зеркало из https://github.com/mozilla/gecko-dev.git
361 строка
13 KiB
Python
361 строка
13 KiB
Python
# This Source Code Form is subject to the terms of the Mozilla Public
|
|
# License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
from __future__ import absolute_import, print_function, unicode_literals
|
|
import logging
|
|
import os
|
|
import yaml
|
|
import copy
|
|
|
|
from . import filter_tasks
|
|
from .graph import Graph
|
|
from .taskgraph import TaskGraph
|
|
from .task import Task
|
|
from .optimize import optimize_task_graph
|
|
from .morph import morph
|
|
from .util.python_path import find_object
|
|
from .transforms.base import TransformSequence, TransformConfig
|
|
from .util.verify import (
|
|
verify_docs,
|
|
verifications,
|
|
)
|
|
from .config import validate_graph_config
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class KindNotFound(Exception):
|
|
"""
|
|
Raised when trying to load kind from a directory without a kind.yml.
|
|
"""
|
|
|
|
|
|
class Kind(object):
|
|
|
|
def __init__(self, name, path, config, graph_config):
|
|
self.name = name
|
|
self.path = path
|
|
self.config = config
|
|
self.graph_config = graph_config
|
|
|
|
def _get_loader(self):
|
|
try:
|
|
loader = self.config['loader']
|
|
except KeyError:
|
|
raise KeyError("{!r} does not define `loader`".format(self.path))
|
|
return find_object(loader)
|
|
|
|
def load_tasks(self, parameters, loaded_tasks):
|
|
loader = self._get_loader()
|
|
config = copy.deepcopy(self.config)
|
|
|
|
kind_dependencies = config.get('kind-dependencies', [])
|
|
kind_dependencies_tasks = [task for task in loaded_tasks
|
|
if task.kind in kind_dependencies]
|
|
|
|
inputs = loader(self.name, self.path, config, parameters, loaded_tasks)
|
|
|
|
transforms = TransformSequence()
|
|
for xform_path in config['transforms']:
|
|
transform = find_object(xform_path)
|
|
transforms.add(transform)
|
|
|
|
# perform the transformations on the loaded inputs
|
|
trans_config = TransformConfig(self.name, self.path, config, parameters,
|
|
kind_dependencies_tasks, self.graph_config)
|
|
tasks = [Task(self.name,
|
|
label=task_dict['label'],
|
|
attributes=task_dict['attributes'],
|
|
task=task_dict['task'],
|
|
optimization=task_dict.get('optimization'),
|
|
dependencies=task_dict.get('dependencies'))
|
|
for task_dict in transforms(trans_config, inputs)]
|
|
return tasks
|
|
|
|
@classmethod
|
|
def load(cls, root_dir, graph_config, kind_name):
|
|
path = os.path.join(root_dir, kind_name)
|
|
kind_yml = os.path.join(path, 'kind.yml')
|
|
if not os.path.exists(kind_yml):
|
|
raise KindNotFound(kind_yml)
|
|
|
|
logger.debug("loading kind `{}` from `{}`".format(kind_name, path))
|
|
with open(kind_yml) as f:
|
|
config = yaml.load(f)
|
|
|
|
return cls(kind_name, path, config, graph_config)
|
|
|
|
|
|
def load_graph_config(root_dir):
|
|
config_yml = os.path.join(root_dir, "config.yml")
|
|
if not os.path.exists(config_yml):
|
|
raise Exception("Couldn't find taskgraph configuration: {}".format(config_yml))
|
|
|
|
logger.debug("loading config from `{}`".format(config_yml))
|
|
with open(config_yml) as f:
|
|
config = yaml.load(f)
|
|
|
|
validate_graph_config(config)
|
|
return config
|
|
|
|
|
|
class TaskGraphGenerator(object):
|
|
"""
|
|
The central controller for taskgraph. This handles all phases of graph
|
|
generation. The task is generated from all of the kinds defined in
|
|
subdirectories of the generator's root directory.
|
|
|
|
Access to the results of this generation, as well as intermediate values at
|
|
various phases of generation, is available via properties. This encourages
|
|
the provision of all generation inputs at instance construction time.
|
|
"""
|
|
|
|
# Task-graph generation is implemented as a Python generator that yields
|
|
# each "phase" of generation. This allows some mach subcommands to short-
|
|
# circuit generation of the entire graph by never completing the generator.
|
|
|
|
def __init__(self, root_dir, parameters):
|
|
"""
|
|
@param root_dir: root directory, with subdirectories for each kind
|
|
@param parameters: parameters for this task-graph generation
|
|
@type parameters: dict
|
|
"""
|
|
if root_dir is None:
|
|
root_dir = 'taskcluster/ci'
|
|
self.root_dir = root_dir
|
|
self.parameters = parameters
|
|
|
|
self.verify_parameters(self.parameters)
|
|
|
|
filters = parameters.get('filters', [])
|
|
|
|
# Always add legacy target tasks method until we deprecate that API.
|
|
if 'target_tasks_method' not in filters:
|
|
filters.insert(0, 'target_tasks_method')
|
|
|
|
self.filters = [filter_tasks.filter_task_functions[f] for f in filters]
|
|
|
|
# this can be set up until the time the target task set is generated;
|
|
# it defaults to parameters['target_tasks']
|
|
self._target_tasks = parameters.get('target_tasks')
|
|
|
|
# start the generator
|
|
self._run = self._run()
|
|
self._run_results = {}
|
|
|
|
@property
|
|
def full_task_set(self):
|
|
"""
|
|
The full task set: all tasks defined by any kind (a graph without edges)
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('full_task_set')
|
|
|
|
@property
|
|
def full_task_graph(self):
|
|
"""
|
|
The full task graph: the full task set, with edges representing
|
|
dependencies.
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('full_task_graph')
|
|
|
|
@property
|
|
def target_task_set(self):
|
|
"""
|
|
The set of targetted tasks (a graph without edges)
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('target_task_set')
|
|
|
|
@property
|
|
def target_task_graph(self):
|
|
"""
|
|
The set of targetted tasks and all of their dependencies
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('target_task_graph')
|
|
|
|
@property
|
|
def optimized_task_graph(self):
|
|
"""
|
|
The set of targetted tasks and all of their dependencies; tasks that
|
|
have been optimized out are either omitted or replaced with a Task
|
|
instance containing only a task_id.
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('optimized_task_graph')
|
|
|
|
@property
|
|
def label_to_taskid(self):
|
|
"""
|
|
A dictionary mapping task label to assigned taskId. This property helps
|
|
in interpreting `optimized_task_graph`.
|
|
|
|
@type: dictionary
|
|
"""
|
|
return self._run_until('label_to_taskid')
|
|
|
|
@property
|
|
def morphed_task_graph(self):
|
|
"""
|
|
The optimized task graph, with any subsequent morphs applied. This graph
|
|
will have the same meaning as the optimized task graph, but be in a form
|
|
more palatable to TaskCluster.
|
|
|
|
@type: TaskGraph
|
|
"""
|
|
return self._run_until('morphed_task_graph')
|
|
|
|
def _load_kinds(self, graph_config):
|
|
for kind_name in os.listdir(self.root_dir):
|
|
try:
|
|
yield Kind.load(self.root_dir, graph_config, kind_name)
|
|
except KindNotFound:
|
|
continue
|
|
|
|
def _run(self):
|
|
logger.info("Loading graph configuration.")
|
|
graph_config = load_graph_config(self.root_dir)
|
|
|
|
logger.info("Loading kinds")
|
|
# put the kinds into a graph and sort topologically so that kinds are loaded
|
|
# in post-order
|
|
kinds = {kind.name: kind for kind in self._load_kinds(graph_config)}
|
|
self.verify_kinds(kinds)
|
|
|
|
edges = set()
|
|
for kind in kinds.itervalues():
|
|
for dep in kind.config.get('kind-dependencies', []):
|
|
edges.add((kind.name, dep, 'kind-dependency'))
|
|
kind_graph = Graph(set(kinds), edges)
|
|
|
|
logger.info("Generating full task set")
|
|
all_tasks = {}
|
|
for kind_name in kind_graph.visit_postorder():
|
|
logger.debug("Loading tasks for kind {}".format(kind_name))
|
|
kind = kinds[kind_name]
|
|
new_tasks = kind.load_tasks(self.parameters, list(all_tasks.values()))
|
|
for task in new_tasks:
|
|
if task.label in all_tasks:
|
|
raise Exception("duplicate tasks with label " + task.label)
|
|
all_tasks[task.label] = task
|
|
logger.info("Generated {} tasks for kind {}".format(len(new_tasks), kind_name))
|
|
full_task_set = TaskGraph(all_tasks, Graph(set(all_tasks), set()))
|
|
self.verify_attributes(all_tasks)
|
|
self.verify_run_using()
|
|
yield verifications('full_task_set', full_task_set)
|
|
|
|
logger.info("Generating full task graph")
|
|
edges = set()
|
|
for t in full_task_set:
|
|
for depname, dep in t.dependencies.iteritems():
|
|
edges.add((t.label, dep, depname))
|
|
|
|
full_task_graph = TaskGraph(all_tasks,
|
|
Graph(full_task_set.graph.nodes, edges))
|
|
logger.info("Full task graph contains %d tasks and %d dependencies" % (
|
|
len(full_task_set.graph.nodes), len(edges)))
|
|
yield verifications('full_task_graph', full_task_graph)
|
|
|
|
logger.info("Generating target task set")
|
|
target_task_set = TaskGraph(dict(all_tasks),
|
|
Graph(set(all_tasks.keys()), set()))
|
|
for fltr in self.filters:
|
|
old_len = len(target_task_set.graph.nodes)
|
|
target_tasks = set(fltr(target_task_set, self.parameters, graph_config))
|
|
target_task_set = TaskGraph(
|
|
{l: all_tasks[l] for l in target_tasks},
|
|
Graph(target_tasks, set()))
|
|
logger.info('Filter %s pruned %d tasks (%d remain)' % (
|
|
fltr.__name__,
|
|
old_len - len(target_tasks),
|
|
len(target_tasks)))
|
|
|
|
yield verifications('target_task_set', target_task_set)
|
|
|
|
logger.info("Generating target task graph")
|
|
# include all docker-image build tasks here, in case they are needed for a graph morph
|
|
docker_image_tasks = set(t.label for t in full_task_graph.tasks.itervalues()
|
|
if t.attributes['kind'] == 'docker-image')
|
|
# include all tasks with `always_target` set
|
|
always_target_tasks = set(t.label for t in full_task_graph.tasks.itervalues()
|
|
if t.attributes.get('always_target'))
|
|
logger.info('Adding %d tasks with `always_target` attribute' % (
|
|
len(always_target_tasks) - len(always_target_tasks & target_tasks)))
|
|
target_graph = full_task_graph.graph.transitive_closure(
|
|
target_tasks | docker_image_tasks | always_target_tasks)
|
|
target_task_graph = TaskGraph(
|
|
{l: all_tasks[l] for l in target_graph.nodes},
|
|
target_graph)
|
|
yield verifications('target_task_graph', target_task_graph)
|
|
|
|
logger.info("Generating optimized task graph")
|
|
existing_tasks = self.parameters.get('existing_tasks')
|
|
do_not_optimize = set(self.parameters.get('do_not_optimize', []))
|
|
if not self.parameters.get('optimize_target_tasks', True):
|
|
do_not_optimize = set(target_task_set.graph.nodes).union(do_not_optimize)
|
|
optimized_task_graph, label_to_taskid = optimize_task_graph(target_task_graph,
|
|
self.parameters,
|
|
do_not_optimize,
|
|
existing_tasks=existing_tasks)
|
|
|
|
yield verifications('optimized_task_graph', optimized_task_graph)
|
|
|
|
morphed_task_graph, label_to_taskid = morph(
|
|
optimized_task_graph, label_to_taskid, self.parameters)
|
|
|
|
yield 'label_to_taskid', label_to_taskid
|
|
yield verifications('morphed_task_graph', morphed_task_graph)
|
|
|
|
def _run_until(self, name):
|
|
while name not in self._run_results:
|
|
try:
|
|
k, v = self._run.next()
|
|
except StopIteration:
|
|
raise AttributeError("No such run result {}".format(name))
|
|
self._run_results[k] = v
|
|
return self._run_results[name]
|
|
|
|
def verify_parameters(self, parameters):
|
|
if not parameters.strict:
|
|
return
|
|
|
|
parameters_dict = dict(**parameters)
|
|
verify_docs(
|
|
filename="parameters.rst",
|
|
identifiers=parameters_dict.keys(),
|
|
appearing_as="inline-literal"
|
|
)
|
|
|
|
def verify_kinds(self, kinds):
|
|
verify_docs(
|
|
filename="kinds.rst",
|
|
identifiers=kinds.keys(),
|
|
appearing_as="heading"
|
|
)
|
|
|
|
def verify_attributes(self, all_tasks):
|
|
attribute_set = set()
|
|
for label, task in all_tasks.iteritems():
|
|
attribute_set.update(task.attributes.keys())
|
|
verify_docs(
|
|
filename="attributes.rst",
|
|
identifiers=list(attribute_set),
|
|
appearing_as="heading"
|
|
)
|
|
|
|
def verify_run_using(self):
|
|
from .transforms.job import registry
|
|
verify_docs(
|
|
filename="transforms.rst",
|
|
identifiers=registry.keys(),
|
|
appearing_as="inline-literal"
|
|
)
|