gecko-dev/dom/animation/AnimationEffectReadOnly.cpp

346 строки
12 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/dom/AnimationEffectReadOnly.h"
#include "mozilla/dom/AnimationEffectReadOnlyBinding.h"
#include "mozilla/dom/Animation.h"
#include "mozilla/dom/KeyframeEffectReadOnly.h"
#include "mozilla/AnimationUtils.h"
#include "mozilla/FloatingPoint.h"
namespace mozilla {
namespace dom {
NS_IMPL_CYCLE_COLLECTION_CLASS(AnimationEffectReadOnly)
NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(AnimationEffectReadOnly)
if (tmp->mTiming) {
tmp->mTiming->Unlink();
}
NS_IMPL_CYCLE_COLLECTION_UNLINK(mDocument, mTiming, mAnimation)
NS_IMPL_CYCLE_COLLECTION_UNLINK_PRESERVED_WRAPPER
NS_IMPL_CYCLE_COLLECTION_UNLINK_END
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN(AnimationEffectReadOnly)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mDocument, mTiming, mAnimation)
NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END
NS_IMPL_CYCLE_COLLECTION_TRACE_WRAPPERCACHE(AnimationEffectReadOnly)
NS_IMPL_CYCLE_COLLECTING_ADDREF(AnimationEffectReadOnly)
NS_IMPL_CYCLE_COLLECTING_RELEASE(AnimationEffectReadOnly)
NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(AnimationEffectReadOnly)
NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY
NS_INTERFACE_MAP_ENTRY(nsISupports)
NS_INTERFACE_MAP_END
AnimationEffectReadOnly::AnimationEffectReadOnly(
nsIDocument* aDocument, AnimationEffectTimingReadOnly* aTiming)
: mDocument(aDocument)
, mTiming(aTiming)
{
MOZ_ASSERT(aTiming);
}
// https://drafts.csswg.org/web-animations/#current
bool
AnimationEffectReadOnly::IsCurrent() const
{
if (!mAnimation || mAnimation->PlayState() == AnimationPlayState::Finished) {
return false;
}
ComputedTiming computedTiming = GetComputedTiming();
return computedTiming.mPhase == ComputedTiming::AnimationPhase::Before ||
computedTiming.mPhase == ComputedTiming::AnimationPhase::Active;
}
// https://drafts.csswg.org/web-animations/#in-effect
bool
AnimationEffectReadOnly::IsInEffect() const
{
ComputedTiming computedTiming = GetComputedTiming();
return !computedTiming.mProgress.IsNull();
}
already_AddRefed<AnimationEffectTimingReadOnly>
AnimationEffectReadOnly::Timing()
{
RefPtr<AnimationEffectTimingReadOnly> temp(mTiming);
return temp.forget();
}
void
AnimationEffectReadOnly::SetSpecifiedTiming(const TimingParams& aTiming)
{
if (mTiming->AsTimingParams() == aTiming) {
return;
}
mTiming->SetTimingParams(aTiming);
if (mAnimation) {
mAnimation->NotifyEffectTimingUpdated();
if (AsKeyframeEffect()) {
AsKeyframeEffect()->RequestRestyle(EffectCompositor::RestyleType::Layer);
}
}
// For keyframe effects, NotifyEffectTimingUpdated above will eventually cause
// KeyframeEffectReadOnly::NotifyAnimationTimingUpdated to be called so it can
// update its registration with the target element as necessary.
}
ComputedTiming
AnimationEffectReadOnly::GetComputedTimingAt(
const Nullable<TimeDuration>& aLocalTime,
const TimingParams& aTiming,
double aPlaybackRate)
{
static const StickyTimeDuration zeroDuration;
// Always return the same object to benefit from return-value optimization.
ComputedTiming result;
if (aTiming.Duration()) {
MOZ_ASSERT(aTiming.Duration().ref() >= zeroDuration,
"Iteration duration should be positive");
result.mDuration = aTiming.Duration().ref();
}
MOZ_ASSERT(aTiming.Iterations() >= 0.0 && !IsNaN(aTiming.Iterations()),
"mIterations should be nonnegative & finite, as ensured by "
"ValidateIterations or CSSParser");
result.mIterations = aTiming.Iterations();
MOZ_ASSERT(aTiming.IterationStart() >= 0.0,
"mIterationStart should be nonnegative, as ensured by "
"ValidateIterationStart");
result.mIterationStart = aTiming.IterationStart();
result.mActiveDuration = aTiming.ActiveDuration();
result.mEndTime = aTiming.EndTime();
result.mFill = aTiming.Fill() == dom::FillMode::Auto ?
dom::FillMode::None :
aTiming.Fill();
// The default constructor for ComputedTiming sets all other members to
// values consistent with an animation that has not been sampled.
if (aLocalTime.IsNull()) {
return result;
}
const TimeDuration& localTime = aLocalTime.Value();
StickyTimeDuration beforeActiveBoundary =
std::max(std::min(StickyTimeDuration(aTiming.Delay()), result.mEndTime),
zeroDuration);
StickyTimeDuration activeAfterBoundary =
std::max(std::min(StickyTimeDuration(aTiming.Delay() +
result.mActiveDuration),
result.mEndTime),
zeroDuration);
if (localTime > activeAfterBoundary ||
(aPlaybackRate >= 0 && localTime == activeAfterBoundary)) {
result.mPhase = ComputedTiming::AnimationPhase::After;
if (!result.FillsForwards()) {
// The animation isn't active or filling at this time.
return result;
}
result.mActiveTime =
std::max(std::min(StickyTimeDuration(localTime - aTiming.Delay()),
result.mActiveDuration),
zeroDuration);
} else if (localTime < beforeActiveBoundary ||
(aPlaybackRate < 0 && localTime == beforeActiveBoundary)) {
result.mPhase = ComputedTiming::AnimationPhase::Before;
if (!result.FillsBackwards()) {
// The animation isn't active or filling at this time.
return result;
}
result.mActiveTime
= std::max(StickyTimeDuration(localTime - aTiming.Delay()),
zeroDuration);
} else {
MOZ_ASSERT(result.mActiveDuration,
"How can we be in the middle of a zero-duration interval?");
result.mPhase = ComputedTiming::AnimationPhase::Active;
result.mActiveTime = localTime - aTiming.Delay();
}
// Convert active time to a multiple of iterations.
// https://drafts.csswg.org/web-animations/#overall-progress
double overallProgress;
if (!result.mDuration) {
overallProgress = result.mPhase == ComputedTiming::AnimationPhase::Before
? 0.0
: result.mIterations;
} else {
overallProgress = result.mActiveTime / result.mDuration;
}
// Factor in iteration start offset.
if (IsFinite(overallProgress)) {
overallProgress += result.mIterationStart;
}
// Determine the 0-based index of the current iteration.
// https://drafts.csswg.org/web-animations/#current-iteration
result.mCurrentIteration =
(result.mIterations >= UINT64_MAX
&& result.mPhase == ComputedTiming::AnimationPhase::After)
|| overallProgress >= UINT64_MAX
? UINT64_MAX // In GetComputedTimingDictionary(),
// we will convert this into Infinity
: static_cast<uint64_t>(overallProgress);
// Convert the overall progress to a fraction of a single iteration--the
// simply iteration progress.
// https://drafts.csswg.org/web-animations/#simple-iteration-progress
double progress = IsFinite(overallProgress)
? fmod(overallProgress, 1.0)
: fmod(result.mIterationStart, 1.0);
// When we are at the end of the active interval and the end of an iteration
// we need to report the end of the final iteration and not the start of the
// next iteration. We *don't* want to do this, however, when we have
// a zero-iteration animation.
if (progress == 0.0 &&
(result.mPhase == ComputedTiming::AnimationPhase::After ||
result.mPhase == ComputedTiming::AnimationPhase::Active) &&
result.mActiveTime == result.mActiveDuration &&
result.mIterations != 0.0) {
// The only way we can reach the end of the active interval and have
// a progress of zero and a current iteration of zero, is if we have a zero
// iteration count -- something we should have detected above.
MOZ_ASSERT(result.mCurrentIteration != 0,
"Should not have zero current iteration");
progress = 1.0;
if (result.mCurrentIteration != UINT64_MAX) {
result.mCurrentIteration--;
}
}
// Factor in the direction.
bool thisIterationReverse = false;
switch (aTiming.Direction()) {
case PlaybackDirection::Normal:
thisIterationReverse = false;
break;
case PlaybackDirection::Reverse:
thisIterationReverse = true;
break;
case PlaybackDirection::Alternate:
thisIterationReverse = (result.mCurrentIteration & 1) == 1;
break;
case PlaybackDirection::Alternate_reverse:
thisIterationReverse = (result.mCurrentIteration & 1) == 0;
break;
default:
MOZ_ASSERT_UNREACHABLE("Unknown PlaybackDirection type");
}
if (thisIterationReverse) {
progress = 1.0 - progress;
}
// Calculate the 'before flag' which we use when applying step timing
// functions.
if ((result.mPhase == ComputedTiming::AnimationPhase::After &&
thisIterationReverse) ||
(result.mPhase == ComputedTiming::AnimationPhase::Before &&
!thisIterationReverse)) {
result.mBeforeFlag = ComputedTimingFunction::BeforeFlag::Set;
}
// Apply the easing.
if (aTiming.TimingFunction()) {
progress = aTiming.TimingFunction()->GetValue(progress, result.mBeforeFlag);
}
MOZ_ASSERT(IsFinite(progress), "Progress value should be finite");
result.mProgress.SetValue(progress);
return result;
}
ComputedTiming
AnimationEffectReadOnly::GetComputedTiming(const TimingParams* aTiming) const
{
double playbackRate = mAnimation ? mAnimation->PlaybackRate() : 1;
return GetComputedTimingAt(GetLocalTime(),
aTiming ? *aTiming : SpecifiedTiming(),
playbackRate);
}
// Helper functions for generating a ComputedTimingProperties dictionary
static void
GetComputedTimingDictionary(const ComputedTiming& aComputedTiming,
const Nullable<TimeDuration>& aLocalTime,
const TimingParams& aTiming,
ComputedTimingProperties& aRetVal)
{
// AnimationEffectTimingProperties
aRetVal.mDelay = aTiming.Delay().ToMilliseconds();
aRetVal.mEndDelay = aTiming.EndDelay().ToMilliseconds();
aRetVal.mFill = aComputedTiming.mFill;
aRetVal.mIterations = aComputedTiming.mIterations;
aRetVal.mIterationStart = aComputedTiming.mIterationStart;
aRetVal.mDuration.SetAsUnrestrictedDouble() =
aComputedTiming.mDuration.ToMilliseconds();
aRetVal.mDirection = aTiming.Direction();
// ComputedTimingProperties
aRetVal.mActiveDuration = aComputedTiming.mActiveDuration.ToMilliseconds();
aRetVal.mEndTime = aComputedTiming.mEndTime.ToMilliseconds();
aRetVal.mLocalTime = AnimationUtils::TimeDurationToDouble(aLocalTime);
aRetVal.mProgress = aComputedTiming.mProgress;
if (!aRetVal.mProgress.IsNull()) {
// Convert the returned currentIteration into Infinity if we set
// (uint64_t) aComputedTiming.mCurrentIteration to UINT64_MAX
double iteration = aComputedTiming.mCurrentIteration == UINT64_MAX
? PositiveInfinity<double>()
: static_cast<double>(aComputedTiming.mCurrentIteration);
aRetVal.mCurrentIteration.SetValue(iteration);
}
}
void
AnimationEffectReadOnly::GetComputedTimingAsDict(
ComputedTimingProperties& aRetVal) const
{
double playbackRate = mAnimation ? mAnimation->PlaybackRate() : 1;
const Nullable<TimeDuration> currentTime = GetLocalTime();
GetComputedTimingDictionary(GetComputedTimingAt(currentTime,
SpecifiedTiming(),
playbackRate),
currentTime,
SpecifiedTiming(),
aRetVal);
}
AnimationEffectReadOnly::~AnimationEffectReadOnly()
{
// mTiming is cycle collected, so we have to do null check first even though
// mTiming shouldn't be null during the lifetime of KeyframeEffect.
if (mTiming) {
mTiming->Unlink();
}
}
Nullable<TimeDuration>
AnimationEffectReadOnly::GetLocalTime() const
{
// Since the *animation* start time is currently always zero, the local
// time is equal to the parent time.
Nullable<TimeDuration> result;
if (mAnimation) {
result = mAnimation->GetCurrentTime();
}
return result;
}
} // namespace dom
} // namespace mozilla