зеркало из https://github.com/mozilla/gecko-dev.git
800 строки
21 KiB
C++
800 строки
21 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsTimerImpl.h"
|
|
#include "TimerThread.h"
|
|
|
|
#include "nsThreadUtils.h"
|
|
#include "plarena.h"
|
|
#include "pratom.h"
|
|
|
|
#include "nsIObserverService.h"
|
|
#include "nsIServiceManager.h"
|
|
#include "mozilla/Services.h"
|
|
#include "mozilla/ChaosMode.h"
|
|
#include "mozilla/ArrayUtils.h"
|
|
#include "mozilla/BinarySearch.h"
|
|
|
|
#include <math.h>
|
|
|
|
using namespace mozilla;
|
|
#ifdef MOZ_TASK_TRACER
|
|
#include "GeckoTaskTracerImpl.h"
|
|
using namespace mozilla::tasktracer;
|
|
#endif
|
|
|
|
NS_IMPL_ISUPPORTS(TimerThread, nsIRunnable, nsIObserver)
|
|
|
|
TimerThread::TimerThread() :
|
|
mInitInProgress(false),
|
|
mInitialized(false),
|
|
mMonitor("TimerThread.mMonitor"),
|
|
mShutdown(false),
|
|
mWaiting(false),
|
|
mNotified(false),
|
|
mSleeping(false)
|
|
{
|
|
}
|
|
|
|
TimerThread::~TimerThread()
|
|
{
|
|
mThread = nullptr;
|
|
|
|
NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
|
|
}
|
|
|
|
nsresult
|
|
TimerThread::InitLocks()
|
|
{
|
|
return NS_OK;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class TimerObserverRunnable : public nsRunnable
|
|
{
|
|
public:
|
|
explicit TimerObserverRunnable(nsIObserver* aObserver)
|
|
: mObserver(aObserver)
|
|
{
|
|
}
|
|
|
|
NS_DECL_NSIRUNNABLE
|
|
|
|
private:
|
|
nsCOMPtr<nsIObserver> mObserver;
|
|
};
|
|
|
|
NS_IMETHODIMP
|
|
TimerObserverRunnable::Run()
|
|
{
|
|
nsCOMPtr<nsIObserverService> observerService =
|
|
mozilla::services::GetObserverService();
|
|
if (observerService) {
|
|
observerService->AddObserver(mObserver, "sleep_notification", false);
|
|
observerService->AddObserver(mObserver, "wake_notification", false);
|
|
observerService->AddObserver(mObserver, "suspend_process_notification", false);
|
|
observerService->AddObserver(mObserver, "resume_process_notification", false);
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace {
|
|
|
|
// TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
|
|
// It's needed to avoid contention over the default allocator lock when
|
|
// firing timer events (see bug 733277). The thread-safety is required because
|
|
// nsTimerEvent objects are allocated on the timer thread, and freed on another
|
|
// thread. Because TimerEventAllocator has its own lock, contention over that
|
|
// lock is limited to the allocation and deallocation of nsTimerEvent objects.
|
|
//
|
|
// Because this allocator is layered over PLArenaPool, it never shrinks -- even
|
|
// "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
|
|
// for later recycling. So the amount of memory consumed will always be equal
|
|
// to the high-water mark consumption. But nsTimerEvents are small and it's
|
|
// unusual to have more than a few hundred of them, so this shouldn't be a
|
|
// problem in practice.
|
|
|
|
class TimerEventAllocator
|
|
{
|
|
private:
|
|
struct FreeEntry
|
|
{
|
|
FreeEntry* mNext;
|
|
};
|
|
|
|
PLArenaPool mPool;
|
|
FreeEntry* mFirstFree;
|
|
mozilla::Monitor mMonitor;
|
|
|
|
public:
|
|
TimerEventAllocator()
|
|
: mFirstFree(nullptr)
|
|
, mMonitor("TimerEventAllocator")
|
|
{
|
|
PL_InitArenaPool(&mPool, "TimerEventPool", 4096, /* align = */ 0);
|
|
}
|
|
|
|
~TimerEventAllocator()
|
|
{
|
|
PL_FinishArenaPool(&mPool);
|
|
}
|
|
|
|
void* Alloc(size_t aSize);
|
|
void Free(void* aPtr);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
// This is a nsICancelableRunnable because we can dispatch it to Workers and
|
|
// those can be shut down at any time, and in these cases, Cancel() is called
|
|
// instead of Run().
|
|
class nsTimerEvent : public nsCancelableRunnable
|
|
{
|
|
public:
|
|
NS_IMETHOD Run() override;
|
|
|
|
NS_IMETHOD Cancel() override
|
|
{
|
|
// Since nsTimerImpl is not thread-safe, we should release |mTimer|
|
|
// here in the target thread to avoid race condition. Otherwise,
|
|
// ~nsTimerEvent() which calls nsTimerImpl::Release() could run in the
|
|
// timer thread and result in race condition.
|
|
mTimer = nullptr;
|
|
return NS_OK;
|
|
}
|
|
|
|
nsTimerEvent()
|
|
: mTimer()
|
|
, mGeneration(0)
|
|
{
|
|
MOZ_COUNT_CTOR(nsTimerEvent);
|
|
|
|
// Note: We override operator new for this class, and the override is
|
|
// fallible!
|
|
sAllocatorUsers++;
|
|
}
|
|
|
|
TimeStamp mInitTime;
|
|
|
|
static void Init();
|
|
static void Shutdown();
|
|
static void DeleteAllocatorIfNeeded();
|
|
|
|
static void* operator new(size_t aSize) CPP_THROW_NEW
|
|
{
|
|
return sAllocator->Alloc(aSize);
|
|
}
|
|
void operator delete(void* aPtr)
|
|
{
|
|
sAllocator->Free(aPtr);
|
|
DeleteAllocatorIfNeeded();
|
|
}
|
|
|
|
already_AddRefed<nsTimerImpl> ForgetTimer()
|
|
{
|
|
return mTimer.forget();
|
|
}
|
|
|
|
void SetTimer(already_AddRefed<nsTimerImpl> aTimer)
|
|
{
|
|
mTimer = aTimer;
|
|
mGeneration = mTimer->GetGeneration();
|
|
}
|
|
|
|
private:
|
|
~nsTimerEvent()
|
|
{
|
|
MOZ_COUNT_DTOR(nsTimerEvent);
|
|
|
|
MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0,
|
|
"This will result in us attempting to deallocate the nsTimerEvent allocator twice");
|
|
sAllocatorUsers--;
|
|
}
|
|
|
|
RefPtr<nsTimerImpl> mTimer;
|
|
int32_t mGeneration;
|
|
|
|
static TimerEventAllocator* sAllocator;
|
|
static Atomic<int32_t> sAllocatorUsers;
|
|
static bool sCanDeleteAllocator;
|
|
};
|
|
|
|
TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
|
|
Atomic<int32_t> nsTimerEvent::sAllocatorUsers;
|
|
bool nsTimerEvent::sCanDeleteAllocator = false;
|
|
|
|
namespace {
|
|
|
|
void*
|
|
TimerEventAllocator::Alloc(size_t aSize)
|
|
{
|
|
MOZ_ASSERT(aSize == sizeof(nsTimerEvent));
|
|
|
|
mozilla::MonitorAutoLock lock(mMonitor);
|
|
|
|
void* p;
|
|
if (mFirstFree) {
|
|
p = mFirstFree;
|
|
mFirstFree = mFirstFree->mNext;
|
|
} else {
|
|
PL_ARENA_ALLOCATE(p, &mPool, aSize);
|
|
if (!p) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
void
|
|
TimerEventAllocator::Free(void* aPtr)
|
|
{
|
|
mozilla::MonitorAutoLock lock(mMonitor);
|
|
|
|
FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);
|
|
|
|
entry->mNext = mFirstFree;
|
|
mFirstFree = entry;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void
|
|
nsTimerEvent::Init()
|
|
{
|
|
sAllocator = new TimerEventAllocator();
|
|
}
|
|
|
|
void
|
|
nsTimerEvent::Shutdown()
|
|
{
|
|
sCanDeleteAllocator = true;
|
|
DeleteAllocatorIfNeeded();
|
|
}
|
|
|
|
void
|
|
nsTimerEvent::DeleteAllocatorIfNeeded()
|
|
{
|
|
if (sCanDeleteAllocator && sAllocatorUsers == 0) {
|
|
delete sAllocator;
|
|
sAllocator = nullptr;
|
|
}
|
|
}
|
|
|
|
NS_IMETHODIMP
|
|
nsTimerEvent::Run()
|
|
{
|
|
MOZ_ASSERT(mTimer);
|
|
|
|
if (mGeneration != mTimer->GetGeneration()) {
|
|
return NS_OK;
|
|
}
|
|
|
|
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
|
|
TimeStamp now = TimeStamp::Now();
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
|
|
("[this=%p] time between PostTimerEvent() and Fire(): %fms\n",
|
|
this, (now - mInitTime).ToMilliseconds()));
|
|
}
|
|
|
|
mTimer->Fire();
|
|
|
|
// We call Cancel() to correctly release mTimer.
|
|
// Read more in the Cancel() implementation.
|
|
return Cancel();
|
|
}
|
|
|
|
nsresult
|
|
TimerThread::Init()
|
|
{
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
|
|
("TimerThread::Init [%d]\n", mInitialized));
|
|
|
|
if (mInitialized) {
|
|
if (!mThread) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsTimerEvent::Init();
|
|
|
|
if (mInitInProgress.exchange(true) == false) {
|
|
// We hold on to mThread to keep the thread alive.
|
|
nsresult rv = NS_NewThread(getter_AddRefs(mThread), this);
|
|
if (NS_FAILED(rv)) {
|
|
mThread = nullptr;
|
|
} else {
|
|
RefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
|
|
if (NS_IsMainThread()) {
|
|
r->Run();
|
|
} else {
|
|
NS_DispatchToMainThread(r);
|
|
}
|
|
}
|
|
|
|
{
|
|
MonitorAutoLock lock(mMonitor);
|
|
mInitialized = true;
|
|
mMonitor.NotifyAll();
|
|
}
|
|
} else {
|
|
MonitorAutoLock lock(mMonitor);
|
|
while (!mInitialized) {
|
|
mMonitor.Wait();
|
|
}
|
|
}
|
|
|
|
if (!mThread) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
TimerThread::Shutdown()
|
|
{
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n"));
|
|
|
|
if (!mThread) {
|
|
return NS_ERROR_NOT_INITIALIZED;
|
|
}
|
|
|
|
nsTArray<nsTimerImpl*> timers;
|
|
{
|
|
// lock scope
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
mShutdown = true;
|
|
|
|
// notify the cond var so that Run() can return
|
|
if (mWaiting) {
|
|
mNotified = true;
|
|
mMonitor.Notify();
|
|
}
|
|
|
|
// Need to copy content of mTimers array to a local array
|
|
// because call to timers' ReleaseCallback() (and release its self)
|
|
// must not be done under the lock. Destructor of a callback
|
|
// might potentially call some code reentering the same lock
|
|
// that leads to unexpected behavior or deadlock.
|
|
// See bug 422472.
|
|
timers.AppendElements(mTimers);
|
|
mTimers.Clear();
|
|
}
|
|
|
|
uint32_t timersCount = timers.Length();
|
|
for (uint32_t i = 0; i < timersCount; i++) {
|
|
nsTimerImpl* timer = timers[i];
|
|
timer->ReleaseCallback();
|
|
ReleaseTimerInternal(timer);
|
|
}
|
|
|
|
mThread->Shutdown(); // wait for the thread to die
|
|
|
|
nsTimerEvent::Shutdown();
|
|
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n"));
|
|
return NS_OK;
|
|
}
|
|
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
#include "ipc/Nuwa.h"
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
struct MicrosecondsToInterval
|
|
{
|
|
PRIntervalTime operator[](size_t aMs) const {
|
|
return PR_MicrosecondsToInterval(aMs);
|
|
}
|
|
};
|
|
|
|
struct IntervalComparator
|
|
{
|
|
int operator()(PRIntervalTime aInterval) const {
|
|
return (0 < aInterval) ? -1 : 1;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
NS_IMETHODIMP
|
|
TimerThread::Run()
|
|
{
|
|
PR_SetCurrentThreadName("Timer");
|
|
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
if (IsNuwaProcess()) {
|
|
NuwaMarkCurrentThread(nullptr, nullptr);
|
|
}
|
|
#endif
|
|
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// We need to know how many microseconds give a positive PRIntervalTime. This
|
|
// is platform-dependent and we calculate it at runtime, finding a value |v|
|
|
// such that |PR_MicrosecondsToInterval(v) > 0| and then binary-searching in
|
|
// the range [0, v) to find the ms-to-interval scale.
|
|
uint32_t usForPosInterval = 1;
|
|
while (PR_MicrosecondsToInterval(usForPosInterval) == 0) {
|
|
usForPosInterval <<= 1;
|
|
}
|
|
|
|
size_t usIntervalResolution;
|
|
BinarySearchIf(MicrosecondsToInterval(), 0, usForPosInterval, IntervalComparator(), &usIntervalResolution);
|
|
MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution - 1) == 0);
|
|
MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution) == 1);
|
|
|
|
// Half of the amount of microseconds needed to get positive PRIntervalTime.
|
|
// We use this to decide how to round our wait times later
|
|
int32_t halfMicrosecondsIntervalResolution = usIntervalResolution / 2;
|
|
bool forceRunNextTimer = false;
|
|
|
|
while (!mShutdown) {
|
|
// Have to use PRIntervalTime here, since PR_WaitCondVar takes it
|
|
PRIntervalTime waitFor;
|
|
bool forceRunThisTimer = forceRunNextTimer;
|
|
forceRunNextTimer = false;
|
|
|
|
if (mSleeping
|
|
#ifdef MOZ_NUWA_PROCESS
|
|
|| IsNuwaProcess() // Don't fire timers or deadlock will result.
|
|
#endif
|
|
) {
|
|
// Sleep for 0.1 seconds while not firing timers.
|
|
uint32_t milliseconds = 100;
|
|
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
|
|
milliseconds = ChaosMode::randomUint32LessThan(200);
|
|
}
|
|
waitFor = PR_MillisecondsToInterval(milliseconds);
|
|
} else {
|
|
waitFor = PR_INTERVAL_NO_TIMEOUT;
|
|
TimeStamp now = TimeStamp::Now();
|
|
nsTimerImpl* timer = nullptr;
|
|
|
|
if (!mTimers.IsEmpty()) {
|
|
timer = mTimers[0];
|
|
|
|
if (now >= timer->mTimeout || forceRunThisTimer) {
|
|
next:
|
|
// NB: AddRef before the Release under RemoveTimerInternal to avoid
|
|
// mRefCnt passing through zero, in case all other refs than the one
|
|
// from mTimers have gone away (the last non-mTimers[i]-ref's Release
|
|
// must be racing with us, blocked in gThread->RemoveTimer waiting
|
|
// for TimerThread::mMonitor, under nsTimerImpl::Release.
|
|
|
|
RefPtr<nsTimerImpl> timerRef(timer);
|
|
RemoveTimerInternal(timer);
|
|
timer = nullptr;
|
|
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
|
|
("Timer thread woke up %fms from when it was supposed to\n",
|
|
fabs((now - timerRef->mTimeout).ToMilliseconds())));
|
|
|
|
// We are going to let the call to PostTimerEvent here handle the
|
|
// release of the timer so that we don't end up releasing the timer
|
|
// on the TimerThread instead of on the thread it targets.
|
|
timerRef = PostTimerEvent(timerRef.forget());
|
|
|
|
if (timerRef) {
|
|
// We got our reference back due to an error.
|
|
// Unhook the nsRefPtr, and release manually so we can get the
|
|
// refcount.
|
|
nsrefcnt rc = timerRef.forget().take()->Release();
|
|
(void)rc;
|
|
|
|
// The nsITimer interface requires that its users keep a reference
|
|
// to the timers they use while those timers are initialized but
|
|
// have not yet fired. If this ever happens, it is a bug in the
|
|
// code that created and used the timer.
|
|
//
|
|
// Further, note that this should never happen even with a
|
|
// misbehaving user, because nsTimerImpl::Release checks for a
|
|
// refcount of 1 with an armed timer (a timer whose only reference
|
|
// is from the timer thread) and when it hits this will remove the
|
|
// timer from the timer thread and thus destroy the last reference,
|
|
// preventing this situation from occurring.
|
|
MOZ_ASSERT(rc != 0, "destroyed timer off its target thread!");
|
|
}
|
|
|
|
if (mShutdown) {
|
|
break;
|
|
}
|
|
|
|
// Update now, as PostTimerEvent plus the locking may have taken a
|
|
// tick or two, and we may goto next below.
|
|
now = TimeStamp::Now();
|
|
}
|
|
}
|
|
|
|
if (!mTimers.IsEmpty()) {
|
|
timer = mTimers[0];
|
|
|
|
TimeStamp timeout = timer->mTimeout;
|
|
|
|
// Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer
|
|
// is due now or overdue.
|
|
//
|
|
// Note that we can only sleep for integer values of a certain
|
|
// resolution. We use halfMicrosecondsIntervalResolution, calculated
|
|
// before, to do the optimal rounding (i.e., of how to decide what
|
|
// interval is so small we should not wait at all).
|
|
double microseconds = (timeout - now).ToMilliseconds() * 1000;
|
|
|
|
if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) {
|
|
// The mean value of sFractions must be 1 to ensure that
|
|
// the average of a long sequence of timeouts converges to the
|
|
// actual sum of their times.
|
|
static const float sFractions[] = {
|
|
0.0f, 0.25f, 0.5f, 0.75f, 1.0f, 1.75f, 2.75f
|
|
};
|
|
microseconds *=
|
|
sFractions[ChaosMode::randomUint32LessThan(ArrayLength(sFractions))];
|
|
forceRunNextTimer = true;
|
|
}
|
|
|
|
if (microseconds < halfMicrosecondsIntervalResolution) {
|
|
forceRunNextTimer = false;
|
|
goto next; // round down; execute event now
|
|
}
|
|
waitFor = PR_MicrosecondsToInterval(
|
|
static_cast<uint32_t>(microseconds)); // Floor is accurate enough.
|
|
if (waitFor == 0) {
|
|
waitFor = 1; // round up, wait the minimum time we can wait
|
|
}
|
|
}
|
|
|
|
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
|
|
if (waitFor == PR_INTERVAL_NO_TIMEOUT)
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
|
|
("waiting for PR_INTERVAL_NO_TIMEOUT\n"));
|
|
else
|
|
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
|
|
("waiting for %u\n", PR_IntervalToMilliseconds(waitFor)));
|
|
}
|
|
}
|
|
|
|
mWaiting = true;
|
|
mNotified = false;
|
|
mMonitor.Wait(waitFor);
|
|
if (mNotified) {
|
|
forceRunNextTimer = false;
|
|
}
|
|
mWaiting = false;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
TimerThread::AddTimer(nsTimerImpl* aTimer)
|
|
{
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// Add the timer to our list.
|
|
int32_t i = AddTimerInternal(aTimer);
|
|
if (i < 0) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
// Awaken the timer thread.
|
|
if (mWaiting && i == 0) {
|
|
mNotified = true;
|
|
mMonitor.Notify();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
TimerThread::TimerDelayChanged(nsTimerImpl* aTimer)
|
|
{
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// Our caller has a strong ref to aTimer, so it can't go away here under
|
|
// ReleaseTimerInternal.
|
|
RemoveTimerInternal(aTimer);
|
|
|
|
int32_t i = AddTimerInternal(aTimer);
|
|
if (i < 0) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
// Awaken the timer thread.
|
|
if (mWaiting && i == 0) {
|
|
mNotified = true;
|
|
mMonitor.Notify();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult
|
|
TimerThread::RemoveTimer(nsTimerImpl* aTimer)
|
|
{
|
|
MonitorAutoLock lock(mMonitor);
|
|
|
|
// Remove the timer from our array. Tell callers that aTimer was not found
|
|
// by returning NS_ERROR_NOT_AVAILABLE. Unlike the TimerDelayChanged case
|
|
// immediately above, our caller may be passing a (now-)weak ref in via the
|
|
// aTimer param, specifically when nsTimerImpl::Release loses a race with
|
|
// TimerThread::Run, must wait for the mMonitor auto-lock here, and during the
|
|
// wait Run drops the only remaining ref to aTimer via RemoveTimerInternal.
|
|
|
|
if (!RemoveTimerInternal(aTimer)) {
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
// Awaken the timer thread.
|
|
if (mWaiting) {
|
|
mNotified = true;
|
|
mMonitor.Notify();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
// This function must be called from within a lock
|
|
int32_t
|
|
TimerThread::AddTimerInternal(nsTimerImpl* aTimer)
|
|
{
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
if (mShutdown) {
|
|
return -1;
|
|
}
|
|
|
|
TimeStamp now = TimeStamp::Now();
|
|
|
|
TimerAdditionComparator c(now, aTimer);
|
|
nsTimerImpl** insertSlot = mTimers.InsertElementSorted(aTimer, c);
|
|
|
|
if (!insertSlot) {
|
|
return -1;
|
|
}
|
|
|
|
aTimer->mArmed = true;
|
|
NS_ADDREF(aTimer);
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
// Caller of AddTimer is the parent task of its timer event, so we store the
|
|
// TraceInfo here for later used.
|
|
aTimer->GetTLSTraceInfo();
|
|
#endif
|
|
|
|
return insertSlot - mTimers.Elements();
|
|
}
|
|
|
|
bool
|
|
TimerThread::RemoveTimerInternal(nsTimerImpl* aTimer)
|
|
{
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
if (!mTimers.RemoveElement(aTimer)) {
|
|
return false;
|
|
}
|
|
|
|
ReleaseTimerInternal(aTimer);
|
|
return true;
|
|
}
|
|
|
|
void
|
|
TimerThread::ReleaseTimerInternal(nsTimerImpl* aTimer)
|
|
{
|
|
if (!mShutdown) {
|
|
// copied to a local array before releasing in shutdown
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
}
|
|
// Order is crucial here -- see nsTimerImpl::Release.
|
|
aTimer->mArmed = false;
|
|
NS_RELEASE(aTimer);
|
|
}
|
|
|
|
already_AddRefed<nsTimerImpl>
|
|
TimerThread::PostTimerEvent(already_AddRefed<nsTimerImpl> aTimerRef)
|
|
{
|
|
mMonitor.AssertCurrentThreadOwns();
|
|
|
|
RefPtr<nsTimerImpl> timer(aTimerRef);
|
|
if (!timer->mEventTarget) {
|
|
NS_ERROR("Attempt to post timer event to NULL event target");
|
|
return timer.forget();
|
|
}
|
|
|
|
// XXX we may want to reuse this nsTimerEvent in the case of repeating timers.
|
|
|
|
// Since we already addref'd 'timer', we don't need to addref here.
|
|
// We will release either in ~nsTimerEvent(), or pass the reference back to
|
|
// the caller. We need to copy the generation number from this timer into the
|
|
// event, so we can avoid firing a timer that was re-initialized after being
|
|
// canceled.
|
|
|
|
RefPtr<nsTimerEvent> event = new nsTimerEvent;
|
|
if (!event) {
|
|
return timer.forget();
|
|
}
|
|
|
|
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
|
|
event->mInitTime = TimeStamp::Now();
|
|
}
|
|
|
|
// If this is a repeating precise timer, we need to calculate the time for
|
|
// the next timer to fire before we make the callback. But don't re-arm.
|
|
if (timer->IsRepeatingPrecisely()) {
|
|
timer->SetDelayInternal(timer->mDelay);
|
|
}
|
|
|
|
#ifdef MOZ_TASK_TRACER
|
|
// During the dispatch of TimerEvent, we overwrite the current TraceInfo
|
|
// partially with the info saved in timer earlier, and restore it back by
|
|
// AutoSaveCurTraceInfo.
|
|
AutoSaveCurTraceInfo saveCurTraceInfo;
|
|
(timer->GetTracedTask()).SetTLSTraceInfo();
|
|
#endif
|
|
|
|
nsIEventTarget* target = timer->mEventTarget;
|
|
event->SetTimer(timer.forget());
|
|
|
|
nsresult rv;
|
|
{
|
|
// We release mMonitor around the Dispatch because if this timer is targeted
|
|
// at the TimerThread we'll deadlock.
|
|
MonitorAutoUnlock unlock(mMonitor);
|
|
rv = target->Dispatch(event, NS_DISPATCH_NORMAL);
|
|
}
|
|
|
|
if (NS_FAILED(rv)) {
|
|
timer = event->ForgetTimer();
|
|
RemoveTimerInternal(timer);
|
|
return timer.forget();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void
|
|
TimerThread::DoBeforeSleep()
|
|
{
|
|
// Mainthread
|
|
MonitorAutoLock lock(mMonitor);
|
|
mSleeping = true;
|
|
}
|
|
|
|
// Note: wake may be notified without preceding sleep notification
|
|
void
|
|
TimerThread::DoAfterSleep()
|
|
{
|
|
// Mainthread
|
|
MonitorAutoLock lock(mMonitor);
|
|
mSleeping = false;
|
|
|
|
// Wake up the timer thread to re-process the array to ensure the sleep delay is correct,
|
|
// and fire any expired timers (perhaps quite a few)
|
|
mNotified = true;
|
|
mMonitor.Notify();
|
|
}
|
|
|
|
|
|
NS_IMETHODIMP
|
|
TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic,
|
|
const char16_t* /* aData */)
|
|
{
|
|
if (strcmp(aTopic, "sleep_notification") == 0 ||
|
|
strcmp(aTopic, "suspend_process_notification") == 0) {
|
|
DoBeforeSleep();
|
|
} else if (strcmp(aTopic, "wake_notification") == 0 ||
|
|
strcmp(aTopic, "resume_process_notification") == 0) {
|
|
DoAfterSleep();
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|