gecko-dev/gfx/layers/wr/IpcResourceUpdateQueue.cpp

327 строки
8.8 KiB
C++

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "IpcResourceUpdateQueue.h"
#include <string.h>
#include <algorithm>
#include "mozilla/Maybe.h"
#include "mozilla/ipc/SharedMemory.h"
namespace mozilla {
namespace wr {
ShmSegmentsWriter::ShmSegmentsWriter(ipc::IShmemAllocator* aAllocator, size_t aChunkSize)
: mShmAllocator(aAllocator)
, mCursor(0)
, mChunkSize(aChunkSize)
{
MOZ_ASSERT(mShmAllocator);
}
ShmSegmentsWriter::~ShmSegmentsWriter()
{
Clear();
}
layers::OffsetRange
ShmSegmentsWriter::Write(Range<uint8_t> aBytes)
{
const size_t start = mCursor;
const size_t length = aBytes.length();
if (length >= mChunkSize * 4) {
auto range = AllocLargeChunk(length);
uint8_t* dstPtr = mLargeAllocs.LastElement().get<uint8_t>();
memcpy(dstPtr, aBytes.begin().get(), length);
return range;
}
int remainingBytesToCopy = length;
size_t srcCursor = 0;
size_t dstCursor = mCursor;
while (remainingBytesToCopy > 0) {
if (dstCursor >= mSmallAllocs.Length() * mChunkSize) {
AllocChunk();
continue;
}
const size_t dstMaxOffset = mChunkSize * mSmallAllocs.Length();
const size_t dstBaseOffset = mChunkSize * (mSmallAllocs.Length() - 1);
MOZ_ASSERT(dstCursor >= dstBaseOffset);
MOZ_ASSERT(dstCursor <= dstMaxOffset);
size_t availableRange = dstMaxOffset - dstCursor;
size_t copyRange = std::min<int>(availableRange, remainingBytesToCopy);
uint8_t* srcPtr = &aBytes[srcCursor];
uint8_t* dstPtr = mSmallAllocs.LastElement().get<uint8_t>() + (dstCursor - dstBaseOffset);
memcpy(dstPtr, srcPtr, copyRange);
srcCursor += copyRange;
dstCursor += copyRange;
remainingBytesToCopy -= copyRange;
// sanity check
MOZ_ASSERT(remainingBytesToCopy >= 0);
}
mCursor += length;
return layers::OffsetRange(0, start, length);
}
void
ShmSegmentsWriter::AllocChunk()
{
ipc::Shmem shm;
auto shmType = ipc::SharedMemory::SharedMemoryType::TYPE_BASIC;
if (!mShmAllocator->AllocShmem(mChunkSize, shmType, &shm)) {
gfxCriticalError() << "ShmSegmentsWriter failed to allocate chunk #" << mSmallAllocs.Length();
MOZ_CRASH();
}
mSmallAllocs.AppendElement(shm);
}
layers::OffsetRange
ShmSegmentsWriter::AllocLargeChunk(size_t aSize)
{
ipc::Shmem shm;
auto shmType = ipc::SharedMemory::SharedMemoryType::TYPE_BASIC;
if (!mShmAllocator->AllocShmem(aSize, shmType, &shm)) {
gfxCriticalError() << "ShmSegmentsWriter failed to allocate large chunk of size " << aSize;
MOZ_CRASH();
}
mLargeAllocs.AppendElement(shm);
return layers::OffsetRange(mLargeAllocs.Length(), 0, aSize);
}
void
ShmSegmentsWriter::Flush(nsTArray<ipc::Shmem>& aSmallAllocs, nsTArray<ipc::Shmem>& aLargeAllocs)
{
aSmallAllocs.Clear();
aLargeAllocs.Clear();
mSmallAllocs.SwapElements(aSmallAllocs);
mLargeAllocs.SwapElements(aLargeAllocs);
}
void
ShmSegmentsWriter::Clear()
{
if (mShmAllocator) {
for (auto& shm : mSmallAllocs) {
mShmAllocator->DeallocShmem(shm);
}
for (auto& shm : mLargeAllocs) {
mShmAllocator->DeallocShmem(shm);
}
}
mSmallAllocs.Clear();
mLargeAllocs.Clear();
mCursor = 0;
}
ShmSegmentsReader::ShmSegmentsReader(const nsTArray<ipc::Shmem>& aSmallShmems,
const nsTArray<ipc::Shmem>& aLargeShmems)
: mSmallAllocs(aSmallShmems)
, mLargeAllocs(aLargeShmems)
, mChunkSize(0)
{
if (mSmallAllocs.IsEmpty()) {
return;
}
mChunkSize = mSmallAllocs[0].Size<uint8_t>();
// Check that all shmems are readable and have the same size. If anything
// isn't right, set mChunkSize to zero which signifies that the reader is
// in an invalid state and Read calls will return false;
for (const auto& shm : mSmallAllocs) {
if (!shm.IsReadable()
|| shm.Size<uint8_t>() != mChunkSize
|| shm.get<uint8_t>() == nullptr) {
mChunkSize = 0;
return;
}
}
for (const auto& shm : mLargeAllocs) {
if (!shm.IsReadable()
|| shm.get<uint8_t>() == nullptr) {
mChunkSize = 0;
return;
}
}
}
bool
ShmSegmentsReader::ReadLarge(const layers::OffsetRange& aRange, wr::Vec_u8& aInto)
{
// source = zero is for small allocs.
MOZ_RELEASE_ASSERT(aRange.source() != 0);
if (aRange.source() > mLargeAllocs.Length()) {
return false;
}
size_t id = aRange.source() - 1;
const ipc::Shmem& shm = mLargeAllocs[id];
if (shm.Size<uint8_t>() < aRange.length()) {
return false;
}
uint8_t* srcPtr = shm.get<uint8_t>();
aInto.PushBytes(Range<uint8_t>(srcPtr, aRange.length()));
return true;
}
bool
ShmSegmentsReader::Read(const layers::OffsetRange& aRange, wr::Vec_u8& aInto)
{
if (aRange.length() == 0) {
return true;
}
if (aRange.source() != 0) {
return ReadLarge(aRange, aInto);
}
if (mChunkSize == 0) {
return false;
}
if (aRange.start() + aRange.length() > mChunkSize * mSmallAllocs.Length()) {
return false;
}
size_t initialLength = aInto.Length();
size_t srcCursor = aRange.start();
int remainingBytesToCopy = aRange.length();
while (remainingBytesToCopy > 0) {
const size_t shm_idx = srcCursor / mChunkSize;
const size_t ptrOffset = srcCursor % mChunkSize;
const size_t copyRange = std::min<int>(remainingBytesToCopy, mChunkSize - ptrOffset);
uint8_t* srcPtr = mSmallAllocs[shm_idx].get<uint8_t>() + ptrOffset;
aInto.PushBytes(Range<uint8_t>(srcPtr, copyRange));
srcCursor += copyRange;
remainingBytesToCopy -= copyRange;
}
return aInto.Length() - initialLength == aRange.length();
}
IpcResourceUpdateQueue::IpcResourceUpdateQueue(ipc::IShmemAllocator* aAllocator,
size_t aChunkSize)
: mWriter(Move(aAllocator), aChunkSize)
{}
void
IpcResourceUpdateQueue::AddImage(ImageKey key, const ImageDescriptor& aDescriptor,
Range<uint8_t> aBytes)
{
auto bytes = mWriter.Write(aBytes);
mUpdates.AppendElement(layers::OpAddImage(aDescriptor, bytes, 0, key));
}
void
IpcResourceUpdateQueue::AddBlobImage(ImageKey key, const ImageDescriptor& aDescriptor,
Range<uint8_t> aBytes)
{
auto bytes = mWriter.Write(aBytes);
mUpdates.AppendElement(layers::OpAddBlobImage(aDescriptor, bytes, 0, key));
}
void
IpcResourceUpdateQueue::AddExternalImage(wr::ExternalImageId aExtId, wr::ImageKey aKey)
{
mUpdates.AppendElement(layers::OpAddExternalImage(aExtId, aKey));
}
void
IpcResourceUpdateQueue::UpdateImageBuffer(ImageKey aKey,
const ImageDescriptor& aDescriptor,
Range<uint8_t> aBytes)
{
auto bytes = mWriter.Write(aBytes);
mUpdates.AppendElement(layers::OpUpdateImage(aDescriptor, bytes, aKey));
}
void
IpcResourceUpdateQueue::UpdateBlobImage(ImageKey aKey,
const ImageDescriptor& aDescriptor,
Range<uint8_t> aBytes)
{
auto bytes = mWriter.Write(aBytes);
mUpdates.AppendElement(layers::OpUpdateBlobImage(aDescriptor, bytes, aKey));
}
void
IpcResourceUpdateQueue::DeleteImage(ImageKey aKey)
{
mUpdates.AppendElement(layers::OpDeleteImage(aKey));
}
void
IpcResourceUpdateQueue::AddRawFont(wr::FontKey aKey, Range<uint8_t> aBytes, uint32_t aIndex)
{
auto bytes = mWriter.Write(aBytes);
mUpdates.AppendElement(layers::OpAddRawFont(bytes, aIndex, aKey));
}
void
IpcResourceUpdateQueue::DeleteFont(wr::FontKey aKey)
{
mUpdates.AppendElement(layers::OpDeleteFont(aKey));
}
void
IpcResourceUpdateQueue::AddFontInstance(wr::FontInstanceKey aKey,
wr::FontKey aFontKey,
float aGlyphSize,
const wr::FontInstanceOptions* aOptions,
const wr::FontInstancePlatformOptions* aPlatformOptions,
Range<const gfx::FontVariation> aVariations)
{
auto bytes = mWriter.WriteAsBytes(aVariations);
mUpdates.AppendElement(layers::OpAddFontInstance(
aOptions ? Some(*aOptions) : Nothing(),
aPlatformOptions ? Some(*aPlatformOptions) : Nothing(),
bytes,
aKey, aFontKey,
aGlyphSize
));
}
void
IpcResourceUpdateQueue::DeleteFontInstance(wr::FontInstanceKey aKey)
{
mUpdates.AppendElement(layers::OpDeleteFontInstance(aKey));
}
void
IpcResourceUpdateQueue::Flush(nsTArray<layers::OpUpdateResource>& aUpdates,
nsTArray<ipc::Shmem>& aSmallAllocs,
nsTArray<ipc::Shmem>& aLargeAllocs)
{
aUpdates.Clear();
mUpdates.SwapElements(aUpdates);
mWriter.Flush(aSmallAllocs, aLargeAllocs);
}
void
IpcResourceUpdateQueue::Clear()
{
mWriter.Clear();
mUpdates.Clear();
}
} // namespace
} // namespace