||
aState, aContentArea, aDesiredSize, childStatus);
|
||
MOZ_ASSERT(childStatus.IsComplete(),
|
||
"nsPlaceholderFrame should never need to be fragmented");
|
||
}
|
||
|
||
// The available size for children - we'll set this to the edge of the last
|
||
// row in most cases below, but for now use the full size.
|
||
nscoord childAvailableSize = aFragmentainer.mToFragmentainerEnd;
|
||
const uint32_t startRow = aState.mStartRow;
|
||
const uint32_t numRows = aState.mRows.mSizes.Length();
|
||
bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
|
||
StyleBoxDecorationBreak::Clone;
|
||
nscoord bpBEnd = aState.mBorderPadding.BEnd(aState.mWM);
|
||
|
||
// Set |endRow| to the first row that doesn't fit.
|
||
uint32_t endRow = numRows;
|
||
for (uint32_t row = startRow; row < numRows; ++row) {
|
||
auto& sz = aState.mRows.mSizes[row];
|
||
const nscoord bEnd = sz.mPosition + sz.mBase;
|
||
nscoord remainingAvailableSize = childAvailableSize - bEnd;
|
||
if (remainingAvailableSize < 0 ||
|
||
(isBDBClone && remainingAvailableSize < bpBEnd)) {
|
||
endRow = row;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Check for forced breaks on the items.
|
||
const bool isTopOfPage = aFragmentainer.mIsTopOfPage;
|
||
bool isForcedBreak = false;
|
||
const bool avoidBreakInside = ShouldAvoidBreakInside(*aState.mReflowInput);
|
||
for (const GridItemInfo* info : sortedItems) {
|
||
uint32_t itemStartRow = info->mArea.mRows.mStart;
|
||
if (itemStartRow == endRow) {
|
||
break;
|
||
}
|
||
auto disp = info->mFrame->StyleDisplay();
|
||
if (disp->mBreakBefore) {
|
||
// Propagate break-before on the first row to the container unless we're
|
||
// already at top-of-page.
|
||
if ((itemStartRow == 0 && !isTopOfPage) || avoidBreakInside) {
|
||
aStatus.SetInlineLineBreakBeforeAndReset();
|
||
return aState.mFragBStart;
|
||
}
|
||
if ((itemStartRow > startRow ||
|
||
(itemStartRow == startRow && !isTopOfPage)) &&
|
||
itemStartRow < endRow) {
|
||
endRow = itemStartRow;
|
||
isForcedBreak = true;
|
||
// reset any BREAK_AFTER we found on an earlier item
|
||
aStatus.Reset();
|
||
break; // we're done since the items are sorted in row order
|
||
}
|
||
}
|
||
uint32_t itemEndRow = info->mArea.mRows.mEnd;
|
||
if (disp->mBreakAfter) {
|
||
if (itemEndRow != numRows) {
|
||
if (itemEndRow > startRow && itemEndRow < endRow) {
|
||
endRow = itemEndRow;
|
||
isForcedBreak = true;
|
||
// No "break;" here since later items with break-after may have
|
||
// a shorter span.
|
||
}
|
||
} else {
|
||
// Propagate break-after on the last row to the container, we may still
|
||
// find a break-before on this row though (and reset aStatus).
|
||
aStatus.SetInlineLineBreakAfter(); // tentative
|
||
}
|
||
}
|
||
}
|
||
|
||
// Consume at least one row in each fragment until we have consumed them all.
|
||
// Except for the first row if there's a break opportunity before it.
|
||
if (startRow == endRow && startRow != numRows &&
|
||
(startRow != 0 || !aFragmentainer.mCanBreakAtStart)) {
|
||
++endRow;
|
||
}
|
||
|
||
// Honor break-inside:avoid if we can't fit all rows.
|
||
if (avoidBreakInside && endRow < numRows) {
|
||
aStatus.SetInlineLineBreakBeforeAndReset();
|
||
return aState.mFragBStart;
|
||
}
|
||
|
||
// Calculate the block-size including this fragment.
|
||
nscoord bEndRow =
|
||
aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap);
|
||
nscoord bSize;
|
||
if (aFragmentainer.mIsAutoBSize) {
|
||
// We only apply min-bsize once all rows are complete (when bsize is auto).
|
||
if (endRow < numRows) {
|
||
bSize = bEndRow;
|
||
auto clampedBSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
|
||
if (MOZ_UNLIKELY(clampedBSize != bSize)) {
|
||
// We apply max-bsize in all fragments though.
|
||
bSize = clampedBSize;
|
||
} else if (!isBDBClone) {
|
||
// The max-bsize won't make this fragment COMPLETE, so the block-end
|
||
// border will be in a later fragment.
|
||
bpBEnd = 0;
|
||
}
|
||
} else {
|
||
bSize = NS_CSS_MINMAX(bEndRow,
|
||
aState.mReflowInput->ComputedMinBSize(),
|
||
aState.mReflowInput->ComputedMaxBSize());
|
||
}
|
||
} else {
|
||
bSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
|
||
aState.mReflowInput->ComputedMinBSize(),
|
||
aState.mReflowInput->ComputedMaxBSize());
|
||
}
|
||
|
||
// Check for overflow and set aStatus INCOMPLETE if so.
|
||
bool overflow = bSize + bpBEnd > childAvailableSize;
|
||
if (overflow) {
|
||
if (avoidBreakInside) {
|
||
aStatus.SetInlineLineBreakBeforeAndReset();
|
||
return aState.mFragBStart;
|
||
}
|
||
bool breakAfterLastRow = endRow == numRows && aFragmentainer.mCanBreakAtEnd;
|
||
if (breakAfterLastRow) {
|
||
MOZ_ASSERT(bEndRow < bSize, "bogus aFragmentainer.mCanBreakAtEnd");
|
||
nscoord availableSize = childAvailableSize;
|
||
if (isBDBClone) {
|
||
availableSize -= bpBEnd;
|
||
}
|
||
// Pretend we have at least 1px available size, otherwise we'll never make
|
||
// progress in consuming our bSize.
|
||
availableSize = std::max(availableSize,
|
||
aState.mFragBStart + AppUnitsPerCSSPixel());
|
||
// Fill the fragmentainer, but not more than our desired block-size and
|
||
// at least to the size of the last row (even if that overflows).
|
||
nscoord newBSize = std::min(bSize, availableSize);
|
||
newBSize = std::max(newBSize, bEndRow);
|
||
// If it's just the border+padding that is overflowing and we have
|
||
// box-decoration-break:clone then we are technically COMPLETE. There's
|
||
// no point in creating another zero-bsize fragment in this case.
|
||
if (newBSize < bSize || !isBDBClone) {
|
||
aStatus.SetIncomplete();
|
||
}
|
||
bSize = newBSize;
|
||
} else if (bSize <= bEndRow && startRow + 1 < endRow) {
|
||
if (endRow == numRows) {
|
||
// We have more than one row in this fragment, so we can break before
|
||
// the last row instead.
|
||
--endRow;
|
||
bEndRow = aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap);
|
||
bSize = bEndRow;
|
||
if (aFragmentainer.mIsAutoBSize) {
|
||
bSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
|
||
}
|
||
}
|
||
aStatus.SetIncomplete();
|
||
} else if (endRow < numRows) {
|
||
bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
|
||
} // else - no break opportunities.
|
||
} else {
|
||
// Even though our block-size fits we need to honor forced breaks, or if
|
||
// a row doesn't fit in an auto-sized container (unless it's constrained
|
||
// by a max-bsize which make us overflow-incomplete).
|
||
if (endRow < numRows && (isForcedBreak ||
|
||
(aFragmentainer.mIsAutoBSize && bEndRow == bSize))) {
|
||
bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
|
||
}
|
||
}
|
||
|
||
// If we can't fit all rows then we're at least overflow-incomplete.
|
||
if (endRow < numRows) {
|
||
childAvailableSize = bEndRow;
|
||
if (aStatus.IsComplete()) {
|
||
aStatus.SetOverflowIncomplete();
|
||
aStatus.SetNextInFlowNeedsReflow();
|
||
}
|
||
} else {
|
||
// Children always have the full size of the rows in this fragment.
|
||
childAvailableSize = std::max(childAvailableSize, bEndRow);
|
||
}
|
||
|
||
return ReflowRowsInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
|
||
aFragmentainer, aContainerSize, sortedItems,
|
||
startRow, endRow, bSize, childAvailableSize);
|
||
}
|
||
|
||
nscoord
|
||
nsGridContainerFrame::ReflowRowsInFragmentainer(
|
||
GridReflowInput& aState,
|
||
const LogicalRect& aContentArea,
|
||
ReflowOutput& aDesiredSize,
|
||
nsReflowStatus& aStatus,
|
||
Fragmentainer& aFragmentainer,
|
||
const nsSize& aContainerSize,
|
||
const nsTArray<const GridItemInfo*>& aSortedItems,
|
||
uint32_t aStartRow,
|
||
uint32_t aEndRow,
|
||
nscoord aBSize,
|
||
nscoord aAvailableSize)
|
||
{
|
||
FrameHashtable pushedItems;
|
||
FrameHashtable incompleteItems;
|
||
FrameHashtable overflowIncompleteItems;
|
||
bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
|
||
StyleBoxDecorationBreak::Clone;
|
||
bool didGrowRow = false;
|
||
// As we walk across rows, we track whether the current row is at the top
|
||
// of its grid-fragment, to help decide whether we can break before it. When
|
||
// this function starts, our row is at the top of the current fragment if:
|
||
// - we're starting with a nonzero row (i.e. we're a continuation)
|
||
// OR:
|
||
// - we're starting with the first row, & we're not allowed to break before
|
||
// it (which makes it effectively at the top of its grid-fragment).
|
||
bool isRowTopOfPage = aStartRow != 0 || !aFragmentainer.mCanBreakAtStart;
|
||
const bool isStartRowTopOfPage = isRowTopOfPage;
|
||
// Save our full available size for later.
|
||
const nscoord gridAvailableSize = aFragmentainer.mToFragmentainerEnd;
|
||
// Propagate the constrained size to our children.
|
||
aFragmentainer.mToFragmentainerEnd = aAvailableSize;
|
||
// Reflow the items in row order up to |aEndRow| and push items after that.
|
||
uint32_t row = 0;
|
||
// |i| is intentionally signed, so we can set it to -1 to restart the loop.
|
||
for (int32_t i = 0, len = aSortedItems.Length(); i < len; ++i) {
|
||
const GridItemInfo* const info = aSortedItems[i];
|
||
nsIFrame* child = info->mFrame;
|
||
row = info->mArea.mRows.mStart;
|
||
MOZ_ASSERT(child->GetPrevInFlow() ? row < aStartRow : row >= aStartRow,
|
||
"unexpected child start row");
|
||
if (row >= aEndRow) {
|
||
pushedItems.PutEntry(child);
|
||
continue;
|
||
}
|
||
|
||
bool rowCanGrow = false;
|
||
nscoord maxRowSize = 0;
|
||
if (row >= aStartRow) {
|
||
if (row > aStartRow) {
|
||
isRowTopOfPage = false;
|
||
}
|
||
// Can we grow this row? Only consider span=1 items per spec...
|
||
rowCanGrow = !didGrowRow && info->mArea.mRows.Extent() == 1;
|
||
if (rowCanGrow) {
|
||
auto& sz = aState.mRows.mSizes[row];
|
||
// and only min-/max-content rows or flex rows in an auto-sized container
|
||
rowCanGrow = (sz.mState & TrackSize::eMinOrMaxContentMinSizing) ||
|
||
((sz.mState & TrackSize::eFlexMaxSizing) &&
|
||
aFragmentainer.mIsAutoBSize);
|
||
if (rowCanGrow) {
|
||
if (isBDBClone) {
|
||
maxRowSize = gridAvailableSize -
|
||
aState.mBorderPadding.BEnd(aState.mWM);
|
||
} else {
|
||
maxRowSize = gridAvailableSize;
|
||
}
|
||
maxRowSize -= sz.mPosition;
|
||
// ...and only if there is space for it to grow.
|
||
rowCanGrow = maxRowSize > sz.mBase;
|
||
}
|
||
}
|
||
}
|
||
|
||
// aFragmentainer.mIsTopOfPage is propagated to the child reflow state.
|
||
// When it's false the child can request BREAK_BEFORE. We intentionally
|
||
// set it to false when the row is growable (as determined in CSS Grid
|
||
// Fragmentation) and there is a non-zero space between it and the
|
||
// fragmentainer end (that can be used to grow it). If the child reports
|
||
// a forced break in this case, we grow this row to fill the fragment and
|
||
// restart the loop. We also restart the loop with |aEndRow = row|
|
||
// (but without growing any row) for a BREAK_BEFORE child if it spans
|
||
// beyond the last row in this fragment. This is to avoid fragmenting it.
|
||
// We only restart the loop once.
|
||
aFragmentainer.mIsTopOfPage = isRowTopOfPage && !rowCanGrow;
|
||
nsReflowStatus childStatus;
|
||
// Pass along how much to stretch this fragment, in case it's needed.
|
||
nscoord bSize =
|
||
aState.mRows.GridLineEdge(std::min(aEndRow, info->mArea.mRows.mEnd),
|
||
GridLineSide::eBeforeGridGap) -
|
||
aState.mRows.GridLineEdge(std::max(aStartRow, row),
|
||
GridLineSide::eAfterGridGap);
|
||
ReflowInFlowChild(child, info, aContainerSize, Some(bSize), &aFragmentainer,
|
||
aState, aContentArea, aDesiredSize, childStatus);
|
||
MOZ_ASSERT(childStatus.IsInlineBreakBefore() ||
|
||
!childStatus.IsFullyComplete() ||
|
||
!child->GetNextInFlow(),
|
||
"fully-complete reflow should destroy any NIFs");
|
||
|
||
if (childStatus.IsInlineBreakBefore()) {
|
||
MOZ_ASSERT(!child->GetPrevInFlow(),
|
||
"continuations should never report BREAK_BEFORE status");
|
||
MOZ_ASSERT(!aFragmentainer.mIsTopOfPage,
|
||
"got IsInlineBreakBefore() at top of page");
|
||
if (!didGrowRow) {
|
||
if (rowCanGrow) {
|
||
// Grow this row and restart with the next row as |aEndRow|.
|
||
aState.mRows.ResizeRow(row, maxRowSize);
|
||
if (aState.mSharedGridData) {
|
||
aState.mSharedGridData->mRows.ResizeRow(row, maxRowSize);
|
||
}
|
||
didGrowRow = true;
|
||
aEndRow = row + 1; // growing this row makes the next one not fit
|
||
i = -1; // i == 0 after the next loop increment
|
||
isRowTopOfPage = isStartRowTopOfPage;
|
||
overflowIncompleteItems.Clear();
|
||
incompleteItems.Clear();
|
||
nscoord bEndRow =
|
||
aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap);
|
||
aFragmentainer.mToFragmentainerEnd = bEndRow;
|
||
if (aFragmentainer.mIsAutoBSize) {
|
||
aBSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
|
||
} else if (aStatus.IsIncomplete()) {
|
||
aBSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
|
||
aState.mReflowInput->ComputedMinBSize(),
|
||
aState.mReflowInput->ComputedMaxBSize());
|
||
aBSize = std::min(bEndRow, aBSize);
|
||
}
|
||
continue;
|
||
}
|
||
|
||
if (!isRowTopOfPage) {
|
||
// We can break before this row - restart with it as the new end row.
|
||
aEndRow = row;
|
||
aBSize = aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap);
|
||
i = -1; // i == 0 after the next loop increment
|
||
isRowTopOfPage = isStartRowTopOfPage;
|
||
overflowIncompleteItems.Clear();
|
||
incompleteItems.Clear();
|
||
aStatus.SetIncomplete();
|
||
continue;
|
||
}
|
||
NS_ERROR("got BREAK_BEFORE at top-of-page");
|
||
childStatus.Reset();
|
||
} else {
|
||
NS_ERROR("got BREAK_BEFORE again after growing the row?");
|
||
childStatus.SetIncomplete();
|
||
}
|
||
} else if (childStatus.IsInlineBreakAfter()) {
|
||
MOZ_ASSERT_UNREACHABLE("unexpected child reflow status");
|
||
}
|
||
|
||
if (childStatus.IsIncomplete()) {
|
||
incompleteItems.PutEntry(child);
|
||
} else if (!childStatus.IsFullyComplete()) {
|
||
overflowIncompleteItems.PutEntry(child);
|
||
}
|
||
}
|
||
|
||
// Record a break before |aEndRow|.
|
||
aState.mNextFragmentStartRow = aEndRow;
|
||
if (aEndRow < aState.mRows.mSizes.Length()) {
|
||
aState.mRows.BreakBeforeRow(aEndRow);
|
||
if (aState.mSharedGridData) {
|
||
aState.mSharedGridData->mRows.BreakBeforeRow(aEndRow);
|
||
}
|
||
}
|
||
|
||
if (!pushedItems.IsEmpty() ||
|
||
!incompleteItems.IsEmpty() ||
|
||
!overflowIncompleteItems.IsEmpty()) {
|
||
if (aStatus.IsComplete()) {
|
||
aStatus.SetOverflowIncomplete();
|
||
aStatus.SetNextInFlowNeedsReflow();
|
||
}
|
||
// Iterate the children in normal document order and append them (or a NIF)
|
||
// to one of the following frame lists according to their status.
|
||
nsFrameList pushedList;
|
||
nsFrameList incompleteList;
|
||
nsFrameList overflowIncompleteList;
|
||
auto* pc = PresContext();
|
||
auto* fc = pc->PresShell()->FrameConstructor();
|
||
for (nsIFrame* child = GetChildList(kPrincipalList).FirstChild(); child; ) {
|
||
MOZ_ASSERT((pushedItems.Contains(child) ? 1 : 0) +
|
||
(incompleteItems.Contains(child) ? 1 : 0) +
|
||
(overflowIncompleteItems.Contains(child) ? 1 : 0) <= 1,
|
||
"child should only be in one of these sets");
|
||
// Save the next-sibling so we can continue the loop if |child| is moved.
|
||
nsIFrame* next = child->GetNextSibling();
|
||
if (pushedItems.Contains(child)) {
|
||
MOZ_ASSERT(child->GetParent() == this);
|
||
StealFrame(child);
|
||
pushedList.AppendFrame(nullptr, child);
|
||
} else if (incompleteItems.Contains(child)) {
|
||
nsIFrame* childNIF = child->GetNextInFlow();
|
||
if (!childNIF) {
|
||
childNIF = fc->CreateContinuingFrame(pc, child, this);
|
||
incompleteList.AppendFrame(nullptr, childNIF);
|
||
} else {
|
||
auto parent = static_cast<nsGridContainerFrame*>(childNIF->GetParent());
|
||
MOZ_ASSERT(parent != this || !mFrames.ContainsFrame(childNIF),
|
||
"child's NIF shouldn't be in the same principal list");
|
||
// If child's existing NIF is an overflow container, convert it to an
|
||
// actual NIF, since now |child| has non-overflow stuff to give it.
|
||
// Or, if it's further away then our next-in-flow, then pull it up.
|
||
if ((childNIF->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) ||
|
||
(parent != this && parent != GetNextInFlow())) {
|
||
parent->StealFrame(childNIF);
|
||
childNIF->RemoveStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
|
||
if (parent == this) {
|
||
incompleteList.AppendFrame(nullptr, childNIF);
|
||
} else {
|
||
// If childNIF already lives on the next grid fragment, then we
|
||
// don't need to reparent it, since we know it's destined to end
|
||
// up there anyway. Just move it to its parent's overflow list.
|
||
if (parent == GetNextInFlow()) {
|
||
nsFrameList toMove(childNIF, childNIF);
|
||
parent->MergeSortedOverflow(toMove);
|
||
} else {
|
||
ReparentFrame(childNIF, parent, this);
|
||
incompleteList.AppendFrame(nullptr, childNIF);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
} else if (overflowIncompleteItems.Contains(child)) {
|
||
nsIFrame* childNIF = child->GetNextInFlow();
|
||
if (!childNIF) {
|
||
childNIF = fc->CreateContinuingFrame(pc, child, this);
|
||
childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
|
||
overflowIncompleteList.AppendFrame(nullptr, childNIF);
|
||
} else {
|
||
DebugOnly<nsGridContainerFrame*> lastParent = this;
|
||
auto nif = static_cast<nsGridContainerFrame*>(GetNextInFlow());
|
||
// If child has any non-overflow-container NIFs, convert them to
|
||
// overflow containers, since that's all |child| needs now.
|
||
while (childNIF &&
|
||
!childNIF->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
|
||
auto parent = static_cast<nsGridContainerFrame*>(childNIF->GetParent());
|
||
parent->StealFrame(childNIF);
|
||
childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER);
|
||
if (parent == this) {
|
||
overflowIncompleteList.AppendFrame(nullptr, childNIF);
|
||
} else {
|
||
if (!nif || parent == nif) {
|
||
nsFrameList toMove(childNIF, childNIF);
|
||
parent->MergeSortedExcessOverflowContainers(toMove);
|
||
} else {
|
||
ReparentFrame(childNIF, parent, nif);
|
||
nsFrameList toMove(childNIF, childNIF);
|
||
nif->MergeSortedExcessOverflowContainers(toMove);
|
||
}
|
||
// We only need to reparent the first childNIF (or not at all if
|
||
// its parent is our NIF).
|
||
nif = nullptr;
|
||
}
|
||
lastParent = parent;
|
||
childNIF = childNIF->GetNextInFlow();
|
||
}
|
||
}
|
||
}
|
||
child = next;
|
||
}
|
||
|
||
// Merge the results into our respective overflow child lists.
|
||
if (!pushedList.IsEmpty()) {
|
||
MergeSortedOverflow(pushedList);
|
||
AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
|
||
// NOTE since we messed with our child list here, we intentionally
|
||
// make aState.mIter invalid to avoid any use of it after this point.
|
||
aState.mIter.Invalidate();
|
||
}
|
||
if (!incompleteList.IsEmpty()) {
|
||
MergeSortedOverflow(incompleteList);
|
||
// NOTE since we messed with our child list here, we intentionally
|
||
// make aState.mIter invalid to avoid any use of it after this point.
|
||
aState.mIter.Invalidate();
|
||
}
|
||
if (!overflowIncompleteList.IsEmpty()) {
|
||
MergeSortedExcessOverflowContainers(overflowIncompleteList);
|
||
}
|
||
}
|
||
return aBSize;
|
||
}
|
||
|
||
nscoord
|
||
nsGridContainerFrame::ReflowChildren(GridReflowInput& aState,
|
||
const LogicalRect& aContentArea,
|
||
ReflowOutput& aDesiredSize,
|
||
nsReflowStatus& aStatus)
|
||
{
|
||
MOZ_ASSERT(aState.mReflowInput);
|
||
|
||
aStatus.Reset();
|
||
nsOverflowAreas ocBounds;
|
||
nsReflowStatus ocStatus;
|
||
if (GetPrevInFlow()) {
|
||
ReflowOverflowContainerChildren(PresContext(), *aState.mReflowInput,
|
||
ocBounds, 0, ocStatus,
|
||
MergeSortedFrameListsFor);
|
||
}
|
||
|
||
WritingMode wm = aState.mReflowInput->GetWritingMode();
|
||
const nsSize containerSize =
|
||
(aContentArea.Size(wm) + aState.mBorderPadding.Size(wm)).GetPhysicalSize(wm);
|
||
|
||
nscoord bSize = aContentArea.BSize(wm);
|
||
Maybe<Fragmentainer> fragmentainer = GetNearestFragmentainer(aState);
|
||
if (MOZ_UNLIKELY(fragmentainer.isSome())) {
|
||
aState.mInFragmentainer = true;
|
||
bSize = ReflowInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
|
||
*fragmentainer, containerSize);
|
||
} else {
|
||
aState.mIter.Reset(CSSOrderAwareFrameIterator::eIncludeAll);
|
||
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
|
||
nsIFrame* child = *aState.mIter;
|
||
const GridItemInfo* info = nullptr;
|
||
if (child->GetType() != nsGkAtoms::placeholderFrame) {
|
||
info = &aState.mGridItems[aState.mIter.ItemIndex()];
|
||
}
|
||
ReflowInFlowChild(*aState.mIter, info, containerSize, Nothing(), nullptr,
|
||
aState, aContentArea, aDesiredSize, aStatus);
|
||
MOZ_ASSERT(aStatus.IsComplete(), "child should be complete "
|
||
"in unconstrained reflow");
|
||
}
|
||
}
|
||
|
||
// Merge overflow container bounds and status.
|
||
aDesiredSize.mOverflowAreas.UnionWith(ocBounds);
|
||
aStatus.MergeCompletionStatusFrom(ocStatus);
|
||
|
||
if (IsAbsoluteContainer()) {
|
||
nsFrameList children(GetChildList(GetAbsoluteListID()));
|
||
if (!children.IsEmpty()) {
|
||
// 'gridOrigin' is the origin of the grid (the start of the first track),
|
||
// with respect to the grid container's padding-box (CB).
|
||
LogicalMargin pad(aState.mReflowInput->ComputedLogicalPadding());
|
||
const LogicalPoint gridOrigin(wm, pad.IStart(wm), pad.BStart(wm));
|
||
const LogicalRect gridCB(wm, 0, 0,
|
||
aContentArea.ISize(wm) + pad.IStartEnd(wm),
|
||
bSize + pad.BStartEnd(wm));
|
||
const nsSize gridCBPhysicalSize = gridCB.Size(wm).GetPhysicalSize(wm);
|
||
size_t i = 0;
|
||
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
|
||
nsIFrame* child = e.get();
|
||
MOZ_ASSERT(i < aState.mAbsPosItems.Length());
|
||
MOZ_ASSERT(aState.mAbsPosItems[i].mFrame == child);
|
||
GridArea& area = aState.mAbsPosItems[i].mArea;
|
||
LogicalRect itemCB =
|
||
aState.ContainingBlockForAbsPos(area, gridOrigin, gridCB);
|
||
// nsAbsoluteContainingBlock::Reflow uses physical coordinates.
|
||
nsRect* cb = child->Properties().Get(GridItemContainingBlockRect());
|
||
if (!cb) {
|
||
cb = new nsRect;
|
||
child->Properties().Set(GridItemContainingBlockRect(), cb);
|
||
}
|
||
*cb = itemCB.GetPhysicalRect(wm, gridCBPhysicalSize);
|
||
}
|
||
// We pass a dummy rect as CB because each child has its own CB rect.
|
||
// The eIsGridContainerCB flag tells nsAbsoluteContainingBlock::Reflow to
|
||
// use those instead.
|
||
nsRect dummyRect;
|
||
AbsPosReflowFlags flags =
|
||
AbsPosReflowFlags::eCBWidthAndHeightChanged; // XXX could be optimized
|
||
flags |= AbsPosReflowFlags::eConstrainHeight;
|
||
flags |= AbsPosReflowFlags::eIsGridContainerCB;
|
||
GetAbsoluteContainingBlock()->Reflow(this, PresContext(),
|
||
*aState.mReflowInput,
|
||
aStatus, dummyRect, flags,
|
||
&aDesiredSize.mOverflowAreas);
|
||
}
|
||
}
|
||
return bSize;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::Reflow(nsPresContext* aPresContext,
|
||
ReflowOutput& aDesiredSize,
|
||
const ReflowInput& aReflowInput,
|
||
nsReflowStatus& aStatus)
|
||
{
|
||
MarkInReflow();
|
||
DO_GLOBAL_REFLOW_COUNT("nsGridContainerFrame");
|
||
DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus);
|
||
|
||
if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) {
|
||
return;
|
||
}
|
||
|
||
// First we gather child frames we should include in our reflow,
|
||
// i.e. overflowed children from our prev-in-flow, and pushed first-in-flow
|
||
// children (that might now fit). It's important to note that these children
|
||
// can be in arbitrary order vis-a-vis the current children in our lists.
|
||
// E.g. grid items in the document order: A, B, C may be placed in the rows
|
||
// 3, 2, 1. Assume each row goes in a separate grid container fragment,
|
||
// and we reflow the second fragment. Now if C (in fragment 1) overflows,
|
||
// we can't just prepend it to our mFrames like we usually do because that
|
||
// would violate the document order invariant that other code depends on.
|
||
// Similarly if we pull up child A (from fragment 3) we can't just append
|
||
// that for the same reason. Instead, we must sort these children into
|
||
// our child lists. (The sorting is trivial given that both lists are
|
||
// already fully sorted individually - it's just a merge.)
|
||
//
|
||
// The invariants that we maintain are that each grid container child list
|
||
// is sorted in the normal document order at all times, but that children
|
||
// in different grid container continuations may be in arbitrary order.
|
||
|
||
auto prevInFlow = static_cast<nsGridContainerFrame*>(GetPrevInFlow());
|
||
// Merge overflow frames from our prev-in-flow into our principal child list.
|
||
if (prevInFlow) {
|
||
AutoFrameListPtr overflow(aPresContext,
|
||
prevInFlow->StealOverflowFrames());
|
||
if (overflow) {
|
||
ReparentFrames(*overflow, prevInFlow, this);
|
||
::MergeSortedFrameLists(mFrames, *overflow, GetContent());
|
||
|
||
// Move trailing next-in-flows into our overflow list.
|
||
nsFrameList continuations;
|
||
for (nsIFrame* f = mFrames.FirstChild(); f; ) {
|
||
nsIFrame* next = f->GetNextSibling();
|
||
nsIFrame* pif = f->GetPrevInFlow();
|
||
if (pif && pif->GetParent() == this) {
|
||
mFrames.RemoveFrame(f);
|
||
continuations.AppendFrame(nullptr, f);
|
||
}
|
||
f = next;
|
||
}
|
||
MergeSortedOverflow(continuations);
|
||
|
||
// Move trailing OC next-in-flows into our excess overflow containers list.
|
||
nsFrameList* overflowContainers =
|
||
GetPropTableFrames(OverflowContainersProperty());
|
||
if (overflowContainers) {
|
||
nsFrameList moveToEOC;
|
||
for (nsIFrame* f = overflowContainers->FirstChild(); f; ) {
|
||
nsIFrame* next = f->GetNextSibling();
|
||
nsIFrame* pif = f->GetPrevInFlow();
|
||
if (pif && pif->GetParent() == this) {
|
||
overflowContainers->RemoveFrame(f);
|
||
moveToEOC.AppendFrame(nullptr, f);
|
||
}
|
||
f = next;
|
||
}
|
||
if (overflowContainers->IsEmpty()) {
|
||
Properties().Delete(OverflowContainersProperty());
|
||
}
|
||
MergeSortedExcessOverflowContainers(moveToEOC);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Merge our own overflow frames into our principal child list,
|
||
// except those that are a next-in-flow for one of our items.
|
||
DebugOnly<bool> foundOwnPushedChild = false;
|
||
{
|
||
nsFrameList* ourOverflow = GetOverflowFrames();
|
||
if (ourOverflow) {
|
||
nsFrameList items;
|
||
for (nsIFrame* f = ourOverflow->FirstChild(); f; ) {
|
||
nsIFrame* next = f->GetNextSibling();
|
||
nsIFrame* pif = f->GetPrevInFlow();
|
||
if (!pif || pif->GetParent() != this) {
|
||
MOZ_ASSERT(f->GetParent() == this);
|
||
ourOverflow->RemoveFrame(f);
|
||
items.AppendFrame(nullptr, f);
|
||
if (!pif) {
|
||
foundOwnPushedChild = true;
|
||
}
|
||
}
|
||
f = next;
|
||
}
|
||
::MergeSortedFrameLists(mFrames, items, GetContent());
|
||
if (ourOverflow->IsEmpty()) {
|
||
DestroyOverflowList();
|
||
}
|
||
}
|
||
}
|
||
|
||
// Pull up any first-in-flow children we might have pushed.
|
||
if (HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) {
|
||
RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
|
||
nsFrameList items;
|
||
auto nif = static_cast<nsGridContainerFrame*>(GetNextInFlow());
|
||
auto firstNIF = nif;
|
||
DebugOnly<bool> nifNeedPushedItem = false;
|
||
while (nif) {
|
||
nsFrameList nifItems;
|
||
for (nsIFrame* nifChild = nif->GetChildList(kPrincipalList).FirstChild();
|
||
nifChild; ) {
|
||
nsIFrame* next = nifChild->GetNextSibling();
|
||
if (!nifChild->GetPrevInFlow()) {
|
||
nif->StealFrame(nifChild);
|
||
ReparentFrame(nifChild, nif, this);
|
||
nifItems.AppendFrame(nullptr, nifChild);
|
||
nifNeedPushedItem = false;
|
||
}
|
||
nifChild = next;
|
||
}
|
||
::MergeSortedFrameLists(items, nifItems, GetContent());
|
||
|
||
if (!nif->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) {
|
||
MOZ_ASSERT(!nifNeedPushedItem || mDidPushItemsBitMayLie,
|
||
"NS_STATE_GRID_DID_PUSH_ITEMS lied");
|
||
break;
|
||
}
|
||
nifNeedPushedItem = true;
|
||
|
||
for (nsIFrame* nifChild = nif->GetChildList(kOverflowList).FirstChild();
|
||
nifChild; ) {
|
||
nsIFrame* next = nifChild->GetNextSibling();
|
||
if (!nifChild->GetPrevInFlow()) {
|
||
nif->StealFrame(nifChild);
|
||
ReparentFrame(nifChild, nif, this);
|
||
nifItems.AppendFrame(nullptr, nifChild);
|
||
nifNeedPushedItem = false;
|
||
}
|
||
nifChild = next;
|
||
}
|
||
::MergeSortedFrameLists(items, nifItems, GetContent());
|
||
|
||
nif->RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
|
||
nif = static_cast<nsGridContainerFrame*>(nif->GetNextInFlow());
|
||
MOZ_ASSERT(nif || !nifNeedPushedItem || mDidPushItemsBitMayLie,
|
||
"NS_STATE_GRID_DID_PUSH_ITEMS lied");
|
||
}
|
||
|
||
if (!items.IsEmpty()) {
|
||
// Pull up the first next-in-flow of the pulled up items too, unless its
|
||
// parent is our nif (to avoid leaving a hole there).
|
||
nsFrameList childNIFs;
|
||
nsFrameList childOCNIFs;
|
||
for (auto child : items) {
|
||
auto childNIF = child->GetNextInFlow();
|
||
if (childNIF && childNIF->GetParent() != firstNIF) {
|
||
auto parent = childNIF->GetParent();
|
||
parent->StealFrame(childNIF);
|
||
ReparentFrame(childNIF, parent, firstNIF);
|
||
if ((childNIF->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER)) {
|
||
childOCNIFs.AppendFrame(nullptr, childNIF);
|
||
} else {
|
||
childNIFs.AppendFrame(nullptr, childNIF);
|
||
}
|
||
}
|
||
}
|
||
// Merge items' NIFs into our NIF's respective overflow child lists.
|
||
firstNIF->MergeSortedOverflow(childNIFs);
|
||
firstNIF->MergeSortedExcessOverflowContainers(childOCNIFs);
|
||
}
|
||
|
||
MOZ_ASSERT(foundOwnPushedChild || !items.IsEmpty() || mDidPushItemsBitMayLie,
|
||
"NS_STATE_GRID_DID_PUSH_ITEMS lied");
|
||
::MergeSortedFrameLists(mFrames, items, GetContent());
|
||
}
|
||
|
||
RenumberList();
|
||
|
||
#ifdef DEBUG
|
||
mDidPushItemsBitMayLie = false;
|
||
SanityCheckGridItemsBeforeReflow();
|
||
#endif // DEBUG
|
||
|
||
mBaseline[0][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
mBaseline[0][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
mBaseline[1][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
mBaseline[1][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
|
||
const nsStylePosition* stylePos = aReflowInput.mStylePosition;
|
||
if (!prevInFlow) {
|
||
InitImplicitNamedAreas(stylePos);
|
||
}
|
||
GridReflowInput gridReflowInput(this, aReflowInput);
|
||
if (gridReflowInput.mIter.ItemsAreAlreadyInOrder()) {
|
||
AddStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
|
||
} else {
|
||
RemoveStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
|
||
}
|
||
if (gridReflowInput.mIter.AtEnd()) {
|
||
// We have no grid items, our parent should synthesize a baseline if needed.
|
||
AddStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
|
||
} else {
|
||
RemoveStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
|
||
}
|
||
const nscoord computedBSize = aReflowInput.ComputedBSize();
|
||
const nscoord computedISize = aReflowInput.ComputedISize();
|
||
const WritingMode& wm = gridReflowInput.mWM;
|
||
LogicalSize computedSize(wm, computedISize, computedBSize);
|
||
|
||
nscoord consumedBSize = 0;
|
||
nscoord bSize;
|
||
if (!prevInFlow) {
|
||
Grid grid;
|
||
grid.PlaceGridItems(gridReflowInput, aReflowInput.ComputedMinSize(),
|
||
computedSize, aReflowInput.ComputedMaxSize());
|
||
|
||
gridReflowInput.CalculateTrackSizes(grid, computedSize,
|
||
SizingConstraint::eNoConstraint);
|
||
bSize = computedSize.BSize(wm);
|
||
} else {
|
||
consumedBSize = ConsumedBSize(wm);
|
||
gridReflowInput.InitializeForContinuation(this, consumedBSize);
|
||
const uint32_t numRows = gridReflowInput.mRows.mSizes.Length();
|
||
bSize = gridReflowInput.mRows.GridLineEdge(numRows,
|
||
GridLineSide::eAfterGridGap);
|
||
}
|
||
if (computedBSize == NS_AUTOHEIGHT) {
|
||
bSize = NS_CSS_MINMAX(bSize,
|
||
aReflowInput.ComputedMinBSize(),
|
||
aReflowInput.ComputedMaxBSize());
|
||
} else {
|
||
bSize = computedBSize;
|
||
}
|
||
bSize = std::max(bSize - consumedBSize, 0);
|
||
auto& bp = gridReflowInput.mBorderPadding;
|
||
LogicalRect contentArea(wm, bp.IStart(wm), bp.BStart(wm),
|
||
computedISize, bSize);
|
||
|
||
if (!prevInFlow) {
|
||
// Apply 'align/justify-content' to the grid.
|
||
// CalculateTrackSizes did the columns.
|
||
gridReflowInput.mRows.AlignJustifyContent(stylePos, wm, contentArea.Size(wm));
|
||
}
|
||
|
||
bSize = ReflowChildren(gridReflowInput, contentArea, aDesiredSize, aStatus);
|
||
bSize = std::max(bSize - consumedBSize, 0);
|
||
|
||
// Skip our block-end border if we're INCOMPLETE.
|
||
if (!aStatus.IsComplete() &&
|
||
!gridReflowInput.mSkipSides.BEnd() &&
|
||
StyleBorder()->mBoxDecorationBreak !=
|
||
StyleBoxDecorationBreak::Clone) {
|
||
bp.BEnd(wm) = nscoord(0);
|
||
}
|
||
|
||
LogicalSize desiredSize(wm, computedISize + bp.IStartEnd(wm),
|
||
bSize + bp.BStartEnd(wm));
|
||
aDesiredSize.SetSize(wm, desiredSize);
|
||
nsRect frameRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height());
|
||
aDesiredSize.mOverflowAreas.UnionAllWith(frameRect);
|
||
|
||
// Convert INCOMPLETE -> OVERFLOW_INCOMPLETE and zero bsize if we're an OC.
|
||
if (HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
|
||
if (!aStatus.IsComplete()) {
|
||
aStatus.SetOverflowIncomplete();
|
||
aStatus.SetNextInFlowNeedsReflow();
|
||
}
|
||
bSize = 0;
|
||
desiredSize.BSize(wm) = bSize + bp.BStartEnd(wm);
|
||
aDesiredSize.SetSize(wm, desiredSize);
|
||
}
|
||
|
||
if (!gridReflowInput.mInFragmentainer) {
|
||
MOZ_ASSERT(gridReflowInput.mIter.IsValid());
|
||
auto sz = frameRect.Size();
|
||
CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
|
||
&gridReflowInput.mGridItems, gridReflowInput.mCols,
|
||
0, gridReflowInput.mCols.mSizes.Length(),
|
||
wm, sz, bp.IStart(wm),
|
||
bp.IEnd(wm), desiredSize.ISize(wm));
|
||
CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
|
||
&gridReflowInput.mGridItems, gridReflowInput.mRows,
|
||
0, gridReflowInput.mRows.mSizes.Length(),
|
||
wm, sz, bp.BStart(wm),
|
||
bp.BEnd(wm), desiredSize.BSize(wm));
|
||
} else {
|
||
// Only compute 'first baseline' if this fragment contains the first track.
|
||
// XXXmats maybe remove this condition? bug 1306499
|
||
BaselineSet baselines = BaselineSet::eNone;
|
||
if (gridReflowInput.mStartRow == 0 &&
|
||
gridReflowInput.mStartRow != gridReflowInput.mNextFragmentStartRow) {
|
||
baselines = BaselineSet::eFirst;
|
||
}
|
||
// Only compute 'last baseline' if this fragment contains the last track.
|
||
// XXXmats maybe remove this condition? bug 1306499
|
||
uint32_t len = gridReflowInput.mRows.mSizes.Length();
|
||
if (gridReflowInput.mStartRow != len &&
|
||
gridReflowInput.mNextFragmentStartRow == len) {
|
||
baselines = BaselineSet(baselines | BaselineSet::eLast);
|
||
}
|
||
Maybe<CSSOrderAwareFrameIterator> iter;
|
||
Maybe<nsTArray<GridItemInfo>> gridItems;
|
||
if (baselines != BaselineSet::eNone) {
|
||
// We need to create a new iterator and GridItemInfo array because we
|
||
// might have pushed some children at this point.
|
||
// Even if the gridReflowInput iterator is invalid we can reuse its
|
||
// state about order to optimize initialization of the new iterator.
|
||
// An ordered child list can't become unordered by pushing frames.
|
||
// An unordered list can become ordered in a number of cases, but we
|
||
// ignore that here and guess that the child list is still unordered.
|
||
// XXX this is O(n^2) in the number of items in this fragment: bug 1306705
|
||
using Filter = CSSOrderAwareFrameIterator::ChildFilter;
|
||
using Order = CSSOrderAwareFrameIterator::OrderState;
|
||
bool ordered = gridReflowInput.mIter.ItemsAreAlreadyInOrder();
|
||
auto orderState = ordered ? Order::eKnownOrdered : Order::eKnownUnordered;
|
||
iter.emplace(this, kPrincipalList, Filter::eSkipPlaceholders, orderState);
|
||
gridItems.emplace();
|
||
for (; !iter->AtEnd(); iter->Next()) {
|
||
auto child = **iter;
|
||
for (const auto& info : gridReflowInput.mGridItems) {
|
||
if (info.mFrame == child) {
|
||
gridItems->AppendElement(info);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
auto sz = frameRect.Size();
|
||
CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
|
||
gridReflowInput.mCols, 0,
|
||
gridReflowInput.mCols.mSizes.Length(), wm, sz,
|
||
bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm));
|
||
CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
|
||
gridReflowInput.mRows, gridReflowInput.mStartRow,
|
||
gridReflowInput.mNextFragmentStartRow, wm, sz,
|
||
bp.BStart(wm), bp.BEnd(wm), desiredSize.BSize(wm));
|
||
}
|
||
|
||
if (HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES)) {
|
||
// This state bit will never be cleared, since reflow can be called
|
||
// multiple times in fragmented grids, and it's challenging to scope
|
||
// the bit to only that sequence of calls. This is relatively harmless
|
||
// since this bit is only set by accessing a ChromeOnly property, and
|
||
// therefore can't unduly slow down normal web browsing.
|
||
|
||
// Now that we know column and row sizes and positions, set
|
||
// the ComputedGridTrackInfo and related properties
|
||
|
||
uint32_t colTrackCount = gridReflowInput.mCols.mSizes.Length();
|
||
nsTArray<nscoord> colTrackPositions(colTrackCount);
|
||
nsTArray<nscoord> colTrackSizes(colTrackCount);
|
||
nsTArray<uint32_t> colTrackStates(colTrackCount);
|
||
nsTArray<bool> colRemovedRepeatTracks(
|
||
gridReflowInput.mColFunctions.mRemovedRepeatTracks);
|
||
uint32_t col = 0;
|
||
for (const TrackSize& sz : gridReflowInput.mCols.mSizes) {
|
||
colTrackPositions.AppendElement(sz.mPosition);
|
||
colTrackSizes.AppendElement(sz.mBase);
|
||
bool isRepeat = ((col >= gridReflowInput.mColFunctions.mRepeatAutoStart) &&
|
||
(col < gridReflowInput.mColFunctions.mRepeatAutoEnd));
|
||
colTrackStates.AppendElement(
|
||
isRepeat ?
|
||
(uint32_t)mozilla::dom::GridTrackState::Repeat :
|
||
(uint32_t)mozilla::dom::GridTrackState::Static
|
||
);
|
||
|
||
col++;
|
||
}
|
||
ComputedGridTrackInfo* colInfo = new ComputedGridTrackInfo(
|
||
gridReflowInput.mColFunctions.mExplicitGridOffset,
|
||
gridReflowInput.mColFunctions.NumExplicitTracks(),
|
||
0,
|
||
col,
|
||
Move(colTrackPositions),
|
||
Move(colTrackSizes),
|
||
Move(colTrackStates),
|
||
Move(colRemovedRepeatTracks),
|
||
gridReflowInput.mColFunctions.mRepeatAutoStart);
|
||
Properties().Set(GridColTrackInfo(), colInfo);
|
||
|
||
uint32_t rowTrackCount = gridReflowInput.mRows.mSizes.Length();
|
||
nsTArray<nscoord> rowTrackPositions(rowTrackCount);
|
||
nsTArray<nscoord> rowTrackSizes(rowTrackCount);
|
||
nsTArray<uint32_t> rowTrackStates(rowTrackCount);
|
||
nsTArray<bool> rowRemovedRepeatTracks(
|
||
gridReflowInput.mRowFunctions.mRemovedRepeatTracks);
|
||
uint32_t row = 0;
|
||
for (const TrackSize& sz : gridReflowInput.mRows.mSizes) {
|
||
rowTrackPositions.AppendElement(sz.mPosition);
|
||
rowTrackSizes.AppendElement(sz.mBase);
|
||
bool isRepeat = ((row >= gridReflowInput.mRowFunctions.mRepeatAutoStart) &&
|
||
(row < gridReflowInput.mRowFunctions.mRepeatAutoEnd));
|
||
rowTrackStates.AppendElement(
|
||
isRepeat ?
|
||
(uint32_t)mozilla::dom::GridTrackState::Repeat :
|
||
(uint32_t)mozilla::dom::GridTrackState::Static
|
||
);
|
||
|
||
row++;
|
||
}
|
||
// Row info has to accomodate fragmentation of the grid, which may happen in
|
||
// later calls to Reflow. For now, presume that no more fragmentation will
|
||
// occur.
|
||
ComputedGridTrackInfo* rowInfo = new ComputedGridTrackInfo(
|
||
gridReflowInput.mRowFunctions.mExplicitGridOffset,
|
||
gridReflowInput.mRowFunctions.NumExplicitTracks(),
|
||
gridReflowInput.mStartRow,
|
||
row,
|
||
Move(rowTrackPositions),
|
||
Move(rowTrackSizes),
|
||
Move(rowTrackStates),
|
||
Move(rowRemovedRepeatTracks),
|
||
gridReflowInput.mRowFunctions.mRepeatAutoStart);
|
||
Properties().Set(GridRowTrackInfo(), rowInfo);
|
||
|
||
if (prevInFlow) {
|
||
// This frame is fragmenting rows from a previous frame, so patch up
|
||
// the prior GridRowTrackInfo with a new end row.
|
||
|
||
// FIXME: This can be streamlined and/or removed when bug 1151204 lands.
|
||
|
||
ComputedGridTrackInfo* priorRowInfo =
|
||
prevInFlow->Properties().Get(GridRowTrackInfo());
|
||
|
||
// Adjust track positions based on the first track in this fragment.
|
||
if (priorRowInfo->mPositions.Length() >
|
||
priorRowInfo->mStartFragmentTrack) {
|
||
nscoord delta =
|
||
priorRowInfo->mPositions[priorRowInfo->mStartFragmentTrack];
|
||
for (nscoord& pos : priorRowInfo->mPositions) {
|
||
pos -= delta;
|
||
}
|
||
}
|
||
|
||
ComputedGridTrackInfo* revisedPriorRowInfo = new ComputedGridTrackInfo(
|
||
priorRowInfo->mNumLeadingImplicitTracks,
|
||
priorRowInfo->mNumExplicitTracks,
|
||
priorRowInfo->mStartFragmentTrack,
|
||
gridReflowInput.mStartRow,
|
||
Move(priorRowInfo->mPositions),
|
||
Move(priorRowInfo->mSizes),
|
||
Move(priorRowInfo->mStates),
|
||
Move(priorRowInfo->mRemovedRepeatTracks),
|
||
priorRowInfo->mRepeatFirstTrack);
|
||
prevInFlow->Properties().Set(GridRowTrackInfo(), revisedPriorRowInfo);
|
||
}
|
||
|
||
// Generate the line info properties. We need to provide the number of
|
||
// repeat tracks produced in the reflow. Only explicit names are assigned
|
||
// to lines here; the mozilla::dom::GridLines class will later extract
|
||
// implicit names from grid areas and assign them to the appropriate lines.
|
||
|
||
// Generate column lines first.
|
||
uint32_t capacity = gridReflowInput.mCols.mSizes.Length();
|
||
const nsStyleGridTemplate& gridColTemplate =
|
||
gridReflowInput.mGridStyle->mGridTemplateColumns;
|
||
nsTArray<nsTArray<nsString>> columnLineNames(capacity);
|
||
for (col = 0; col <= gridReflowInput.mCols.mSizes.Length(); col++) {
|
||
// Offset col by the explicit grid offset, to get the original names.
|
||
nsTArray<nsString> explicitNames =
|
||
gridReflowInput.mCols.GetExplicitLineNamesAtIndex(
|
||
gridColTemplate,
|
||
gridReflowInput.mColFunctions,
|
||
col - gridReflowInput.mColFunctions.mExplicitGridOffset);
|
||
|
||
columnLineNames.AppendElement(explicitNames);
|
||
}
|
||
ComputedGridLineInfo* columnLineInfo = new ComputedGridLineInfo(
|
||
Move(columnLineNames),
|
||
gridColTemplate.mRepeatAutoLineNameListBefore,
|
||
gridColTemplate.mRepeatAutoLineNameListAfter);
|
||
Properties().Set(GridColumnLineInfo(), columnLineInfo);
|
||
|
||
// Generate row lines next.
|
||
capacity = gridReflowInput.mRows.mSizes.Length();
|
||
const nsStyleGridTemplate& gridRowTemplate =
|
||
gridReflowInput.mGridStyle->mGridTemplateRows;
|
||
nsTArray<nsTArray<nsString>> rowLineNames(capacity);
|
||
for (row = 0; row <= gridReflowInput.mRows.mSizes.Length(); row++) {
|
||
// Offset row by the explicit grid offset, to get the original names.
|
||
nsTArray<nsString> explicitNames =
|
||
gridReflowInput.mRows.GetExplicitLineNamesAtIndex(
|
||
gridRowTemplate,
|
||
gridReflowInput.mRowFunctions,
|
||
row - gridReflowInput.mRowFunctions.mExplicitGridOffset);
|
||
|
||
rowLineNames.AppendElement(explicitNames);
|
||
}
|
||
ComputedGridLineInfo* rowLineInfo = new ComputedGridLineInfo(
|
||
Move(rowLineNames),
|
||
gridRowTemplate.mRepeatAutoLineNameListBefore,
|
||
gridRowTemplate.mRepeatAutoLineNameListAfter);
|
||
Properties().Set(GridRowLineInfo(), rowLineInfo);
|
||
|
||
// Generate area info for explicit areas. Implicit areas are handled
|
||
// elsewhere.
|
||
if (gridReflowInput.mGridStyle->mGridTemplateAreas) {
|
||
nsTArray<css::GridNamedArea>* areas = new nsTArray<css::GridNamedArea>(
|
||
gridReflowInput.mGridStyle->mGridTemplateAreas->mNamedAreas);
|
||
Properties().Set(ExplicitNamedAreasProperty(), areas);
|
||
} else {
|
||
Properties().Delete(ExplicitNamedAreasProperty());
|
||
}
|
||
}
|
||
|
||
if (!prevInFlow) {
|
||
SharedGridData* sharedGridData = Properties().Get(SharedGridData::Prop());
|
||
if (!aStatus.IsFullyComplete()) {
|
||
if (!sharedGridData) {
|
||
sharedGridData = new SharedGridData;
|
||
Properties().Set(SharedGridData::Prop(), sharedGridData);
|
||
}
|
||
sharedGridData->mCols.mSizes.Clear();
|
||
sharedGridData->mCols.mSizes.SwapElements(gridReflowInput.mCols.mSizes);
|
||
sharedGridData->mCols.mContentBoxSize = gridReflowInput.mCols.mContentBoxSize;
|
||
sharedGridData->mCols.mBaselineSubtreeAlign[0] =
|
||
gridReflowInput.mCols.mBaselineSubtreeAlign[0];
|
||
sharedGridData->mCols.mBaselineSubtreeAlign[1] =
|
||
gridReflowInput.mCols.mBaselineSubtreeAlign[1];
|
||
sharedGridData->mRows.mSizes.Clear();
|
||
sharedGridData->mRows.mSizes.SwapElements(gridReflowInput.mRows.mSizes);
|
||
// Save the original row grid sizes and gaps so we can restore them later
|
||
// in GridReflowInput::Initialize for the continuations.
|
||
auto& origRowData = sharedGridData->mOriginalRowData;
|
||
origRowData.ClearAndRetainStorage();
|
||
origRowData.SetCapacity(sharedGridData->mRows.mSizes.Length());
|
||
nscoord prevTrackEnd = 0;
|
||
for (auto& sz : sharedGridData->mRows.mSizes) {
|
||
SharedGridData::RowData data = {sz.mBase, sz.mPosition - prevTrackEnd};
|
||
origRowData.AppendElement(data);
|
||
prevTrackEnd = sz.mPosition + sz.mBase;
|
||
}
|
||
sharedGridData->mRows.mContentBoxSize = gridReflowInput.mRows.mContentBoxSize;
|
||
sharedGridData->mRows.mBaselineSubtreeAlign[0] =
|
||
gridReflowInput.mRows.mBaselineSubtreeAlign[0];
|
||
sharedGridData->mRows.mBaselineSubtreeAlign[1] =
|
||
gridReflowInput.mRows.mBaselineSubtreeAlign[1];
|
||
sharedGridData->mGridItems.Clear();
|
||
sharedGridData->mGridItems.SwapElements(gridReflowInput.mGridItems);
|
||
sharedGridData->mAbsPosItems.Clear();
|
||
sharedGridData->mAbsPosItems.SwapElements(gridReflowInput.mAbsPosItems);
|
||
|
||
sharedGridData->mGenerateComputedGridInfo =
|
||
HasAnyStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES);
|
||
} else if (sharedGridData && !GetNextInFlow()) {
|
||
Properties().Delete(SharedGridData::Prop());
|
||
}
|
||
}
|
||
|
||
FinishAndStoreOverflow(&aDesiredSize);
|
||
NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize);
|
||
}
|
||
|
||
nscoord
|
||
nsGridContainerFrame::IntrinsicISize(nsRenderingContext* aRenderingContext,
|
||
IntrinsicISizeType aType)
|
||
{
|
||
RenumberList();
|
||
|
||
// Calculate the sum of column sizes under intrinsic sizing.
|
||
// http://dev.w3.org/csswg/css-grid/#intrinsic-sizes
|
||
GridReflowInput state(this, *aRenderingContext);
|
||
InitImplicitNamedAreas(state.mGridStyle); // XXX optimize
|
||
|
||
auto GetDefiniteSizes = [] (const nsStyleCoord& aMinCoord,
|
||
const nsStyleCoord& aSizeCoord,
|
||
const nsStyleCoord& aMaxCoord,
|
||
nscoord* aMin,
|
||
nscoord* aSize,
|
||
nscoord* aMax) {
|
||
if (aMinCoord.ConvertsToLength()) {
|
||
*aMin = aMinCoord.ToLength();
|
||
}
|
||
if (aMaxCoord.ConvertsToLength()) {
|
||
*aMax = std::max(*aMin, aMaxCoord.ToLength());
|
||
}
|
||
if (aSizeCoord.ConvertsToLength()) {
|
||
*aSize = Clamp(aSizeCoord.ToLength(), *aMin, *aMax);
|
||
}
|
||
};
|
||
// The min/sz/max sizes are the input to the "repeat-to-fill" algorithm:
|
||
// https://drafts.csswg.org/css-grid/#auto-repeat
|
||
// They're only used for auto-repeat so we skip computing them otherwise.
|
||
LogicalSize min(state.mWM, 0, 0);
|
||
LogicalSize sz(state.mWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
|
||
LogicalSize max(state.mWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
|
||
if (state.mColFunctions.mHasRepeatAuto) {
|
||
GetDefiniteSizes(state.mGridStyle->MinISize(state.mWM),
|
||
state.mGridStyle->ISize(state.mWM),
|
||
state.mGridStyle->MaxISize(state.mWM),
|
||
&min.ISize(state.mWM),
|
||
&sz.ISize(state.mWM),
|
||
&max.ISize(state.mWM));
|
||
}
|
||
if (state.mRowFunctions.mHasRepeatAuto &&
|
||
!(state.mGridStyle->mGridAutoFlow & NS_STYLE_GRID_AUTO_FLOW_ROW)) {
|
||
// Only 'grid-auto-flow:column' can create new implicit columns, so that's
|
||
// the only case where our block-size can affect the number of columns.
|
||
GetDefiniteSizes(state.mGridStyle->MinBSize(state.mWM),
|
||
state.mGridStyle->BSize(state.mWM),
|
||
state.mGridStyle->MaxBSize(state.mWM),
|
||
&min.BSize(state.mWM),
|
||
&sz.BSize(state.mWM),
|
||
&max.BSize(state.mWM));
|
||
}
|
||
|
||
Grid grid;
|
||
grid.PlaceGridItems(state, min, sz, max); // XXX optimize
|
||
if (grid.mGridColEnd == 0) {
|
||
return 0;
|
||
}
|
||
state.mCols.Initialize(state.mColFunctions, state.mGridStyle->mGridColumnGap,
|
||
grid.mGridColEnd, NS_UNCONSTRAINEDSIZE);
|
||
auto constraint = aType == nsLayoutUtils::MIN_ISIZE ?
|
||
SizingConstraint::eMinContent : SizingConstraint::eMaxContent;
|
||
state.mCols.CalculateSizes(state, state.mGridItems, state.mColFunctions,
|
||
NS_UNCONSTRAINEDSIZE, &GridArea::mCols,
|
||
constraint);
|
||
return state.mCols.BackComputedIntrinsicSize(state.mColFunctions,
|
||
state.mGridStyle->mGridColumnGap);
|
||
}
|
||
|
||
nscoord
|
||
nsGridContainerFrame::GetMinISize(nsRenderingContext* aRC)
|
||
{
|
||
DISPLAY_MIN_WIDTH(this, mCachedMinISize);
|
||
if (mCachedMinISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
|
||
mCachedMinISize = IntrinsicISize(aRC, nsLayoutUtils::MIN_ISIZE);
|
||
}
|
||
return mCachedMinISize;
|
||
}
|
||
|
||
nscoord
|
||
nsGridContainerFrame::GetPrefISize(nsRenderingContext* aRC)
|
||
{
|
||
DISPLAY_PREF_WIDTH(this, mCachedPrefISize);
|
||
if (mCachedPrefISize == NS_INTRINSIC_WIDTH_UNKNOWN) {
|
||
mCachedPrefISize = IntrinsicISize(aRC, nsLayoutUtils::PREF_ISIZE);
|
||
}
|
||
return mCachedPrefISize;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::MarkIntrinsicISizesDirty()
|
||
{
|
||
mCachedMinISize = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
mCachedPrefISize = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
mBaseline[0][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
mBaseline[0][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
mBaseline[1][0] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
mBaseline[1][1] = NS_INTRINSIC_WIDTH_UNKNOWN;
|
||
nsContainerFrame::MarkIntrinsicISizesDirty();
|
||
}
|
||
|
||
nsIAtom*
|
||
nsGridContainerFrame::GetType() const
|
||
{
|
||
return nsGkAtoms::gridContainerFrame;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
|
||
const nsRect& aDirtyRect,
|
||
const nsDisplayListSet& aLists)
|
||
{
|
||
DisplayBorderBackgroundOutline(aBuilder, aLists);
|
||
if (GetPrevInFlow()) {
|
||
DisplayOverflowContainers(aBuilder, aDirtyRect, aLists);
|
||
}
|
||
|
||
// Our children are all grid-level boxes, which behave the same as
|
||
// inline-blocks in painting, so their borders/backgrounds all go on
|
||
// the BlockBorderBackgrounds list.
|
||
typedef CSSOrderAwareFrameIterator::OrderState OrderState;
|
||
OrderState order = HasAnyStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
|
||
? OrderState::eKnownOrdered
|
||
: OrderState::eKnownUnordered;
|
||
CSSOrderAwareFrameIterator iter(this, kPrincipalList,
|
||
CSSOrderAwareFrameIterator::eIncludeAll, order);
|
||
for (; !iter.AtEnd(); iter.Next()) {
|
||
nsIFrame* child = *iter;
|
||
BuildDisplayListForChild(aBuilder, child, aDirtyRect, aLists,
|
||
::GetDisplayFlagsForGridItem(child));
|
||
}
|
||
}
|
||
|
||
bool
|
||
nsGridContainerFrame::DrainSelfOverflowList()
|
||
{
|
||
// Unlike nsContainerFrame::DrainSelfOverflowList we need to merge these lists
|
||
// so that the resulting mFrames is in document content order.
|
||
// NOTE: nsContainerFrame::AppendFrames/InsertFrames calls this method.
|
||
AutoFrameListPtr overflowFrames(PresContext(), StealOverflowFrames());
|
||
if (overflowFrames) {
|
||
::MergeSortedFrameLists(mFrames, *overflowFrames, GetContent());
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::AppendFrames(ChildListID aListID, nsFrameList& aFrameList)
|
||
{
|
||
NoteNewChildren(aListID, aFrameList);
|
||
nsContainerFrame::AppendFrames(aListID, aFrameList);
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::InsertFrames(ChildListID aListID, nsIFrame* aPrevFrame,
|
||
nsFrameList& aFrameList)
|
||
{
|
||
NoteNewChildren(aListID, aFrameList);
|
||
nsContainerFrame::InsertFrames(aListID, aPrevFrame, aFrameList);
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::RemoveFrame(ChildListID aListID, nsIFrame* aOldFrame)
|
||
{
|
||
#ifdef DEBUG
|
||
ChildListIDs supportedLists =
|
||
kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList;
|
||
MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list");
|
||
|
||
// Note that kPrincipalList doesn't mean aOldFrame must be on that list.
|
||
// It can also be on kOverflowList, in which case it might be a pushed
|
||
// item, and if it's the only pushed item our DID_PUSH_ITEMS bit will lie.
|
||
if (aListID == kPrincipalList && !aOldFrame->GetPrevInFlow()) {
|
||
// Since the bit may lie, set the mDidPushItemsBitMayLie value to true for
|
||
// ourself and for all our contiguous previous-in-flow nsGridContainerFrames.
|
||
nsGridContainerFrame* frameThatMayLie = this;
|
||
do {
|
||
frameThatMayLie->mDidPushItemsBitMayLie = true;
|
||
frameThatMayLie = static_cast<nsGridContainerFrame*>(
|
||
frameThatMayLie->GetPrevInFlow());
|
||
} while (frameThatMayLie);
|
||
}
|
||
#endif
|
||
|
||
nsContainerFrame::RemoveFrame(aListID, aOldFrame);
|
||
}
|
||
|
||
uint16_t
|
||
nsGridContainerFrame::CSSAlignmentForAbsPosChild(const ReflowInput& aChildRI,
|
||
LogicalAxis aLogicalAxis) const
|
||
{
|
||
MOZ_ASSERT(aChildRI.mFrame->IsAbsolutelyPositioned(),
|
||
"This method should only be called for abspos children");
|
||
|
||
uint16_t alignment = (aLogicalAxis == eLogicalAxisInline) ?
|
||
aChildRI.mStylePosition->UsedJustifySelf(StyleContext()) :
|
||
aChildRI.mStylePosition->UsedAlignSelf(StyleContext());
|
||
|
||
// XXX strip off <overflow-position> bits until we implement it
|
||
// (bug 1311892)
|
||
alignment &= ~NS_STYLE_ALIGN_FLAG_BITS;
|
||
|
||
if (alignment == NS_STYLE_ALIGN_NORMAL) {
|
||
// "the 'normal' keyword behaves as 'start' on replaced
|
||
// absolutely-positioned boxes, and behaves as 'stretch' on all other
|
||
// absolutely-positioned boxes."
|
||
// https://drafts.csswg.org/css-align/#align-abspos
|
||
// https://drafts.csswg.org/css-align/#justify-abspos
|
||
alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced) ?
|
||
NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_STRETCH;
|
||
} else if (alignment == NS_STYLE_ALIGN_FLEX_START) {
|
||
alignment = NS_STYLE_ALIGN_START;
|
||
} else if (alignment == NS_STYLE_ALIGN_FLEX_END) {
|
||
alignment = NS_STYLE_ALIGN_END;
|
||
} else if (alignment == NS_STYLE_ALIGN_LEFT ||
|
||
alignment == NS_STYLE_ALIGN_RIGHT) {
|
||
if (aLogicalAxis == eLogicalAxisInline) {
|
||
const bool isLeft = (alignment == NS_STYLE_ALIGN_LEFT);
|
||
WritingMode wm = GetWritingMode();
|
||
alignment = (isLeft == wm.IsBidiLTR()) ? NS_STYLE_ALIGN_START
|
||
: NS_STYLE_ALIGN_END;
|
||
} else {
|
||
alignment = NS_STYLE_ALIGN_START;
|
||
}
|
||
} else if (alignment == NS_STYLE_ALIGN_BASELINE) {
|
||
alignment = NS_STYLE_ALIGN_START;
|
||
} else if (alignment == NS_STYLE_ALIGN_LAST_BASELINE) {
|
||
alignment = NS_STYLE_ALIGN_END;
|
||
}
|
||
|
||
return alignment;
|
||
}
|
||
|
||
nscoord
|
||
nsGridContainerFrame::SynthesizeBaseline(
|
||
const FindItemInGridOrderResult& aGridOrderItem,
|
||
LogicalAxis aAxis,
|
||
BaselineSharingGroup aGroup,
|
||
const nsSize& aCBPhysicalSize,
|
||
nscoord aCBSize,
|
||
WritingMode aCBWM)
|
||
{
|
||
if (MOZ_UNLIKELY(!aGridOrderItem.mItem)) {
|
||
// No item in this fragment - synthesize a baseline from our border-box.
|
||
return ::SynthesizeBaselineFromBorderBox(aGroup, aCBWM, aCBSize);
|
||
}
|
||
auto GetBBaseline = [] (BaselineSharingGroup aGroup, WritingMode aWM,
|
||
const nsIFrame* aFrame, nscoord* aBaseline) {
|
||
return aGroup == BaselineSharingGroup::eFirst ?
|
||
nsLayoutUtils::GetFirstLineBaseline(aWM, aFrame, aBaseline) :
|
||
nsLayoutUtils::GetLastLineBaseline(aWM, aFrame, aBaseline);
|
||
};
|
||
nsIFrame* child = aGridOrderItem.mItem->mFrame;
|
||
nsGridContainerFrame* grid = do_QueryFrame(child);
|
||
auto childWM = child->GetWritingMode();
|
||
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
|
||
nscoord baseline;
|
||
nscoord start;
|
||
nscoord size;
|
||
if (aAxis == eLogicalAxisBlock) {
|
||
start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).B(aCBWM);
|
||
size = child->BSize(aCBWM);
|
||
if (grid && aGridOrderItem.mIsInEdgeTrack) {
|
||
isOrthogonal ? grid->GetIBaseline(aGroup, &baseline) :
|
||
grid->GetBBaseline(aGroup, &baseline);
|
||
} else if (!isOrthogonal && aGridOrderItem.mIsInEdgeTrack) {
|
||
baseline = child->BaselineBOffset(childWM, aGroup, AlignmentContext::eGrid);
|
||
} else {
|
||
baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
|
||
}
|
||
} else {
|
||
start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).I(aCBWM);
|
||
size = child->ISize(aCBWM);
|
||
if (grid && aGridOrderItem.mIsInEdgeTrack) {
|
||
isOrthogonal ? grid->GetBBaseline(aGroup, &baseline) :
|
||
grid->GetIBaseline(aGroup, &baseline);
|
||
} else if (isOrthogonal && aGridOrderItem.mIsInEdgeTrack &&
|
||
GetBBaseline(aGroup, childWM, child, &baseline)) {
|
||
if (aGroup == BaselineSharingGroup::eLast) {
|
||
baseline = size - baseline; // convert to distance from border-box end
|
||
}
|
||
} else {
|
||
baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
|
||
}
|
||
}
|
||
return aGroup == BaselineSharingGroup::eFirst ? start + baseline :
|
||
aCBSize - start - size + baseline;
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::CalculateBaselines(
|
||
BaselineSet aBaselineSet,
|
||
CSSOrderAwareFrameIterator* aIter,
|
||
const nsTArray<GridItemInfo>* aGridItems,
|
||
const Tracks& aTracks,
|
||
uint32_t aFragmentStartTrack,
|
||
uint32_t aFirstExcludedTrack,
|
||
WritingMode aWM,
|
||
const nsSize& aCBPhysicalSize,
|
||
nscoord aCBBorderPaddingStart,
|
||
nscoord aCBBorderPaddingEnd,
|
||
nscoord aCBSize)
|
||
{
|
||
const auto axis = aTracks.mAxis;
|
||
auto firstBaseline = aTracks.mBaseline[BaselineSharingGroup::eFirst];
|
||
if (!(aBaselineSet & BaselineSet::eFirst)) {
|
||
mBaseline[axis][BaselineSharingGroup::eFirst] =
|
||
::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::eFirst, aWM,
|
||
aCBSize);
|
||
} else if (firstBaseline == NS_INTRINSIC_WIDTH_UNKNOWN) {
|
||
FindItemInGridOrderResult gridOrderFirstItem =
|
||
FindFirstItemInGridOrder(*aIter, *aGridItems,
|
||
axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
|
||
axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
|
||
aFragmentStartTrack);
|
||
mBaseline[axis][BaselineSharingGroup::eFirst] =
|
||
SynthesizeBaseline(gridOrderFirstItem,
|
||
axis,
|
||
BaselineSharingGroup::eFirst,
|
||
aCBPhysicalSize,
|
||
aCBSize,
|
||
aWM);
|
||
} else {
|
||
// We have a 'first baseline' group in the start track in this fragment.
|
||
// Convert it from track to grid container border-box coordinates.
|
||
MOZ_ASSERT(!aGridItems->IsEmpty());
|
||
nscoord gapBeforeStartTrack = aFragmentStartTrack == 0 ?
|
||
aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::eAfterGridGap) :
|
||
nscoord(0); // no content gap at start of fragment
|
||
mBaseline[axis][BaselineSharingGroup::eFirst] =
|
||
aCBBorderPaddingStart + gapBeforeStartTrack + firstBaseline;
|
||
}
|
||
|
||
auto lastBaseline = aTracks.mBaseline[BaselineSharingGroup::eLast];
|
||
if (!(aBaselineSet & BaselineSet::eLast)) {
|
||
mBaseline[axis][BaselineSharingGroup::eLast] =
|
||
::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::eLast, aWM,
|
||
aCBSize);
|
||
} else if (lastBaseline == NS_INTRINSIC_WIDTH_UNKNOWN) {
|
||
// For finding items for the 'last baseline' we need to create a reverse
|
||
// iterator ('aIter' is the forward iterator from the GridReflowInput).
|
||
using Iter = ReverseCSSOrderAwareFrameIterator;
|
||
auto orderState = aIter->ItemsAreAlreadyInOrder() ?
|
||
Iter::OrderState::eKnownOrdered : Iter::OrderState::eKnownUnordered;
|
||
Iter iter(this, kPrincipalList, Iter::ChildFilter::eSkipPlaceholders,
|
||
orderState);
|
||
iter.SetItemCount(aGridItems->Length());
|
||
FindItemInGridOrderResult gridOrderLastItem =
|
||
FindLastItemInGridOrder(iter, *aGridItems,
|
||
axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
|
||
axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
|
||
aFragmentStartTrack, aFirstExcludedTrack);
|
||
mBaseline[axis][BaselineSharingGroup::eLast] =
|
||
SynthesizeBaseline(gridOrderLastItem,
|
||
axis,
|
||
BaselineSharingGroup::eLast,
|
||
aCBPhysicalSize,
|
||
aCBSize,
|
||
aWM);
|
||
} else {
|
||
// We have a 'last baseline' group in the end track in this fragment.
|
||
// Convert it from track to grid container border-box coordinates.
|
||
MOZ_ASSERT(!aGridItems->IsEmpty());
|
||
auto borderBoxStartToEndOfEndTrack = aCBBorderPaddingStart +
|
||
aTracks.GridLineEdge(aFirstExcludedTrack, GridLineSide::eBeforeGridGap) -
|
||
aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::eBeforeGridGap);
|
||
mBaseline[axis][BaselineSharingGroup::eLast] =
|
||
(aCBSize - borderBoxStartToEndOfEndTrack) + lastBaseline;
|
||
}
|
||
}
|
||
|
||
#ifdef DEBUG_FRAME_DUMP
|
||
nsresult
|
||
nsGridContainerFrame::GetFrameName(nsAString& aResult) const
|
||
{
|
||
return MakeFrameName(NS_LITERAL_STRING("GridContainer"), aResult);
|
||
}
|
||
#endif
|
||
|
||
void
|
||
nsGridContainerFrame::NoteNewChildren(ChildListID aListID,
|
||
const nsFrameList& aFrameList)
|
||
{
|
||
#ifdef DEBUG
|
||
ChildListIDs supportedLists =
|
||
kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList;
|
||
MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list");
|
||
#endif
|
||
|
||
nsIPresShell* shell = PresContext()->PresShell();
|
||
for (auto pif = GetPrevInFlow(); pif; pif = pif->GetPrevInFlow()) {
|
||
if (aListID == kPrincipalList) {
|
||
pif->AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
|
||
}
|
||
shell->FrameNeedsReflow(pif, nsIPresShell::eTreeChange, NS_FRAME_IS_DIRTY);
|
||
}
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::MergeSortedOverflow(nsFrameList& aList)
|
||
{
|
||
if (aList.IsEmpty()) {
|
||
return;
|
||
}
|
||
MOZ_ASSERT(!aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER),
|
||
"this is the wrong list to put this child frame");
|
||
MOZ_ASSERT(aList.FirstChild()->GetParent() == this);
|
||
nsFrameList* overflow = GetOverflowFrames();
|
||
if (overflow) {
|
||
::MergeSortedFrameLists(*overflow, aList, GetContent());
|
||
} else {
|
||
SetOverflowFrames(aList);
|
||
}
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::MergeSortedExcessOverflowContainers(nsFrameList& aList)
|
||
{
|
||
if (aList.IsEmpty()) {
|
||
return;
|
||
}
|
||
MOZ_ASSERT(aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER),
|
||
"this is the wrong list to put this child frame");
|
||
MOZ_ASSERT(aList.FirstChild()->GetParent() == this);
|
||
nsFrameList* eoc = GetPropTableFrames(ExcessOverflowContainersProperty());
|
||
if (eoc) {
|
||
::MergeSortedFrameLists(*eoc, aList, GetContent());
|
||
} else {
|
||
SetPropTableFrames(new (PresContext()->PresShell()) nsFrameList(aList),
|
||
ExcessOverflowContainersProperty());
|
||
}
|
||
}
|
||
|
||
/* static */ nsGridContainerFrame::FindItemInGridOrderResult
|
||
nsGridContainerFrame::FindFirstItemInGridOrder(
|
||
CSSOrderAwareFrameIterator& aIter,
|
||
const nsTArray<GridItemInfo>& aGridItems,
|
||
LineRange GridArea::* aMajor,
|
||
LineRange GridArea::* aMinor,
|
||
uint32_t aFragmentStartTrack)
|
||
{
|
||
FindItemInGridOrderResult result = { nullptr, false };
|
||
uint32_t minMajor = kTranslatedMaxLine + 1;
|
||
uint32_t minMinor = kTranslatedMaxLine + 1;
|
||
aIter.Reset();
|
||
for (; !aIter.AtEnd(); aIter.Next()) {
|
||
const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
|
||
if ((item.mArea.*aMajor).mEnd <= aFragmentStartTrack) {
|
||
continue; // item doesn't span any track in this fragment
|
||
}
|
||
uint32_t major = (item.mArea.*aMajor).mStart;
|
||
uint32_t minor = (item.mArea.*aMinor).mStart;
|
||
if (major < minMajor || (major == minMajor && minor < minMinor)) {
|
||
minMajor = major;
|
||
minMinor = minor;
|
||
result.mItem = &item;
|
||
result.mIsInEdgeTrack = major == 0U;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* static */ nsGridContainerFrame::FindItemInGridOrderResult
|
||
nsGridContainerFrame::FindLastItemInGridOrder(
|
||
ReverseCSSOrderAwareFrameIterator& aIter,
|
||
const nsTArray<GridItemInfo>& aGridItems,
|
||
LineRange GridArea::* aMajor,
|
||
LineRange GridArea::* aMinor,
|
||
uint32_t aFragmentStartTrack,
|
||
uint32_t aFirstExcludedTrack)
|
||
{
|
||
FindItemInGridOrderResult result = { nullptr, false };
|
||
int32_t maxMajor = -1;
|
||
int32_t maxMinor = -1;
|
||
aIter.Reset();
|
||
int32_t lastMajorTrack = int32_t(aFirstExcludedTrack) - 1;
|
||
for (; !aIter.AtEnd(); aIter.Next()) {
|
||
const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
|
||
// Subtract 1 from the end line to get the item's last track index.
|
||
int32_t major = (item.mArea.*aMajor).mEnd - 1;
|
||
// Currently, this method is only called with aFirstExcludedTrack ==
|
||
// the first track in the next fragment, so we take the opportunity
|
||
// to assert this item really belongs to this fragment.
|
||
MOZ_ASSERT((item.mArea.*aMajor).mStart < aFirstExcludedTrack,
|
||
"found an item that belongs to some later fragment");
|
||
if (major < int32_t(aFragmentStartTrack)) {
|
||
continue; // item doesn't span any track in this fragment
|
||
}
|
||
int32_t minor = (item.mArea.*aMinor).mEnd - 1;
|
||
MOZ_ASSERT(minor >= 0 && major >= 0, "grid item must have span >= 1");
|
||
if (major > maxMajor || (major == maxMajor && minor > maxMinor)) {
|
||
maxMajor = major;
|
||
maxMinor = minor;
|
||
result.mItem = &item;
|
||
result.mIsInEdgeTrack = major == lastMajorTrack;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
void
|
||
nsGridContainerFrame::SetInitialChildList(ChildListID aListID,
|
||
nsFrameList& aChildList)
|
||
{
|
||
ChildListIDs supportedLists = kAbsoluteList | kFixedList | kPrincipalList;
|
||
MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list");
|
||
|
||
return nsContainerFrame::SetInitialChildList(aListID, aChildList);
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::SanityCheckGridItemsBeforeReflow() const
|
||
{
|
||
ChildListIDs absLists = kAbsoluteList | kFixedList |
|
||
kOverflowContainersList | kExcessOverflowContainersList;
|
||
ChildListIDs itemLists = kPrincipalList | kOverflowList;
|
||
for (const nsIFrame* f = this; f; f = f->GetNextInFlow()) {
|
||
MOZ_ASSERT(!f->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS),
|
||
"At start of reflow, we should've pulled items back from all "
|
||
"NIFs and cleared NS_STATE_GRID_DID_PUSH_ITEMS in the process");
|
||
for (nsIFrame::ChildListIterator childLists(f);
|
||
!childLists.IsDone(); childLists.Next()) {
|
||
if (!itemLists.Contains(childLists.CurrentID())) {
|
||
MOZ_ASSERT(absLists.Contains(childLists.CurrentID()),
|
||
"unexpected non-empty child list");
|
||
continue;
|
||
}
|
||
for (auto child : childLists.CurrentList()) {
|
||
MOZ_ASSERT(f == this || child->GetPrevInFlow(),
|
||
"all pushed items must be pulled up before reflow");
|
||
}
|
||
}
|
||
}
|
||
// If we have a prev-in-flow, each of its children's next-in-flow
|
||
// should be one of our children or be null.
|
||
const auto pif = static_cast<nsGridContainerFrame*>(GetPrevInFlow());
|
||
if (pif) {
|
||
const nsFrameList* oc =
|
||
GetPropTableFrames(OverflowContainersProperty());
|
||
const nsFrameList* eoc =
|
||
GetPropTableFrames(ExcessOverflowContainersProperty());
|
||
const nsFrameList* pifEOC =
|
||
pif->GetPropTableFrames(ExcessOverflowContainersProperty());
|
||
for (const nsIFrame* child : pif->GetChildList(kPrincipalList)) {
|
||
const nsIFrame* childNIF = child->GetNextInFlow();
|
||
MOZ_ASSERT(!childNIF || mFrames.ContainsFrame(childNIF) ||
|
||
(pifEOC && pifEOC->ContainsFrame(childNIF)) ||
|
||
(oc && oc->ContainsFrame(childNIF)) ||
|
||
(eoc && eoc->ContainsFrame(childNIF)));
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
nsGridContainerFrame::TrackSize::Dump() const
|
||
{
|
||
printf("mPosition=%d mBase=%d mLimit=%d", mPosition, mBase, mLimit);
|
||
|
||
printf(" min:");
|
||
if (mState & eAutoMinSizing) {
|
||
printf("auto ");
|
||
} else if (mState & eMinContentMinSizing) {
|
||
printf("min-content ");
|
||
} else if (mState & eMaxContentMinSizing) {
|
||
printf("max-content ");
|
||
}
|
||
|
||
printf(" max:");
|
||
if (mState & eAutoMaxSizing) {
|
||
printf("auto ");
|
||
} else if (mState & eMinContentMaxSizing) {
|
||
printf("min-content ");
|
||
} else if (mState & eMaxContentMaxSizing) {
|
||
printf("max-content ");
|
||
} else if (mState & eFlexMaxSizing) {
|
||
printf("flex ");
|
||
}
|
||
|
||
if (mState & eFrozen) {
|
||
printf("frozen ");
|
||
}
|
||
if (mState & eBreakBefore) {
|
||
printf("break-before ");
|
||
}
|
||
}
|
||
|
||
#endif // DEBUG
|
||
|
||
nsGridContainerFrame*
|
||
nsGridContainerFrame::GetGridFrameWithComputedInfo(nsIFrame* aFrame)
|
||
{
|
||
// Prepare a lambda function that we may need to call multiple times.
|
||
auto GetGridContainerFrame = [](nsIFrame *aFrame) {
|
||
// Return the aFrame's content insertion frame, iff it is
|
||
// a grid container.
|
||
nsGridContainerFrame* gridFrame = nullptr;
|
||
|
||
if (aFrame) {
|
||
nsIFrame* contentFrame = aFrame->GetContentInsertionFrame();
|
||
if (contentFrame &&
|
||
(contentFrame->GetType() == nsGkAtoms::gridContainerFrame)) {
|
||
gridFrame = static_cast<nsGridContainerFrame*>(contentFrame);
|
||
}
|
||
}
|
||
return gridFrame;
|
||
};
|
||
|
||
nsGridContainerFrame* gridFrame = GetGridContainerFrame(aFrame);
|
||
if (gridFrame) {
|
||
// if any of our properties are missing, generate them
|
||
bool reflowNeeded = (!gridFrame->Properties().Has(GridColTrackInfo()) ||
|
||
!gridFrame->Properties().Has(GridRowTrackInfo()) ||
|
||
!gridFrame->Properties().Has(GridColumnLineInfo()) ||
|
||
!gridFrame->Properties().Has(GridRowLineInfo()));
|
||
|
||
if (reflowNeeded) {
|
||
// Trigger a reflow that generates additional grid property data.
|
||
nsIPresShell* shell = gridFrame->PresContext()->PresShell();
|
||
gridFrame->AddStateBits(NS_STATE_GRID_GENERATE_COMPUTED_VALUES);
|
||
shell->FrameNeedsReflow(gridFrame,
|
||
nsIPresShell::eResize,
|
||
NS_FRAME_IS_DIRTY);
|
||
shell->FlushPendingNotifications(FlushType::Layout);
|
||
|
||
// Since the reflow may have side effects, get the grid frame again.
|
||
gridFrame = GetGridContainerFrame(aFrame);
|
||
|
||
// Assert the grid properties are present
|
||
MOZ_ASSERT(!gridFrame ||
|
||
gridFrame->Properties().Has(GridColTrackInfo()));
|
||
MOZ_ASSERT(!gridFrame ||
|
||
gridFrame->Properties().Has(GridRowTrackInfo()));
|
||
MOZ_ASSERT(!gridFrame ||
|
||
gridFrame->Properties().Has(GridColumnLineInfo()));
|
||
MOZ_ASSERT(!gridFrame ||
|
||
gridFrame->Properties().Has(GridRowLineInfo()));
|
||
}
|
||
}
|
||
|
||
return gridFrame;
|
||
}
|