зеркало из https://github.com/mozilla/gecko-dev.git
2756 строки
78 KiB
C++
2756 строки
78 KiB
C++
// -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
//
|
|
// The contents of this file are subject to the Netscape Public
|
|
// License Version 1.1 (the "License"); you may not use this file
|
|
// except in compliance with the License. You may obtain a copy of
|
|
// the License at http://www.mozilla.org/NPL/
|
|
//
|
|
// Software distributed under the License is distributed on an "AS
|
|
// IS" basis, WITHOUT WARRANTY OF ANY KIND, either express oqr
|
|
// implied. See the License for the specific language governing
|
|
// rights and limitations under the License.
|
|
//
|
|
// The Original Code is the JavaScript 2 Prototype.
|
|
//
|
|
// The Initial Developer of the Original Code is Netscape
|
|
// Communications Corporation. Portions created by Netscape are
|
|
// Copyright (C) 1998 Netscape Communications Corporation. All
|
|
// Rights Reserved.
|
|
|
|
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <cfloat>
|
|
#include "numerics.h"
|
|
|
|
namespace JS = JavaScript;
|
|
using namespace JavaScript;
|
|
|
|
|
|
//
|
|
// Portable double-precision floating point to string and back conversions
|
|
//
|
|
|
|
// ****************************************************************
|
|
//
|
|
// The author of this software is David M. Gay.
|
|
//
|
|
// Copyright (c) 1991 by Lucent Technologies.
|
|
//
|
|
// Permission to use, copy, modify, and distribute this software for any
|
|
// purpose without fee is hereby granted, provided that this entire notice
|
|
// is included in all copies of any software which is or includes a copy
|
|
// or modification of this software and in all copies of the supporting
|
|
// documentation for such software.
|
|
//
|
|
// THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
|
|
// WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
|
|
// REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
|
|
// OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
|
|
//
|
|
// ***************************************************************
|
|
|
|
/* Please send bug reports to
|
|
David M. Gay
|
|
Bell Laboratories, Room 2C-463
|
|
600 Mountain Avenue
|
|
Murray Hill, NJ 07974-0636
|
|
U.S.A.
|
|
dmg@bell-labs.com
|
|
*/
|
|
|
|
// On a machine with IEEE extended-precision registers, it is
|
|
// necessary to specify double-precision (53-bit) rounding precision
|
|
// before invoking strToDouble or doubleToAscii. If the machine uses (the equivalent
|
|
// of) Intel 80x87 arithmetic, the call
|
|
// _control87(PC_53, MCW_PC);
|
|
// does this with many compilers. Whether this or another call is
|
|
// appropriate depends on the compiler; for this to work, it may be
|
|
// necessary to #include "float.h" or another system-dependent header
|
|
// file.
|
|
|
|
|
|
// strToDouble for IEEE-arithmetic machines.
|
|
//
|
|
// This strToDouble returns a nearest machine number to the input decimal
|
|
// string. With IEEE arithmetic, ties are broken by the IEEE round-even
|
|
// rule. Otherwise ties are broken by biased rounding (add half and chop).
|
|
//
|
|
// Inspired loosely by William D. Clinger's paper "How to Read Floating
|
|
// Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
|
|
//
|
|
// Modifications:
|
|
//
|
|
// 1. We only require IEEE double-precision
|
|
// arithmetic (not IEEE double-extended).
|
|
// 2. We get by with floating-point arithmetic in a case that
|
|
// Clinger missed -- when we're computing d * 10^n
|
|
// for a small integer d and the integer n is not too
|
|
// much larger than 22 (the maximum integer k for which
|
|
// we can represent 10^k exactly), we may be able to
|
|
// compute (d*10^k) * 10^(e-k) with just one roundoff.
|
|
// 3. Rather than a bit-at-a-time adjustment of the binary
|
|
// result in the hard case, we use floating-point
|
|
// arithmetic to determine the adjustment to within
|
|
// one bit; only in really hard cases do we need to
|
|
// compute a second residual.
|
|
// 4. Because of 3., we don't need a large table of powers of 10
|
|
// for ten-to-e (just some small tables, e.g. of 10^k
|
|
// for 0 <= k <= 22).
|
|
|
|
|
|
// #define IEEE_8087 for IEEE-arithmetic machines where the least
|
|
// significant byte has the lowest address.
|
|
// #define IEEE_MC68k for IEEE-arithmetic machines where the most
|
|
// significant byte has the lowest address.
|
|
// #define Sudden_Underflow for IEEE-format machines without gradual
|
|
// underflow (i.e., that flush to zero on underflow).
|
|
// #define No_leftright to omit left-right logic in fast floating-point
|
|
// computation of doubleToAscii.
|
|
// #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
|
|
// #define ROUND_BIASED for IEEE-format with biased rounding.
|
|
// #define Inaccurate_Divide for IEEE-format with correctly rounded
|
|
// products but inaccurate quotients, e.g., for Intel i860.
|
|
// #define NATIVE_INT64 on machines that have "long long"
|
|
// 64-bit integer types int64 and uint64.
|
|
// #define JS_THREADSAFE if the system offers preemptively scheduled
|
|
// multiple threads. In this case, you must provide (or suitably
|
|
// #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
|
|
// by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
|
|
// in pow5Mul, ensures lazy evaluation of only one copy of high
|
|
// powers of 5; omitting this lock would introduce a small
|
|
// probability of wasting memory, but would otherwise be harmless.)
|
|
// You must also invoke freeDToA(s) to free the value s returned by
|
|
// doubleToAscii. You may do so whether or not JS_THREADSAFE is #defined.
|
|
// #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strToDouble that
|
|
// avoids underflows on inputs whose result does not underflow.
|
|
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
#define IEEE_8087
|
|
#else
|
|
#define IEEE_MC68k
|
|
#endif
|
|
|
|
|
|
// Stefan Hanske <sh990154@mail.uni-greifswald.de> reports:
|
|
// ARM is a little endian architecture but 64 bit double words are stored
|
|
// differently: the 32 bit words are in little endian byte order, the two words
|
|
// are stored in big endian`s way.
|
|
#if defined (IEEE_8087) && !defined(__arm)
|
|
#define word0(x) ((uint32 *)&x)[1]
|
|
#define word1(x) ((uint32 *)&x)[0]
|
|
#else
|
|
#define word0(x) ((uint32 *)&x)[0]
|
|
#define word1(x) ((uint32 *)&x)[1]
|
|
#endif
|
|
|
|
// The following definition of Storeinc is appropriate for MIPS processors.
|
|
// An alternative that might be better on some machines is
|
|
// #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
|
|
#if defined(IEEE_8087)
|
|
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
|
|
((unsigned short *)a)[0] = (unsigned short)c, a++)
|
|
#else
|
|
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
|
|
((unsigned short *)a)[1] = (unsigned short)c, a++)
|
|
#endif
|
|
|
|
// #define P DBL_MANT_DIG
|
|
// Ten_pmax = floor(P*log(2)/log(5))
|
|
// Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16
|
|
// Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1)
|
|
// Int_max = floor(P*log(FLT_RADIX)/log(10) - 1)
|
|
|
|
#define Exp_shift 20
|
|
#define Exp_shift1 20
|
|
#define Exp_msk1 0x100000
|
|
#define Exp_msk11 0x100000
|
|
#define Exp_mask 0x7ff00000
|
|
#define P 53
|
|
#define Bias 1023
|
|
#define Emin (-1022)
|
|
#define Exp_1 0x3ff00000
|
|
#define Exp_11 0x3ff00000
|
|
#define Ebits 11
|
|
#define Frac_mask 0xfffff
|
|
#define Frac_mask1 0xfffff
|
|
#define Ten_pmax 22
|
|
#define Bletch 0x10
|
|
#define Bndry_mask 0xfffff
|
|
#define Bndry_mask1 0xfffff
|
|
#define LSB 1
|
|
#define Sign_bit 0x80000000
|
|
#define Log2P 1
|
|
#define Tiny0 0
|
|
#define Tiny1 1
|
|
#define Quick_max 14
|
|
#define Int_max 14
|
|
#define Infinite(x) (word0(x) == 0x7ff00000) // sufficient test for here
|
|
#ifndef NO_IEEE_Scale
|
|
#define Avoid_Underflow
|
|
#endif
|
|
|
|
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
|
|
#define Big1 0xffffffff
|
|
|
|
#ifdef JS_THREADSAFE
|
|
static PRLock *freelist_lock;
|
|
#define ACQUIRE_DTOA_LOCK(n) PR_Lock(freelist_lock)
|
|
#define FREE_DTOA_LOCK(n) PR_Unlock(freelist_lock)
|
|
#else
|
|
#define ACQUIRE_DTOA_LOCK(n)
|
|
#define FREE_DTOA_LOCK(n)
|
|
#endif
|
|
|
|
|
|
//
|
|
// Double-precision constants
|
|
//
|
|
|
|
|
|
double JS::positiveInfinity;
|
|
double JS::negativeInfinity;
|
|
double JS::nan;
|
|
|
|
struct InitNumerics {InitNumerics();};
|
|
static InitNumerics initNumerics;
|
|
|
|
InitNumerics::InitNumerics()
|
|
{
|
|
word0(positiveInfinity) = Exp_mask;
|
|
word1(positiveInfinity) = 0;
|
|
word0(negativeInfinity) = Exp_mask | Sign_bit;
|
|
word1(negativeInfinity) = 0;
|
|
word0(nan) = 0x7FFFFFFF;
|
|
word1(nan) = 0xFFFFFFFF;
|
|
}
|
|
|
|
|
|
//
|
|
// Portable double-precision floating point to string and back conversions
|
|
//
|
|
|
|
|
|
// Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows).
|
|
double JS::ulp(double x)
|
|
{
|
|
int32 L;
|
|
double a;
|
|
|
|
L = int32((word0(x) & Exp_mask) - (P-1)*Exp_msk1);
|
|
#ifndef Sudden_Underflow
|
|
if (L > 0) {
|
|
#endif
|
|
word0(a) = uint32(L);
|
|
word1(a) = 0;
|
|
#ifndef Sudden_Underflow
|
|
}
|
|
else {
|
|
L = -L >> Exp_shift;
|
|
if (L < Exp_shift) {
|
|
word0(a) = 0x80000u >> L;
|
|
word1(a) = 0;
|
|
}
|
|
else {
|
|
word0(a) = 0;
|
|
L -= Exp_shift;
|
|
word1(a) = L >= 31 ? 1u : 1u << (31 - L);
|
|
}
|
|
}
|
|
#endif
|
|
return a;
|
|
}
|
|
|
|
|
|
// Return the number (0 through 32) of most significant zero bits in x.
|
|
int JS::hi0bits(uint32 x)
|
|
{
|
|
int k = 0;
|
|
|
|
if (!(x & 0xffff0000)) {
|
|
k = 16;
|
|
x <<= 16;
|
|
}
|
|
if (!(x & 0xff000000)) {
|
|
k += 8;
|
|
x <<= 8;
|
|
}
|
|
if (!(x & 0xf0000000)) {
|
|
k += 4;
|
|
x <<= 4;
|
|
}
|
|
if (!(x & 0xc0000000)) {
|
|
k += 2;
|
|
x <<= 2;
|
|
}
|
|
if (!(x & 0x80000000)) {
|
|
k++;
|
|
if (!(x & 0x40000000))
|
|
return 32;
|
|
}
|
|
return k;
|
|
}
|
|
|
|
|
|
// Return the number (0 through 32) of least significant zero bits in y.
|
|
// Also shift y to the right past these 0 through 32 zeros so that y's
|
|
// least significant bit will be set unless y was originally zero.
|
|
static int lo0bits(uint32 &y)
|
|
{
|
|
int k;
|
|
uint32 x = y;
|
|
|
|
if (x & 7) {
|
|
if (x & 1)
|
|
return 0;
|
|
if (x & 2) {
|
|
y = x >> 1;
|
|
return 1;
|
|
}
|
|
y = x >> 2;
|
|
return 2;
|
|
}
|
|
k = 0;
|
|
if (!(x & 0xffff)) {
|
|
k = 16;
|
|
x >>= 16;
|
|
}
|
|
if (!(x & 0xff)) {
|
|
k += 8;
|
|
x >>= 8;
|
|
}
|
|
if (!(x & 0xf)) {
|
|
k += 4;
|
|
x >>= 4;
|
|
}
|
|
if (!(x & 0x3)) {
|
|
k += 2;
|
|
x >>= 2;
|
|
}
|
|
if (!(x & 1)) {
|
|
k++;
|
|
x >>= 1;
|
|
if (!x & 1)
|
|
return 32;
|
|
}
|
|
y = x;
|
|
return k;
|
|
}
|
|
|
|
|
|
uint32 *JS::BigInt::freeLists[maxLgGrossSize+1];
|
|
|
|
|
|
// Allocate a BigInt with 2^lgGrossSize words. The BigInt must not currently contain a number.
|
|
void JS::BigInt::allocate(uint lgGrossSize)
|
|
{
|
|
ASSERT(lgGrossSize <= maxLgGrossSize);
|
|
|
|
BigInt::lgGrossSize = lgGrossSize;
|
|
negative = false;
|
|
grossSize = 1u << lgGrossSize;
|
|
size = 0;
|
|
words = 0;
|
|
ACQUIRE_DTOA_LOCK(0);
|
|
uint32 *w = freeLists[lgGrossSize];
|
|
if (w) {
|
|
freeLists[lgGrossSize] = *reinterpret_cast<uint32 **>(w);
|
|
FREE_DTOA_LOCK(0);
|
|
} else {
|
|
FREE_DTOA_LOCK(0);
|
|
w = static_cast<uint32 *>(STD::malloc(max(grossSize*sizeof(uint32), uint32(sizeof(uint32 *)))));
|
|
if (!w) {
|
|
std::bad_alloc outOfMemory;
|
|
throw outOfMemory;
|
|
}
|
|
}
|
|
words = w;
|
|
}
|
|
|
|
|
|
// Recycle this BigInt's words array, which must be non-nil.
|
|
void JS::BigInt::recycle()
|
|
{
|
|
ASSERT(words);
|
|
uint bucket = lgGrossSize;
|
|
uint32 *w = words;
|
|
ACQUIRE_DTOA_LOCK(0);
|
|
*reinterpret_cast<uint32 **>(w) = freeLists[bucket];
|
|
freeLists[bucket] = w;
|
|
FREE_DTOA_LOCK(0);
|
|
}
|
|
|
|
|
|
// Copy b into this BigInt, which must be uninitialized.
|
|
void JS::BigInt::initCopy(const BigInt &b)
|
|
{
|
|
allocate(b.lgGrossSize);
|
|
negative = b.negative;
|
|
size = b.size;
|
|
std::copy(b.words, b.words+size, words);
|
|
}
|
|
|
|
|
|
// Move b into this BigInt. The original words array of this BigInt is recycled
|
|
// and must be non-nil. After the move b has no value.
|
|
void JS::BigInt::move(BigInt &b)
|
|
{
|
|
recycle();
|
|
lgGrossSize = b.lgGrossSize;
|
|
negative = b.negative;
|
|
grossSize = b.grossSize;
|
|
size = b.size;
|
|
words = b.words;
|
|
b.words = 0;
|
|
}
|
|
|
|
|
|
// Change this BigInt's lgGrossSize to the given value without affecting the BigInt value
|
|
// contained. This BigInt must currently have a value that will fit in the new lgGrossSize.
|
|
void JS::BigInt::setLgGrossSize(uint lgGrossSize)
|
|
{
|
|
ASSERT(words);
|
|
BigInt b(lgGrossSize);
|
|
ASSERT(size <= b.grossSize);
|
|
std::copy(words, words+size, b.words);
|
|
move(b);
|
|
}
|
|
|
|
|
|
// Set the BigInt to the given integer value.
|
|
// The BigInt must not currently have a value.
|
|
void JS::BigInt::init(uint32 i)
|
|
{
|
|
ASSERT(!words);
|
|
allocate(1); // Allocate two words to allow a little room for growth.
|
|
if (i) {
|
|
size = 1;
|
|
words[0] = i;
|
|
} else
|
|
size = 0;
|
|
}
|
|
|
|
|
|
// Convert d into the form b*2^e, where b is an odd integer. b is the BigInt returned
|
|
// in this, and e is the returned binary exponent. Return the number of significant
|
|
// bits in b in bits. d must be finite and nonzero.
|
|
void JS::BigInt::init(double d, int32 &e, int32 &bits)
|
|
{
|
|
allocate(1);
|
|
|
|
uint32 *x = words;
|
|
uint32 z = word0(d) & Frac_mask;
|
|
word0(d) &= 0x7fffffff; // clear sign bit, which we ignore
|
|
int32 de = (int32)(word0(d) >> Exp_shift);
|
|
#ifdef Sudden_Underflow
|
|
z |= Exp_msk11;
|
|
#else
|
|
if (de)
|
|
z |= Exp_msk1;
|
|
#endif
|
|
uint32 y = word1(d);
|
|
int k;
|
|
int i;
|
|
if (y) {
|
|
if ((k = lo0bits(y)) != 0) {
|
|
x[0] = y | z << (32 - k);
|
|
z >>= k;
|
|
}
|
|
else
|
|
x[0] = y;
|
|
i = (x[1] = z) ? 2 : 1;
|
|
} else {
|
|
ASSERT(z);
|
|
k = lo0bits(z);
|
|
x[0] = z;
|
|
i = 1;
|
|
k += 32;
|
|
}
|
|
size = uint32(i);
|
|
|
|
#ifndef Sudden_Underflow
|
|
if (de) {
|
|
#endif
|
|
e = de - Bias - (P-1) + k;
|
|
bits = P - k;
|
|
#ifndef Sudden_Underflow
|
|
} else {
|
|
e = de - Bias - (P-1) + 1 + k;
|
|
bits = 32*i - hi0bits(x[i-1]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
// Let this = this*m + a. Both a and m must be between 0 and 65535 inclusive.
|
|
void JS::BigInt::mulAdd(uint m, uint a)
|
|
{
|
|
#ifdef NATIVE_INT64
|
|
uint64 carry, y;
|
|
#else
|
|
uint32 carry, y;
|
|
uint32 xi, z;
|
|
#endif
|
|
|
|
ASSERT(m <= 0xFFFF && a <= 0xFFFF);
|
|
uint32 sz = size;
|
|
uint32 *x = words;
|
|
carry = a;
|
|
for (uint32 i = 0; i != sz; i++) {
|
|
#ifdef NATIVE_INT64
|
|
y = *x * (uint64)m + carry;
|
|
carry = y >> 32;
|
|
*x++ = (uint32)(y & 0xffffffffUL);
|
|
#else
|
|
xi = *x;
|
|
y = (xi & 0xffff) * m + carry;
|
|
z = (xi >> 16) * m + (y >> 16);
|
|
carry = z >> 16;
|
|
*x++ = (z << 16) + (y & 0xffff);
|
|
#endif
|
|
}
|
|
if (carry) {
|
|
if (sz >= grossSize)
|
|
setLgGrossSize(lgGrossSize+1);
|
|
words[sz++] = (uint32)carry;
|
|
size = sz;
|
|
}
|
|
}
|
|
|
|
|
|
// Let this = this*m.
|
|
void JS::BigInt::operator*=(const BigInt &m)
|
|
{
|
|
const BigInt *a;
|
|
const BigInt *b;
|
|
if (size >= m.size) {
|
|
a = this;
|
|
b = &m;
|
|
} else {
|
|
a = &m;
|
|
b = this;
|
|
}
|
|
|
|
uint k = a->lgGrossSize;
|
|
uint32 wa = a->size;
|
|
uint32 wb = b->size;
|
|
uint32 wc = wa + wb;
|
|
if (wc > a->grossSize)
|
|
k++;
|
|
|
|
BigInt c(k);
|
|
uint32 *xc;
|
|
uint32 *xce;
|
|
for (xc = c.words, xce = xc + wc; xc < xce; xc++)
|
|
*xc = 0;
|
|
const uint32 *xa = a->words;
|
|
const uint32 *xae = xa + wa;
|
|
const uint32 *xb = b->words;
|
|
const uint32 *xbe = xb + wb;
|
|
uint32 *xc0 = c.words;
|
|
uint32 y;
|
|
#ifdef NATIVE_INT64
|
|
for (; xb < xbe; xc0++) {
|
|
if ((y = *xb++) != 0) {
|
|
const uint32 *x = xa;
|
|
xc = xc0;
|
|
uint64 carry = 0;
|
|
do {
|
|
uint64 z = *x++ * (uint64)y + *xc + carry;
|
|
carry = z >> 32;
|
|
*xc++ = (uint32)(z & 0xffffffffUL);
|
|
} while (x < xae);
|
|
*xc = (uint32)carry;
|
|
}
|
|
}
|
|
#else
|
|
for (; xb < xbe; xb++, xc0++) {
|
|
uint32 carry;
|
|
uint32 z, z2;
|
|
const uint32 *x;
|
|
|
|
if ((y = *xb & 0xffff) != 0) {
|
|
x = xa;
|
|
xc = xc0;
|
|
carry = 0;
|
|
do {
|
|
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
|
|
carry = z >> 16;
|
|
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
|
|
carry = z2 >> 16;
|
|
Storeinc(xc, z2, z);
|
|
} while (x < xae);
|
|
*xc = carry;
|
|
}
|
|
if ((y = *xb >> 16) != 0) {
|
|
x = xa;
|
|
xc = xc0;
|
|
carry = 0;
|
|
z2 = *xc;
|
|
do {
|
|
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
|
|
carry = z >> 16;
|
|
Storeinc(xc, z, z2);
|
|
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
|
|
carry = z2 >> 16;
|
|
} while (x < xae);
|
|
*xc = z2;
|
|
}
|
|
}
|
|
#endif
|
|
for (xc0 = c.words, xc = xc0 + wc; wc && !*--xc; --wc) ;
|
|
c.size = wc;
|
|
move(c);
|
|
}
|
|
|
|
|
|
// Let this = this * 2^k. k must be nonnegative.
|
|
void JS::BigInt::pow2Mul(int32 k)
|
|
{
|
|
ASSERT(k >= 0);
|
|
|
|
uint32 n = uint32(k) >> 5;
|
|
uint k1 = lgGrossSize;
|
|
uint32 n1 = n + size + 1;
|
|
uint32 i;
|
|
for (i = grossSize; n1 > i; i <<= 1)
|
|
k1++;
|
|
|
|
BigInt b1(k1);
|
|
uint32 *x1 = b1.words;
|
|
for (i = 0; i < n; i++)
|
|
*x1++ = 0;
|
|
uint32 *x = words;
|
|
uint32 *xe = x + size;
|
|
if (k &= 0x1f) {
|
|
k1 = uint(32 - k);
|
|
uint32 z = 0;
|
|
while (x != xe) {
|
|
*x1++ = *x << k | z;
|
|
z = *x++ >> k1;
|
|
}
|
|
if ((*x1 = z) != 0)
|
|
++n1;
|
|
}
|
|
else
|
|
while (x != xe)
|
|
*x1++ = *x++;
|
|
b1.size = n1 - 1;
|
|
move(b1);
|
|
}
|
|
|
|
|
|
// 'p5s' points to a linked list of Bigints that are powers of 625.
|
|
// This list grows on demand, and it can only grow: it won't change
|
|
// in any other way. So if we read 'p5s' or the 'next' field of
|
|
// some BigInt on the list, and it is not NULL, we know it won't
|
|
// change to NULL or some other value. Only when the value of
|
|
// 'p5s' or 'next' is NULL do we need to acquire the lock and add
|
|
// a new BigInt to the list.
|
|
struct PowerOf625 {
|
|
PowerOf625 *next;
|
|
BigInt b;
|
|
};
|
|
|
|
static PowerOf625 *p5s;
|
|
|
|
#ifdef JS_THREADSAFE
|
|
static PRLock *p5s_lock;
|
|
#endif
|
|
|
|
|
|
// Let this = this * 5^k. k must be nonnegative.
|
|
void JS::BigInt::pow5Mul(int32 k)
|
|
{
|
|
static const uint p05[3] = {5, 25, 125};
|
|
|
|
ASSERT(k >= 0);
|
|
int32 i = k & 3;
|
|
if (i)
|
|
mulAdd(p05[i-1], 0);
|
|
|
|
if (!(k >>= 2))
|
|
return;
|
|
PowerOf625 *p5 = p5s;
|
|
if (!p5) {
|
|
auto_ptr<PowerOf625> p(new PowerOf625);
|
|
p->next = 0;
|
|
p->b.init(625);
|
|
#ifdef JS_THREADSAFE
|
|
// We take great care to not call init() and recycle() while holding the lock.
|
|
// lock and check again
|
|
PR_Lock(p5s_lock);
|
|
if (!(p5 = p5s)) {
|
|
#endif
|
|
// first time
|
|
p5 = p.release();
|
|
p5s = p5;
|
|
#ifdef JS_THREADSAFE
|
|
}
|
|
PR_Unlock(p5s_lock);
|
|
#endif
|
|
}
|
|
for (;;) {
|
|
if (k & 1)
|
|
*this *= p5->b;
|
|
if (!(k >>= 1))
|
|
break;
|
|
PowerOf625 *p51 = p5->next;
|
|
if (!p51) {
|
|
auto_ptr<PowerOf625> p(new PowerOf625);
|
|
p->next = 0;
|
|
p->b = p5->b;
|
|
p->b *= p5->b;
|
|
#ifdef JS_THREADSAFE
|
|
PR_Lock(p5s_lock);
|
|
if (!(p51 = p5->next)) {
|
|
#endif
|
|
p51 = p.release();
|
|
p5->next = p51;
|
|
#ifdef JS_THREADSAFE
|
|
}
|
|
PR_Unlock(p5s_lock);
|
|
#endif
|
|
}
|
|
p5 = p51;
|
|
}
|
|
}
|
|
|
|
|
|
// Return -1, 0, or 1 depending on whether this<b, this==b, or this>b, respectively.
|
|
int JS::BigInt::cmp(const BigInt &b) const
|
|
{
|
|
uint32 i = size;
|
|
uint32 j = b.size;
|
|
#ifdef DEBUG
|
|
if (i > 1 && !words[i-1])
|
|
NOT_REACHED("cmp called with words[size-1] == 0");
|
|
if (j > 1 && !b.words[j-1])
|
|
NOT_REACHED("cmp called with b.words[b.size-1] == 0");
|
|
#endif
|
|
if (i != j)
|
|
return i<j ? -1 : 1;
|
|
const uint32 *xa0 = words;
|
|
const uint32 *xa = xa0 + j;
|
|
const uint32 *xb = b.words + j;
|
|
while (xa != xa0) {
|
|
if (*--xa != *--xb)
|
|
return *xa < *xb ? -1 : 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Initialize this BigInt to m-n. This BigInt must not have a previous value.
|
|
void JS::BigInt::initDiff(const BigInt &m, const BigInt &n)
|
|
{
|
|
ASSERT(!words && this != &m && this != &n);
|
|
|
|
int i = m.cmp(n);
|
|
if (!i)
|
|
init(0);
|
|
else {
|
|
const BigInt *a;
|
|
const BigInt *b;
|
|
if (i < 0) {
|
|
a = &n;
|
|
b = &m;
|
|
} else {
|
|
a = &m;
|
|
b = &n;
|
|
}
|
|
allocate(a->lgGrossSize);
|
|
negative = i < 0;
|
|
uint32 wa = a->size;
|
|
const uint32 *xa = a->words;
|
|
const uint32 *xae = xa + wa;
|
|
const uint32 *xb = b->words;
|
|
const uint32 *xbe = xb + b->size;
|
|
uint32 *xc = words;
|
|
#ifdef NATIVE_INT64
|
|
uint64 borrow = 0;
|
|
uint64 y;
|
|
while (xb < xbe) {
|
|
y = (uint64)*xa++ - *xb++ - borrow;
|
|
borrow = y >> 32 & 1UL;
|
|
*xc++ = (uint32)(y & 0xffffffffUL);
|
|
}
|
|
while (xa < xae) {
|
|
y = *xa++ - borrow;
|
|
borrow = y >> 32 & 1UL;
|
|
*xc++ = (uint32)(y & 0xffffffffUL);
|
|
}
|
|
#else
|
|
uint32 borrow = 0;
|
|
uint32 y;
|
|
uint32 z;
|
|
while (xb < xbe) {
|
|
y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
|
|
borrow = (y & 0x10000) >> 16;
|
|
z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
|
|
borrow = (z & 0x10000) >> 16;
|
|
Storeinc(xc, z, y);
|
|
}
|
|
while (xa < xae) {
|
|
y = (*xa & 0xffff) - borrow;
|
|
borrow = (y & 0x10000) >> 16;
|
|
z = (*xa++ >> 16) - borrow;
|
|
borrow = (z & 0x10000) >> 16;
|
|
Storeinc(xc, z, y);
|
|
}
|
|
#endif
|
|
while (!*--xc)
|
|
wa--;
|
|
size = wa;
|
|
}
|
|
}
|
|
|
|
|
|
// Return floor(this/2^k) and set this to be the remainder.
|
|
// The returned quotient must be less than 2^32.
|
|
uint32 JS::BigInt::quoRem2(int32 k)
|
|
{
|
|
int32 n = k >> 5;
|
|
k &= 0x1F;
|
|
uint32 mask = (1u<<k) - 1;
|
|
|
|
int32 w = int32(size) - n;
|
|
if (w <= 0)
|
|
return 0;
|
|
ASSERT(w <= 2);
|
|
uint32 *bx = words;
|
|
uint32 *bxe = bx + n;
|
|
uint32 result = *bxe >> k;
|
|
*bxe &= mask;
|
|
if (w == 2) {
|
|
ASSERT(!(bxe[1] & ~mask));
|
|
if (k)
|
|
result |= bxe[1] << (32 - k);
|
|
}
|
|
n++;
|
|
while (!*bxe && bxe != bx) {
|
|
n--;
|
|
bxe--;
|
|
}
|
|
size = uint32(n);
|
|
return result;
|
|
}
|
|
|
|
|
|
// Return floor(this/S) and set this to be the remainder. As added restrictions, this must not have
|
|
// more words than S, the most significant word of S must not start with a 1 bit, and the
|
|
// returned quotient must be less than 36.
|
|
int32 JS::BigInt::quoRem(const BigInt &S)
|
|
{
|
|
#ifdef NATIVE_INT64
|
|
uint64 borrow, carry, y, ys;
|
|
#else
|
|
uint32 borrow, carry, y, ys;
|
|
uint32 si, z, zs;
|
|
#endif
|
|
|
|
uint32 n = S.size;
|
|
ASSERT(size <= n && n);
|
|
if (size < n)
|
|
return 0;
|
|
const uint32 *sx = S.words;
|
|
const uint32 *sxe = sx + --n;
|
|
uint32 *bx = words;
|
|
uint32 *bxe = bx + n;
|
|
ASSERT(*sxe <= 0x7FFFFFFF);
|
|
uint32 q = *bxe / (*sxe + 1); // ensure q <= true quotient
|
|
ASSERT(q < 36);
|
|
if (q) {
|
|
borrow = 0;
|
|
carry = 0;
|
|
do {
|
|
#ifdef NATIVE_INT64
|
|
ys = *sx++ * (uint64)q + carry;
|
|
carry = ys >> 32;
|
|
y = *bx - (ys & 0xffffffffUL) - borrow;
|
|
borrow = y >> 32 & 1UL;
|
|
*bx++ = (uint32)(y & 0xffffffffUL);
|
|
#else
|
|
si = *sx++;
|
|
ys = (si & 0xffff) * q + carry;
|
|
zs = (si >> 16) * q + (ys >> 16);
|
|
carry = zs >> 16;
|
|
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
|
borrow = (y & 0x10000) >> 16;
|
|
z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
|
borrow = (z & 0x10000) >> 16;
|
|
Storeinc(bx, z, y);
|
|
#endif
|
|
} while (sx <= sxe);
|
|
if (!*bxe) {
|
|
bx = words;
|
|
while (--bxe > bx && !*bxe)
|
|
--n;
|
|
size = n;
|
|
}
|
|
}
|
|
if (cmp(S) >= 0) {
|
|
q++;
|
|
borrow = 0;
|
|
carry = 0;
|
|
bx = words;
|
|
sx = S.words;
|
|
do {
|
|
#ifdef NATIVE_INT64
|
|
ys = *sx++ + carry;
|
|
carry = ys >> 32;
|
|
y = *bx - (ys & 0xffffffffUL) - borrow;
|
|
borrow = y >> 32 & 1UL;
|
|
*bx++ = (uint32)(y & 0xffffffffUL);
|
|
#else
|
|
si = *sx++;
|
|
ys = (si & 0xffff) + carry;
|
|
zs = (si >> 16) + (ys >> 16);
|
|
carry = zs >> 16;
|
|
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
|
borrow = (y & 0x10000) >> 16;
|
|
z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
|
borrow = (z & 0x10000) >> 16;
|
|
Storeinc(bx, z, y);
|
|
#endif
|
|
} while (sx <= sxe);
|
|
bx = words;
|
|
bxe = bx + n;
|
|
if (!*bxe) {
|
|
while (--bxe > bx && !*bxe)
|
|
--n;
|
|
size = n;
|
|
}
|
|
}
|
|
return int32(q);
|
|
}
|
|
|
|
|
|
// Let this = floor(this / divisor), and return the remainder. this must be nonnegative.
|
|
// divisor must be between 1 and 65536.
|
|
uint32 JS::BigInt::divRem(uint32 divisor)
|
|
{
|
|
uint32 n = size;
|
|
uint32 remainder = 0;
|
|
|
|
ASSERT(divisor > 0 && divisor <= 65536);
|
|
|
|
if (!n)
|
|
return 0; // this is zero
|
|
uint32 *bx = words;
|
|
uint32 *bp = bx + n;
|
|
do {
|
|
uint32 a = *--bp;
|
|
uint32 dividend = remainder << 16 | a >> 16;
|
|
uint32 quotientHi = dividend / divisor;
|
|
uint32 quotientLo;
|
|
|
|
remainder = dividend - quotientHi*divisor;
|
|
ASSERT(quotientHi <= 0xFFFF && remainder < divisor);
|
|
dividend = remainder << 16 | (a & 0xFFFF);
|
|
quotientLo = dividend / divisor;
|
|
remainder = dividend - quotientLo*divisor;
|
|
ASSERT(quotientLo <= 0xFFFF && remainder < divisor);
|
|
*bp = quotientHi << 16 | quotientLo;
|
|
} while (bp != bx);
|
|
// Decrease the size of the number if its most significant word is now zero.
|
|
if (bx[n-1] == 0)
|
|
size--;
|
|
return remainder;
|
|
}
|
|
|
|
|
|
double JS::BigInt::b2d(int32 &e) const
|
|
{
|
|
double d;
|
|
|
|
const uint32 *xa0 = words;
|
|
const uint32 *xa = xa0 + size;
|
|
ASSERT(size);
|
|
uint32 y = *--xa;
|
|
ASSERT(y);
|
|
int k = hi0bits(y);
|
|
e = 32 - k;
|
|
if (k < Ebits) {
|
|
word0(d) = Exp_1 | y >> (Ebits - k);
|
|
uint32 w = xa > xa0 ? *--xa : 0;
|
|
word1(d) = y << (32-Ebits + k) | w >> (Ebits - k);
|
|
} else {
|
|
uint32 z = xa > xa0 ? *--xa : 0;
|
|
if (k -= Ebits) {
|
|
word0(d) = Exp_1 | y << k | z >> (32 - k);
|
|
y = xa > xa0 ? *--xa : 0;
|
|
word1(d) = z << k | y >> (32 - k);
|
|
}
|
|
else {
|
|
word0(d) = Exp_1 | y;
|
|
word1(d) = z;
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
|
|
|
|
double JS::BigInt::ratio(const BigInt &denominator) const
|
|
{
|
|
int32 ka, kb;
|
|
|
|
double da = b2d(ka);
|
|
double db = denominator.b2d(kb);
|
|
int32 k = ka - kb + 32*int32(size - denominator.size);
|
|
if (k > 0)
|
|
word0(da) += k*Exp_msk1;
|
|
else
|
|
word0(db) -= k*Exp_msk1;
|
|
return da / db;
|
|
}
|
|
|
|
|
|
void JS::BigInt::s2b(const char *s, int32 nd0, int32 nd, uint32 y9)
|
|
{
|
|
int32 i;
|
|
int32 x, y;
|
|
|
|
x = (nd + 8) / 9;
|
|
uint k = 0;
|
|
for (y = 1; x > y; y <<= 1, k++) ;
|
|
ASSERT(!words);
|
|
allocate(k);
|
|
words[0] = y9;
|
|
size = 1;
|
|
|
|
i = 9;
|
|
if (9 < nd0) {
|
|
s += 9;
|
|
do mulAdd(10, uint(*s++ - '0'));
|
|
while (++i < nd0);
|
|
s++;
|
|
} else
|
|
s += 10;
|
|
for (; i < nd; i++)
|
|
mulAdd(10, uint(*s++ - '0'));
|
|
}
|
|
|
|
|
|
|
|
static const double tens[] = {
|
|
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
|
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
|
1e20, 1e21, 1e22
|
|
};
|
|
|
|
static const double bigtens[] = {1e16, 1e32, 1e64, 1e128, 1e256};
|
|
static const double tinytens[] = {1e-16, 1e-32, 1e-64, 1e-128,
|
|
#ifdef Avoid_Underflow
|
|
9007199254740992.e-256
|
|
#else
|
|
1e-256
|
|
#endif
|
|
};
|
|
// The factor of 2^53 in tinytens[4] helps us avoid setting the underflow
|
|
// flag unnecessarily. It leads to a song and dance at the end of strToDouble.
|
|
|
|
const int32 Scale_Bit = 0x10;
|
|
const int n_bigtens = 5;
|
|
|
|
|
|
#ifdef JS_THREADSAFE
|
|
static bool initialized = false;
|
|
|
|
// hacked replica of nspr _PR_InitDtoa
|
|
static void InitDtoa(void)
|
|
{
|
|
freelist_lock = PR_NewLock();
|
|
p5s_lock = PR_NewLock();
|
|
initialized = true;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
// Return as a double-precision floating-point number the value represented by the character
|
|
// string str. The string is scanned up to the first unrecognized character. The character
|
|
// sequences 'Infinity', '+Infinity', '-Infinity', and 'NaN' are also recognized.
|
|
// Return a pointer to the character terminating the scan in numEnd.
|
|
// If no number can be formed, set numEnd to str and return zero.
|
|
double JS::strToDouble(const char *str, const char *&numEnd)
|
|
{
|
|
int32 scale;
|
|
int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
|
|
e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0;
|
|
const char *s, *s0, *s1;
|
|
double aadj, aadj1, adj, rv, rv0;
|
|
int32 L;
|
|
uint32 y, z;
|
|
|
|
#ifdef JS_THREADSAFE
|
|
if (!initialized) InitDtoa();
|
|
#endif
|
|
|
|
nz0 = nz = 0;
|
|
bool negative = false;
|
|
bool haveSign = false;
|
|
rv = 0.;
|
|
for (s = str;; s++)
|
|
switch (*s) {
|
|
case '-':
|
|
negative = true;
|
|
// no break
|
|
case '+':
|
|
haveSign = true;
|
|
if (*++s)
|
|
goto break2;
|
|
// no break
|
|
case 0:
|
|
s = str;
|
|
goto ret;
|
|
case '\t':
|
|
case '\n':
|
|
case '\v':
|
|
case '\f':
|
|
case '\r':
|
|
case ' ':
|
|
continue;
|
|
default:
|
|
goto break2;
|
|
}
|
|
break2:
|
|
switch (*s) {
|
|
case '0':
|
|
nz0 = 1;
|
|
while (*++s == '0') ;
|
|
if (!*s)
|
|
goto ret;
|
|
break;
|
|
case 'I':
|
|
if (!STD::strncmp(s+1, "nfinity", 7)) {
|
|
rv = positiveInfinity;
|
|
s += 8;
|
|
goto ret;
|
|
}
|
|
break;
|
|
case 'N':
|
|
if (!haveSign && !STD::strncmp(s+1, "aN", 2)) {
|
|
rv = nan;
|
|
s += 3;
|
|
goto ret;
|
|
}
|
|
}
|
|
s0 = s;
|
|
y = z = 0;
|
|
for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
|
|
if (nd < 9)
|
|
y = 10*y + c - '0';
|
|
else if (nd < 16)
|
|
z = 10*z + c - '0';
|
|
nd0 = nd;
|
|
if (c == '.') {
|
|
c = *++s;
|
|
if (!nd) {
|
|
for (; c == '0'; c = *++s)
|
|
nz++;
|
|
if (c > '0' && c <= '9') {
|
|
s0 = s;
|
|
nf += nz;
|
|
nz = 0;
|
|
goto have_dig;
|
|
}
|
|
goto dig_done;
|
|
}
|
|
for (; c >= '0' && c <= '9'; c = *++s) {
|
|
have_dig:
|
|
nz++;
|
|
if (c -= '0') {
|
|
nf += nz;
|
|
for (i = 1; i < nz; i++)
|
|
if (nd++ < 9)
|
|
y *= 10;
|
|
else if (nd <= DBL_DIG + 1)
|
|
z *= 10;
|
|
if (nd++ < 9)
|
|
y = 10*y + c;
|
|
else if (nd <= DBL_DIG + 1)
|
|
z = 10*z + c;
|
|
nz = 0;
|
|
}
|
|
}
|
|
}
|
|
dig_done:
|
|
e = 0;
|
|
if (c == 'e' || c == 'E') {
|
|
if (!nd && !nz && !nz0) {
|
|
s = str;
|
|
goto ret;
|
|
}
|
|
str = s;
|
|
esign = 0;
|
|
switch (c = *++s) {
|
|
case '-':
|
|
esign = 1;
|
|
case '+':
|
|
c = *++s;
|
|
}
|
|
if (c >= '0' && c <= '9') {
|
|
while (c == '0')
|
|
c = *++s;
|
|
if (c > '0' && c <= '9') {
|
|
L = c - '0';
|
|
s1 = s;
|
|
while ((c = *++s) >= '0' && c <= '9')
|
|
L = 10*L + c - '0';
|
|
if (s - s1 > 8 || L > 19999)
|
|
// Avoid confusion from exponents so large that e might overflow.
|
|
e = 19999; // safe for 16 bit ints
|
|
else
|
|
e = (int32)L;
|
|
if (esign)
|
|
e = -e;
|
|
}
|
|
else
|
|
e = 0;
|
|
}
|
|
else
|
|
s = str;
|
|
}
|
|
if (!nd) {
|
|
if (!nz && !nz0) {
|
|
s = str;
|
|
}
|
|
goto ret;
|
|
}
|
|
e1 = e -= nf;
|
|
|
|
// Now we have nd0 digits, starting at s0, followed by a
|
|
// decimal point, followed by nd-nd0 digits. The number we're
|
|
// after is the integer represented by those digits times 10**e
|
|
|
|
if (!nd0)
|
|
nd0 = nd;
|
|
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
|
|
rv = y;
|
|
if (k > 9)
|
|
rv = tens[k - 9] * rv + z;
|
|
if (nd <= DBL_DIG && FLT_ROUNDS == 1) {
|
|
if (!e)
|
|
goto ret;
|
|
if (e > 0) {
|
|
if (e <= Ten_pmax) {
|
|
rv *= tens[e];
|
|
goto ret;
|
|
}
|
|
i = DBL_DIG - nd;
|
|
if (e <= Ten_pmax + i) {
|
|
// A fancier test would sometimes let us do this for larger i values.
|
|
e -= i;
|
|
rv *= tens[i];
|
|
rv *= tens[e];
|
|
goto ret;
|
|
}
|
|
}
|
|
#ifndef Inaccurate_Divide
|
|
else if (e >= -Ten_pmax) {
|
|
rv /= tens[-e];
|
|
goto ret;
|
|
}
|
|
#endif
|
|
}
|
|
e1 += nd - k;
|
|
|
|
scale = 0;
|
|
|
|
// Get starting approximation = rv * 10**e1
|
|
|
|
if (e1 > 0) {
|
|
if ((i = e1 & 15) != 0)
|
|
rv *= tens[i];
|
|
if (e1 &= ~15) {
|
|
if (e1 > DBL_MAX_10_EXP) {
|
|
ovfl:
|
|
// Return infinity.
|
|
rv = positiveInfinity;
|
|
goto ret;
|
|
}
|
|
e1 >>= 4;
|
|
for (j = 0; e1 > 1; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
rv *= bigtens[j];
|
|
// The last multiplication could overflow.
|
|
word0(rv) -= P*Exp_msk1;
|
|
rv *= bigtens[j];
|
|
if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P))
|
|
goto ovfl;
|
|
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
|
|
// set to largest number
|
|
// (Can't trust DBL_MAX)
|
|
word0(rv) = Big0;
|
|
word1(rv) = Big1;
|
|
}
|
|
else
|
|
word0(rv) += P*Exp_msk1;
|
|
}
|
|
}
|
|
else if (e1 < 0) {
|
|
e1 = -e1;
|
|
if ((i = e1 & 15) != 0)
|
|
rv /= tens[i];
|
|
if (e1 &= ~15) {
|
|
e1 >>= 4;
|
|
if (e1 >= 1 << n_bigtens)
|
|
goto undfl;
|
|
#ifdef Avoid_Underflow
|
|
if (e1 & Scale_Bit)
|
|
scale = P;
|
|
for (j = 0; e1 > 0; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
rv *= tinytens[j];
|
|
if (scale && (j = P + 1 - int32((word0(rv) & Exp_mask) >> Exp_shift)) > 0) {
|
|
// scaled rv is denormal; zap j low bits
|
|
if (j >= 32) {
|
|
word1(rv) = 0;
|
|
word0(rv) &= 0xffffffff << (j-32);
|
|
if (!word0(rv))
|
|
word0(rv) = 1;
|
|
}
|
|
else
|
|
word1(rv) &= 0xffffffff << j;
|
|
}
|
|
#else
|
|
for (j = 0; e1 > 1; j++, e1 >>= 1)
|
|
if (e1 & 1)
|
|
rv *= tinytens[j];
|
|
// The last multiplication could underflow.
|
|
rv0 = rv;
|
|
rv *= tinytens[j];
|
|
if (!rv) {
|
|
rv = 2.*rv0;
|
|
rv *= tinytens[j];
|
|
#endif
|
|
if (!rv) {
|
|
undfl:
|
|
rv = 0.;
|
|
goto ret;
|
|
}
|
|
#ifndef Avoid_Underflow
|
|
word0(rv) = Tiny0;
|
|
word1(rv) = Tiny1;
|
|
// The refinement below will clean this approximation up.
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Now the hard part -- adjusting rv to the correct value.
|
|
|
|
// Put digits into bd: true value = bd * 10^e
|
|
{
|
|
BigInt bd0;
|
|
bd0.s2b(s0, nd0, nd, y);
|
|
|
|
for (;;) {
|
|
BigInt bs;
|
|
|
|
BigInt bd = bd0;
|
|
BigInt bb;
|
|
bb.init(rv, bbe, bbbits); // rv = bb * 2^bbe
|
|
bs.init(1);
|
|
|
|
if (e >= 0) {
|
|
bb2 = bb5 = 0;
|
|
bd2 = bd5 = e;
|
|
}
|
|
else {
|
|
bb2 = bb5 = -e;
|
|
bd2 = bd5 = 0;
|
|
}
|
|
if (bbe >= 0)
|
|
bb2 += bbe;
|
|
else
|
|
bd2 -= bbe;
|
|
bs2 = bb2;
|
|
#ifdef Sudden_Underflow
|
|
j = P + 1 - bbbits;
|
|
#else
|
|
#ifdef Avoid_Underflow
|
|
j = bbe - scale;
|
|
#else
|
|
j = bbe;
|
|
#endif
|
|
i = j + bbbits - 1; // logb(rv)
|
|
if (i < Emin) // denormal
|
|
j += P - Emin;
|
|
else
|
|
j = P + 1 - bbbits;
|
|
#endif
|
|
bb2 += j;
|
|
bd2 += j;
|
|
#ifdef Avoid_Underflow
|
|
bd2 += scale;
|
|
#endif
|
|
i = bb2 < bd2 ? bb2 : bd2;
|
|
if (i > bs2)
|
|
i = bs2;
|
|
if (i > 0) {
|
|
bb2 -= i;
|
|
bd2 -= i;
|
|
bs2 -= i;
|
|
}
|
|
if (bb5 > 0) {
|
|
bs.pow5Mul(bb5);
|
|
bb *= bs;
|
|
}
|
|
if (bb2 > 0)
|
|
bb.pow2Mul(bb2);
|
|
if (bd5 > 0)
|
|
bd.pow5Mul(bd5);
|
|
if (bd2 > 0)
|
|
bd.pow2Mul(bd2);
|
|
if (bs2 > 0)
|
|
bs.pow2Mul(bs2);
|
|
|
|
BigInt delta;
|
|
delta.initDiff(bb, bd);
|
|
dsign = delta.negative;
|
|
delta.negative = false;
|
|
i = delta.cmp(bs);
|
|
if (i < 0) {
|
|
// Error is less than half an ulp -- check for special case of mantissa a power of two.
|
|
if (dsign || word1(rv) || word0(rv) & Bndry_mask
|
|
#ifdef Avoid_Underflow
|
|
|| (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1
|
|
#else
|
|
|| (word0(rv) & Exp_mask) <= Exp_msk1
|
|
#endif
|
|
) {
|
|
#ifdef Avoid_Underflow
|
|
if (delta.isZero())
|
|
dsign = 2;
|
|
#endif
|
|
break;
|
|
}
|
|
delta.pow2Mul(Log2P);
|
|
if (delta.cmp(bs) > 0)
|
|
goto drop_down;
|
|
break;
|
|
}
|
|
if (i == 0) {
|
|
// exactly half-way between
|
|
if (dsign) {
|
|
if ((word0(rv) & Bndry_mask1) == Bndry_mask1
|
|
&& word1(rv) == 0xffffffff) {
|
|
//boundary case -- increment exponent
|
|
word0(rv) = (word0(rv) & Exp_mask) + Exp_msk1;
|
|
word1(rv) = 0;
|
|
#ifdef Avoid_Underflow
|
|
dsign = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
|
|
#ifdef Avoid_Underflow
|
|
dsign = 2;
|
|
#endif
|
|
drop_down:
|
|
// boundary case -- decrement exponent
|
|
#ifdef Sudden_Underflow
|
|
L = word0(rv) & Exp_mask;
|
|
if (L <= Exp_msk1)
|
|
goto undfl;
|
|
L -= Exp_msk1;
|
|
#else
|
|
L = int32((word0(rv) & Exp_mask) - Exp_msk1);
|
|
#endif
|
|
word0(rv) = uint32(L) | Bndry_mask1;
|
|
word1(rv) = 0xffffffff;
|
|
break;
|
|
}
|
|
#ifndef ROUND_BIASED
|
|
if (!(word1(rv) & LSB))
|
|
break;
|
|
#endif
|
|
if (dsign)
|
|
rv += ulp(rv);
|
|
#ifndef ROUND_BIASED
|
|
else {
|
|
rv -= ulp(rv);
|
|
#ifndef Sudden_Underflow
|
|
if (!rv)
|
|
goto undfl;
|
|
#endif
|
|
}
|
|
#ifdef Avoid_Underflow
|
|
dsign = 1 - dsign;
|
|
#endif
|
|
#endif
|
|
break;
|
|
}
|
|
if ((aadj = delta.ratio(bs)) <= 2.) {
|
|
if (dsign)
|
|
aadj = aadj1 = 1.;
|
|
else if (word1(rv) || word0(rv) & Bndry_mask) {
|
|
#ifndef Sudden_Underflow
|
|
if (word1(rv) == Tiny1 && !word0(rv))
|
|
goto undfl;
|
|
#endif
|
|
aadj = 1.;
|
|
aadj1 = -1.;
|
|
}
|
|
else {
|
|
// special case -- power of FLT_RADIX to be
|
|
// rounded down...
|
|
|
|
if (aadj < 2./FLT_RADIX)
|
|
aadj = 1./FLT_RADIX;
|
|
else
|
|
aadj *= 0.5;
|
|
aadj1 = -aadj;
|
|
}
|
|
}
|
|
else {
|
|
aadj *= 0.5;
|
|
aadj1 = dsign ? aadj : -aadj;
|
|
#ifdef Check_FLT_ROUNDS
|
|
switch (FLT_ROUNDS) {
|
|
case 2: // towards +infinity
|
|
aadj1 -= 0.5;
|
|
break;
|
|
case 0: // towards 0
|
|
case 3: // towards -infinity
|
|
aadj1 += 0.5;
|
|
}
|
|
#else
|
|
if (FLT_ROUNDS == 0)
|
|
aadj1 += 0.5;
|
|
#endif
|
|
}
|
|
y = word0(rv) & Exp_mask;
|
|
|
|
// Check for overflow
|
|
|
|
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
|
|
rv0 = rv;
|
|
word0(rv) -= P*Exp_msk1;
|
|
adj = aadj1 * ulp(rv);
|
|
rv += adj;
|
|
if ((word0(rv) & Exp_mask) >=
|
|
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
|
|
if (word0(rv0) == Big0 && word1(rv0) == Big1)
|
|
goto ovfl;
|
|
word0(rv) = Big0;
|
|
word1(rv) = Big1;
|
|
continue;
|
|
}
|
|
else
|
|
word0(rv) += P*Exp_msk1;
|
|
}
|
|
else {
|
|
#ifdef Sudden_Underflow
|
|
if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
|
|
rv0 = rv;
|
|
word0(rv) += P*Exp_msk1;
|
|
adj = aadj1 * ulp(rv);
|
|
rv += adj;
|
|
if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
|
|
if (word0(rv0) == Tiny0 && word1(rv0) == Tiny1)
|
|
goto undfl;
|
|
word0(rv) = Tiny0;
|
|
word1(rv) = Tiny1;
|
|
continue;
|
|
} else
|
|
word0(rv) -= P*Exp_msk1;
|
|
} else {
|
|
adj = aadj1 * ulp(rv);
|
|
rv += adj;
|
|
}
|
|
#else
|
|
// Compute adj so that the IEEE rounding rules will
|
|
// correctly round rv + adj in some half-way cases.
|
|
// If rv * ulp(rv) is denormalized (i.e.,
|
|
// y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
|
|
// trouble from bits lost to denormalization;
|
|
// example: 1.2e-307 .
|
|
#ifdef Avoid_Underflow
|
|
if (y <= P*Exp_msk1 && aadj > 1.)
|
|
#else
|
|
if (y <= (P-1)*Exp_msk1 && aadj > 1.)
|
|
#endif
|
|
{
|
|
aadj1 = (double)(int32)(aadj + 0.5);
|
|
if (!dsign)
|
|
aadj1 = -aadj1;
|
|
}
|
|
#ifdef Avoid_Underflow
|
|
if (scale && y <= P*Exp_msk1)
|
|
word0(aadj1) += (P+1)*Exp_msk1 - y;
|
|
#endif
|
|
adj = aadj1 * ulp(rv);
|
|
rv += adj;
|
|
#endif
|
|
}
|
|
z = word0(rv) & Exp_mask;
|
|
#ifdef Avoid_Underflow
|
|
if (!scale)
|
|
#endif
|
|
if (y == z) {
|
|
// Can we stop now?
|
|
L = (int32)aadj;
|
|
aadj -= L;
|
|
// The tolerances below are conservative.
|
|
if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
|
|
if (aadj < .4999999 || aadj > .5000001)
|
|
break;
|
|
}
|
|
else if (aadj < .4999999/FLT_RADIX)
|
|
break;
|
|
}
|
|
}
|
|
#ifdef Avoid_Underflow
|
|
if (scale) {
|
|
word0(rv0) = Exp_1 - P*Exp_msk1;
|
|
word1(rv0) = 0;
|
|
if ((word0(rv) & Exp_mask) <= P*Exp_msk1
|
|
&& word1(rv) & 1
|
|
&& dsign != 2) {
|
|
if (dsign) {
|
|
#ifdef Sudden_Underflow
|
|
// rv will be 0, but this would give the
|
|
// right result if only rv *= rv0 worked.
|
|
word0(rv) += P*Exp_msk1;
|
|
word0(rv0) = Exp_1 - 2*P*Exp_msk1;
|
|
#endif
|
|
rv += ulp(rv);
|
|
}
|
|
else
|
|
word1(rv) &= ~1;
|
|
}
|
|
rv *= rv0;
|
|
}
|
|
#endif // Avoid_Underflow
|
|
}
|
|
ret:
|
|
numEnd = s;
|
|
return negative ? -rv : rv;
|
|
}
|
|
|
|
|
|
// A version of strToDouble that takes a char16 string that begins at str and ends just
|
|
// before strEnd. The char16 string does not have to be null-terminated.
|
|
// Leading Unicode whitespace is skipped.
|
|
double JS::stringToDouble(const char16 *str, const char16 *strEnd, const char16 *&numEnd)
|
|
{
|
|
const char16 *str1 = skipWhiteSpace(str, strEnd);
|
|
|
|
CharAutoPtr cstr(new char[strEnd - str1 + 1]);
|
|
char *q = cstr.get();
|
|
for (const char16 *p = str1; p != strEnd; p++) {
|
|
char16 ch = *p;
|
|
if (uint16(ch) >> 8)
|
|
break;
|
|
*q++ = char(ch);
|
|
}
|
|
*q = '\0';
|
|
|
|
const char *estr;
|
|
double value = strToDouble(cstr.get(), estr);
|
|
ptrdiff_t i = estr - cstr.get();
|
|
numEnd = i ? str1 + i : str;
|
|
return value;
|
|
}
|
|
|
|
|
|
|
|
class BinaryDigitReader
|
|
{
|
|
uint base; // Base of number; must be a power of 2
|
|
uint digit; // Current digit value in radix given by base
|
|
uint digitMask; // Mask to extract the next bit from digit
|
|
const char16 *digits; // Pointer to the remaining digits
|
|
const char16 *digitsEnd; // Pointer to first non-digit
|
|
|
|
public:
|
|
BinaryDigitReader(uint base, const char16 *digitsBegin, const char16 *digitsEnd):
|
|
base(base), digitMask(0), digits(digitsBegin), digitsEnd(digitsEnd) {}
|
|
|
|
int next();
|
|
};
|
|
|
|
|
|
// Return the next binary digit from the number or -1 if done.
|
|
int BinaryDigitReader::next()
|
|
{
|
|
if (digitMask == 0) {
|
|
if (digits == digitsEnd)
|
|
return -1;
|
|
|
|
uint c = *digits++;
|
|
if ('0' <= c && c <= '9')
|
|
digit = c - '0';
|
|
else if ('a' <= c && c <= 'z')
|
|
digit = c - 'a' + 10;
|
|
else digit = c - 'A' + 10;
|
|
digitMask = base >> 1;
|
|
}
|
|
int bit = (digit & digitMask) != 0;
|
|
digitMask >>= 1;
|
|
return bit;
|
|
}
|
|
|
|
|
|
// Read an integer from a char16 string that begins at str and ends just before strEnd.
|
|
// The char16 string does not have to be null-terminated. The integer is returned as a double,
|
|
// which is guaranteed to be the closest double number to the given input when base is 10 or a power of 2.
|
|
// May experience roundoff errors for very large numbers of a different radix.
|
|
// Return a pointer to the character just past the integer in numEnd.
|
|
// If the string does not have a number in it, set numEnd to str and return 0.
|
|
// Leading Unicode whitespace is skipped.
|
|
double JS::stringToInteger(const char16 *str, const char16 *strEnd, const char16 *&numEnd, uint base)
|
|
{
|
|
const char16 *str1 = skipWhiteSpace(str, strEnd);
|
|
|
|
bool negative = (*str1 == '-');
|
|
if (negative || *str1 == '+')
|
|
str1++;
|
|
|
|
if ((base == 0 || base == 16) && *str1 == '0' && (str1[1] == 'X' || str1[1] == 'x')) {
|
|
// Skip past hex prefix.
|
|
base = 16;
|
|
str1 += 2;
|
|
}
|
|
if (base == 0)
|
|
base = 10; // Default to decimal.
|
|
|
|
// Find some prefix of the string that's a number in the given base.
|
|
const char16 *start = str1; // Mark - if string is empty, we return 0.
|
|
double value = 0.0;
|
|
while (true) {
|
|
uint digit;
|
|
char16 c = *str1;
|
|
if ('0' <= c && c <= '9')
|
|
digit = uint(c) - '0';
|
|
else if ('a' <= c && c <= 'z')
|
|
digit = uint(c) - 'a' + 10;
|
|
else if ('A' <= c && c <= 'Z')
|
|
digit = uint(c) - 'A' + 10;
|
|
else
|
|
break;
|
|
if (digit >= base)
|
|
break;
|
|
value = value*base + digit;
|
|
str1++;
|
|
}
|
|
|
|
if (value >= 9007199254740992.0) {
|
|
if (base == 10) {
|
|
// If we're accumulating a decimal number and the number is >= 2^53, then
|
|
// the result from the repeated multiply-add above may be inaccurate. Call
|
|
// stringToDouble to get the correct answer.
|
|
const char16 *numEnd2;
|
|
value = stringToDouble(start, str1, numEnd2);
|
|
ASSERT(numEnd2 == str1);
|
|
|
|
} else if (base == 2 || base == 4 || base == 8 || base == 16 || base == 32) {
|
|
// The number may also be inaccurate for one of these bases. This
|
|
// happens if the addition in value*base + digit causes a round-down
|
|
// to an even least significant mantissa bit when the first dropped bit
|
|
// is a one. If any of the following digits in the number (which haven't
|
|
// been added in yet) are nonzero then the correct action would have
|
|
// been to round up instead of down. An example of this occurs when
|
|
// reading the number 0x1000000000000081, which rounds to 0x1000000000000000
|
|
// instead of 0x1000000000000100.
|
|
BinaryDigitReader bdr(base, start, str1);
|
|
value = 0.0;
|
|
|
|
// Skip leading zeros.
|
|
int bit;
|
|
do {
|
|
bit = bdr.next();
|
|
} while (bit == 0);
|
|
|
|
if (bit == 1) {
|
|
// Gather the 53 significant bits (including the leading 1)
|
|
int bit2;
|
|
value = 1.0;
|
|
for (int j = 52; j; --j) {
|
|
bit = bdr.next();
|
|
if (bit < 0)
|
|
goto done;
|
|
value = value*2 + bit;
|
|
}
|
|
// bit2 is the 54th bit (the first dropped from the mantissa)
|
|
bit2 = bdr.next();
|
|
if (bit2 >= 0) {
|
|
double factor = 2.0;
|
|
int sticky = 0; // sticky is 1 if any bit beyond the 54th is 1
|
|
int bit3;
|
|
|
|
while ((bit3 = bdr.next()) >= 0) {
|
|
sticky |= bit3;
|
|
factor *= 2;
|
|
}
|
|
value += bit2 & (bit | sticky);
|
|
value *= factor;
|
|
}
|
|
done:;
|
|
}
|
|
}
|
|
}
|
|
// We don't worry about inaccurate numbers for any other base.
|
|
|
|
if (str1 == start)
|
|
numEnd = str;
|
|
else {
|
|
numEnd = str1;
|
|
if (negative)
|
|
value = -value;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
|
|
// doubleToAscii for IEEE arithmetic (dmg): convert double to ASCII string.
|
|
//
|
|
// Inspired by "How to Print Floating-Point Numbers Accurately" by
|
|
// Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
|
|
//
|
|
// Modifications:
|
|
// 1. Rather than iterating, we use a simple numeric overestimate
|
|
// to determine k = floor(log10(d)). We scale relevant
|
|
// quantities using O(log2(k)) rather than O(k) multiplications.
|
|
// 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
|
// try to generate digits strictly left to right. Instead, we
|
|
// compute with fewer bits and propagate the carry if necessary
|
|
// when rounding the final digit up. This is often faster.
|
|
// 3. Under the assumption that input will be rounded nearest,
|
|
// mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
|
// That is, we allow equality in stopping tests when the
|
|
// round-nearest rule will give the same floating-point value
|
|
// as would satisfaction of the stopping test with strict
|
|
// inequality.
|
|
// 4. We remove common factors of powers of 2 from relevant
|
|
// quantities.
|
|
// 5. When converting floating-point integers less than 1e16,
|
|
// we use floating-point arithmetic rather than resorting
|
|
// to multiple-precision integers.
|
|
// 6. When asked to produce fewer than 15 digits, we first try
|
|
// to get by with floating-point arithmetic; we resort to
|
|
// multiple-precision integer arithmetic only if we cannot
|
|
// guarantee that the floating-point calculation has given
|
|
// the correctly rounded result. For k requested digits and
|
|
// "uniformly" distributed input, the probability is
|
|
// something like 10^(k-15) that we must resort to the int32
|
|
// calculation.
|
|
///
|
|
|
|
// Always emits at least one digit.
|
|
// If biasUp is set, then rounding in modes 2 and 3 will round away from zero
|
|
// when the number is exactly halfway between two representable values. For example,
|
|
// rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
|
|
// 2.49 will still round to 2, and 2.51 will still round to 3.
|
|
// The buffer should be at least 20 bytes for modes 0 and 1. For the other modes,
|
|
// the buffer's size should be two greater than the maximum number of output characters expected.
|
|
// Return a pointer to the resulting string's trailing null.
|
|
static char *doubleToAscii(double d, int mode, bool biasUp, int ndigits,
|
|
int *decpt, bool *negative, char *buf)
|
|
{
|
|
/* Arguments ndigits, decpt, negative are similar to those
|
|
of ecvt and fcvt; trailing zeros are suppressed from
|
|
the returned string. If d is +-Infinity or NaN,
|
|
then *decpt is set to 9999.
|
|
|
|
mode:
|
|
0 ==> shortest string that yields d when read in
|
|
and rounded to nearest.
|
|
1 ==> like 0, but with Steele & White stopping rule;
|
|
e.g. with IEEE P754 arithmetic , mode 0 gives
|
|
1e23 whereas mode 1 gives 9.999999999999999e22.
|
|
2 ==> max(1,ndigits) significant digits. This gives a
|
|
return value similar to that of ecvt, except
|
|
that trailing zeros are suppressed.
|
|
3 ==> through ndigits past the decimal point. This
|
|
gives a return value similar to that from fcvt,
|
|
except that trailing zeros are suppressed, and
|
|
ndigits can be negative.
|
|
4-9 should give the same return values as 2-3, i.e.,
|
|
4 <= mode <= 9 ==> same return as mode
|
|
2 + (mode & 1). These modes are mainly for
|
|
debugging; often they run slower but sometimes
|
|
faster than modes 2-3.
|
|
4,5,8,9 ==> left-to-right digit generation.
|
|
6-9 ==> don't try fast floating-point estimate
|
|
(if applicable).
|
|
|
|
Values of mode other than 0-9 are treated as mode 0.
|
|
|
|
Sufficient space is allocated to the return value
|
|
to hold the suppressed trailing zeros.
|
|
*/
|
|
|
|
int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
|
|
j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
|
|
try_quick;
|
|
int32 L;
|
|
#ifndef Sudden_Underflow
|
|
int32 denorm;
|
|
uint32 x;
|
|
#endif
|
|
double d2, ds, eps;
|
|
char *s;
|
|
|
|
#ifdef JS_THREADSAFE
|
|
if (!initialized) InitDtoa();
|
|
#endif
|
|
|
|
if (word0(d) & Sign_bit) {
|
|
// set negative for everything, including 0's and NaNs
|
|
*negative = true;
|
|
word0(d) &= ~Sign_bit; // clear sign bit
|
|
}
|
|
else
|
|
*negative = false;
|
|
|
|
if ((word0(d) & Exp_mask) == Exp_mask) {
|
|
// Infinity or NaN
|
|
*decpt = 9999;
|
|
strcpy(buf, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
|
|
return buf[3] ? buf + 8 : buf + 3;
|
|
}
|
|
if (!d) {
|
|
no_digits:
|
|
*decpt = 1;
|
|
buf[0] = '0'; buf[1] = '\0'; // copy "0" to buffer
|
|
return buf + 1;
|
|
}
|
|
|
|
BigInt b;
|
|
b.init(d, be, bbits);
|
|
#ifdef Sudden_Underflow
|
|
i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
|
|
#else
|
|
if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
|
|
#endif
|
|
d2 = d;
|
|
word0(d2) &= Frac_mask1;
|
|
word0(d2) |= Exp_11;
|
|
|
|
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
|
* log10(x) = log(x) / log(10)
|
|
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
|
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
|
|
*
|
|
* This suggests computing an approximation k to log10(d) by
|
|
*
|
|
* k = (i - Bias)*0.301029995663981
|
|
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
|
*
|
|
* We want k to be too large rather than too small.
|
|
* The error in the first-order Taylor series approximation
|
|
* is in our favor, so we just round up the constant enough
|
|
* to compensate for any error in the multiplication of
|
|
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
|
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
|
* adding 1e-13 to the constant term more than suffices.
|
|
* Hence we adjust the constant term to 0.1760912590558.
|
|
* (We could get a more accurate k by invoking log10,
|
|
* but this is probably not worthwhile.)
|
|
*/
|
|
|
|
i -= Bias;
|
|
#ifndef Sudden_Underflow
|
|
denorm = 0;
|
|
}
|
|
else {
|
|
// d is denormalized
|
|
|
|
i = bbits + be + (Bias + (P-1) - 1);
|
|
x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i);
|
|
d2 = x;
|
|
word0(d2) -= 31*Exp_msk1; // adjust exponent
|
|
i -= (Bias + (P-1) - 1) + 1;
|
|
denorm = 1;
|
|
}
|
|
#endif
|
|
// At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f.
|
|
ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
|
|
k = (int32)ds;
|
|
if (ds < 0. && ds != k)
|
|
k--; // want k = floor(ds)
|
|
k_check = 1;
|
|
if (k >= 0 && k <= Ten_pmax) {
|
|
if (d < tens[k])
|
|
k--;
|
|
k_check = 0;
|
|
}
|
|
// At this point floor(log10(d)) <= k <= floor(log10(d))+1.
|
|
// If k_check is zero, we're guaranteed that k = floor(log10(d)).
|
|
j = bbits - i - 1;
|
|
// At this point d = b/2^j, where b is an odd integer.
|
|
if (j >= 0) {
|
|
b2 = 0;
|
|
s2 = j;
|
|
}
|
|
else {
|
|
b2 = -j;
|
|
s2 = 0;
|
|
}
|
|
if (k >= 0) {
|
|
b5 = 0;
|
|
s5 = k;
|
|
s2 += k;
|
|
}
|
|
else {
|
|
b2 -= k;
|
|
b5 = -k;
|
|
s5 = 0;
|
|
}
|
|
// At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
|
|
// b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0.
|
|
if (mode < 0 || mode > 9)
|
|
mode = 0;
|
|
try_quick = 1;
|
|
if (mode > 5) {
|
|
mode -= 4;
|
|
try_quick = 0;
|
|
}
|
|
leftright = 1;
|
|
ilim = ilim1 = 0;
|
|
switch (mode) {
|
|
case 0:
|
|
case 1:
|
|
ilim = ilim1 = -1;
|
|
i = 18;
|
|
ndigits = 0;
|
|
break;
|
|
case 2:
|
|
leftright = 0;
|
|
// no break
|
|
case 4:
|
|
if (ndigits <= 0)
|
|
ndigits = 1;
|
|
ilim = ilim1 = i = ndigits;
|
|
break;
|
|
case 3:
|
|
leftright = 0;
|
|
// no break
|
|
case 5:
|
|
i = ndigits + k + 1;
|
|
ilim = i;
|
|
ilim1 = i - 1;
|
|
if (i <= 0)
|
|
i = 1;
|
|
}
|
|
// ilim is the maximum number of significant digits we want, based on k and ndigits.
|
|
// ilim1 is the maximum number of significant digits we want, based on k and ndigits,
|
|
// when it turns out that k was computed too high by one.
|
|
s = buf;
|
|
|
|
if (ilim >= 0 && ilim <= Quick_max && try_quick) {
|
|
|
|
// Try to get by with floating-point arithmetic.
|
|
|
|
i = 0;
|
|
d2 = d;
|
|
k0 = k;
|
|
ilim0 = ilim;
|
|
ieps = 2; // conservative
|
|
// Divide d by 10^k, keeping track of the roundoff error and avoiding overflows.
|
|
if (k > 0) {
|
|
ds = tens[k&0xf];
|
|
j = k >> 4;
|
|
if (j & Bletch) {
|
|
// prevent overflows
|
|
j &= Bletch - 1;
|
|
d /= bigtens[n_bigtens-1];
|
|
ieps++;
|
|
}
|
|
for (; j; j >>= 1, i++)
|
|
if (j & 1) {
|
|
ieps++;
|
|
ds *= bigtens[i];
|
|
}
|
|
d /= ds;
|
|
}
|
|
else if ((j1 = -k) != 0) {
|
|
d *= tens[j1 & 0xf];
|
|
for (j = j1 >> 4; j; j >>= 1, i++)
|
|
if (j & 1) {
|
|
ieps++;
|
|
d *= bigtens[i];
|
|
}
|
|
}
|
|
// Check that k was computed correctly.
|
|
if (k_check && d < 1. && ilim > 0) {
|
|
if (ilim1 <= 0)
|
|
goto fast_failed;
|
|
ilim = ilim1;
|
|
k--;
|
|
d *= 10.;
|
|
ieps++;
|
|
}
|
|
// eps bounds the cumulative error.
|
|
eps = ieps*d + 7.;
|
|
word0(eps) -= (P-1)*Exp_msk1;
|
|
if (ilim == 0) {
|
|
d -= 5.;
|
|
if (d > eps)
|
|
goto one_digit;
|
|
if (d < -eps)
|
|
goto no_digits;
|
|
goto fast_failed;
|
|
}
|
|
#ifndef No_leftright
|
|
if (leftright) {
|
|
// Use Steele & White method of only generating digits needed.
|
|
eps = 0.5/tens[ilim-1] - eps;
|
|
for (i = 0;;) {
|
|
L = (int32)d;
|
|
d -= L;
|
|
*s++ = char('0' + L);
|
|
if (d < eps)
|
|
goto ret1;
|
|
if (1. - d < eps)
|
|
goto bump_up;
|
|
if (++i >= ilim)
|
|
break;
|
|
eps *= 10.;
|
|
d *= 10.;
|
|
}
|
|
}
|
|
else {
|
|
#endif
|
|
// Generate ilim digits, then fix them up.
|
|
eps *= tens[ilim-1];
|
|
for (i = 1;; i++, d *= 10.) {
|
|
L = (int32)d;
|
|
d -= L;
|
|
*s++ = char('0' + L);
|
|
if (i == ilim) {
|
|
if (d > 0.5 + eps)
|
|
goto bump_up;
|
|
else if (d < 0.5 - eps) {
|
|
while (*--s == '0') ;
|
|
s++;
|
|
goto ret1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
#ifndef No_leftright
|
|
}
|
|
#endif
|
|
fast_failed:
|
|
s = buf;
|
|
d = d2;
|
|
k = k0;
|
|
ilim = ilim0;
|
|
}
|
|
|
|
// Do we have a "small" integer?
|
|
|
|
if (be >= 0 && k <= Int_max) {
|
|
// Yes.
|
|
ds = tens[k];
|
|
if (ndigits < 0 && ilim <= 0) {
|
|
if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds))
|
|
goto no_digits;
|
|
one_digit:
|
|
*s++ = '1';
|
|
k++;
|
|
goto ret1;
|
|
}
|
|
for (i = 1;; i++) {
|
|
L = (int32) (d / ds);
|
|
d -= L*ds;
|
|
#ifdef Check_FLT_ROUNDS
|
|
// If FLT_ROUNDS == 2, L will usually be high by 1
|
|
if (d < 0) {
|
|
L--;
|
|
d += ds;
|
|
}
|
|
#endif
|
|
*s++ = char('0' + L);
|
|
if (i == ilim) {
|
|
d += d;
|
|
if ((d > ds) || (d == ds && (L & 1 || biasUp))) {
|
|
bump_up:
|
|
while (*--s == '9')
|
|
if (s == buf) {
|
|
k++;
|
|
*s = '0';
|
|
break;
|
|
}
|
|
++*s++;
|
|
}
|
|
break;
|
|
}
|
|
if (!(d *= 10.))
|
|
break;
|
|
}
|
|
goto ret1;
|
|
}
|
|
|
|
{
|
|
m2 = b2;
|
|
m5 = b5;
|
|
BigInt mLow; // If spec_case is false, assume that mLow == mHigh
|
|
BigInt mHigh;
|
|
|
|
if (leftright) {
|
|
if (mode < 2) {
|
|
i =
|
|
#ifndef Sudden_Underflow
|
|
denorm ? be + (Bias + (P-1) - 1 + 1) :
|
|
#endif
|
|
1 + P - bbits;
|
|
// i is 1 plus the number of trailing zero bits in d's significand. Thus,
|
|
// (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k.
|
|
}
|
|
else {
|
|
j = ilim - 1;
|
|
if (m5 >= j)
|
|
m5 -= j;
|
|
else {
|
|
s5 += j -= m5;
|
|
b5 += j;
|
|
m5 = 0;
|
|
}
|
|
if ((i = ilim) < 0) {
|
|
m2 -= i;
|
|
i = 0;
|
|
}
|
|
// (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k.
|
|
}
|
|
b2 += i;
|
|
s2 += i;
|
|
mHigh.init(1);
|
|
// (mHigh * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
|
|
// input (when mode < 2) significant digit, divided by 10^k.
|
|
}
|
|
// We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in
|
|
// b2, m2, and s2 without changing the equalities.
|
|
if (m2 > 0 && s2 > 0) {
|
|
i = m2 < s2 ? m2 : s2;
|
|
b2 -= i;
|
|
m2 -= i;
|
|
s2 -= i;
|
|
}
|
|
|
|
// Fold b5 into b and m5 into mHigh.
|
|
if (b5 > 0) {
|
|
if (leftright) {
|
|
if (m5 > 0) {
|
|
mHigh.pow5Mul(m5);
|
|
b *= mHigh;
|
|
}
|
|
if ((j = b5 - m5) != 0)
|
|
b.pow5Mul(j);
|
|
}
|
|
else
|
|
b.pow5Mul(b5);
|
|
}
|
|
// Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
|
|
// (mHigh * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k.
|
|
|
|
BigInt S;
|
|
S.init(1);
|
|
if (s5 > 0)
|
|
S.pow5Mul(s5);
|
|
// Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
|
|
// (mHigh * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k.
|
|
|
|
// Check for special case that d is a normalized power of 2.
|
|
bool spec_case = false;
|
|
if (mode < 2) {
|
|
if (!word1(d) && !(word0(d) & Bndry_mask)
|
|
#ifndef Sudden_Underflow
|
|
&& word0(d) & (Exp_mask & Exp_mask << 1)
|
|
#endif
|
|
) {
|
|
// The special case. Here we want to be within a quarter of the last input
|
|
// significant digit instead of one half of it when the decimal output string's value is less than d.
|
|
b2 += Log2P;
|
|
s2 += Log2P;
|
|
spec_case = true;
|
|
}
|
|
}
|
|
|
|
// Arrange for convenient computation of quotients:
|
|
// shift left if necessary so divisor has 4 leading 0 bits.
|
|
//
|
|
// Perhaps we should just compute leading 28 bits of S once
|
|
// and for all and pass them and a shift to quoRem, so it
|
|
// can do shifts and ors to compute the numerator for q.
|
|
if ((i = ((s5 ? 32 - hi0bits(S.word(S.nWords()-1)) : 1) + s2) & 0x1f) != 0)
|
|
i = 32 - i;
|
|
// i is the number of leading zero bits in the most significant word of S*2^s2.
|
|
if (i > 4) {
|
|
i -= 4;
|
|
b2 += i;
|
|
m2 += i;
|
|
s2 += i;
|
|
}
|
|
else if (i < 4) {
|
|
i += 28;
|
|
b2 += i;
|
|
m2 += i;
|
|
s2 += i;
|
|
}
|
|
// Now S*2^s2 has exactly four leading zero bits in its most significant word.
|
|
if (b2 > 0)
|
|
b.pow2Mul(b2);
|
|
if (s2 > 0)
|
|
S.pow2Mul(s2);
|
|
// Now we have d/10^k = b/S and
|
|
// (mHigh * 2^m2) / S = maximum acceptable error, divided by 10^k.
|
|
if (k_check) {
|
|
if (b.cmp(S) < 0) {
|
|
k--;
|
|
b.mulAdd(10, 0); // we botched the k estimate
|
|
if (leftright)
|
|
mHigh.mulAdd(10, 0);
|
|
ilim = ilim1;
|
|
}
|
|
}
|
|
// At this point 1 <= d/10^k = b/S < 10.
|
|
|
|
if (ilim <= 0 && mode > 2) {
|
|
// We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
|
|
// Output either zero or the minimum nonzero output depending on which is closer to d.
|
|
// Always emit at least one digit. If the number appears to be zero
|
|
// using the current mode, then emit one '0' digit and set decpt to 1.
|
|
if (ilim < 0)
|
|
goto no_digits;
|
|
S.mulAdd(5, 0);
|
|
if ((i = b.cmp(S)) < 0 || (i == 0 && !biasUp))
|
|
goto no_digits;
|
|
goto one_digit;
|
|
}
|
|
if (leftright) {
|
|
if (m2 > 0)
|
|
mHigh.pow2Mul(m2);
|
|
|
|
// Compute mLow -- check for special case that d is a normalized power of 2.
|
|
if (spec_case) {
|
|
mLow = mHigh;
|
|
mHigh.pow2Mul(Log2P);
|
|
}
|
|
// mLow/S = maximum acceptable error, divided by 10^k, if the output is less than d.
|
|
// mHigh/S = maximum acceptable error, divided by 10^k, if the output is greater than d.
|
|
|
|
for (i = 1;;i++) {
|
|
dig = b.quoRem(S) + '0';
|
|
// Do we yet have the shortest decimal string that will round to d?
|
|
j = b.cmp(spec_case ? mLow : mHigh);
|
|
// j is b/S compared with mLow/S.
|
|
{
|
|
BigInt delta;
|
|
delta.initDiff(S, mHigh);
|
|
j1 = delta.negative ? 1 : b.cmp(delta);
|
|
}
|
|
// j1 is b/S compared with 1 - mHigh/S.
|
|
#ifndef ROUND_BIASED
|
|
if (j1 == 0 && !mode && !(word1(d) & 1)) {
|
|
if (dig == '9')
|
|
goto round_9_up;
|
|
if (j > 0)
|
|
dig++;
|
|
*s++ = (char)dig;
|
|
goto ret;
|
|
}
|
|
#endif
|
|
if ((j < 0) || (j == 0 && !mode
|
|
#ifndef ROUND_BIASED
|
|
&& !(word1(d) & 1)
|
|
#endif
|
|
)) {
|
|
if (j1 > 0) {
|
|
// Either dig or dig+1 would work here as the least significant decimal digit.
|
|
// Use whichever would produce a decimal value closer to d.
|
|
b.pow2Mul(1);
|
|
j1 = b.cmp(S);
|
|
if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp)))
|
|
&& (dig++ == '9'))
|
|
goto round_9_up;
|
|
}
|
|
*s++ = (char)dig;
|
|
goto ret;
|
|
}
|
|
if (j1 > 0) {
|
|
if (dig == '9') { // possible if i == 1
|
|
round_9_up:
|
|
*s++ = '9';
|
|
goto roundoff;
|
|
}
|
|
*s++ = char(dig + 1);
|
|
goto ret;
|
|
}
|
|
*s++ = (char)dig;
|
|
if (i == ilim)
|
|
break;
|
|
b.mulAdd(10, 0);
|
|
if (spec_case)
|
|
mLow.mulAdd(10, 0);
|
|
mHigh.mulAdd(10, 0);
|
|
}
|
|
}
|
|
else
|
|
for (i = 1;; i++) {
|
|
*s++ = (char)(dig = b.quoRem(S) + '0');
|
|
if (i >= ilim)
|
|
break;
|
|
b.mulAdd(10, 0);
|
|
}
|
|
|
|
// Round off last digit
|
|
|
|
b.pow2Mul(1);
|
|
j = b.cmp(S);
|
|
if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) {
|
|
roundoff:
|
|
while (*--s == '9')
|
|
if (s == buf) {
|
|
k++;
|
|
*s++ = '1';
|
|
goto ret;
|
|
}
|
|
++*s++;
|
|
}
|
|
else {
|
|
// Strip trailing zeros
|
|
while (*--s == '0') ;
|
|
s++;
|
|
}
|
|
ret: ;
|
|
// S, mLow, and mHigh are destroyed at the end of this block scope.
|
|
}
|
|
ret1:
|
|
*s = '\0';
|
|
*decpt = k + 1;
|
|
return s;
|
|
}
|
|
|
|
|
|
// Mapping of DToStrMode -> doubleToAscii mode
|
|
static const int doubleToAsciiModes[] = {
|
|
0, // dtosStandard
|
|
0, // dtosStandardExponential
|
|
3, // dtosFixed
|
|
2, // dtosExponential
|
|
2}; // dtosPrecision
|
|
|
|
|
|
// Convert value according to the given mode and return a pointer to the resulting ASCII string.
|
|
// The result is held somewhere in buffer, but not necessarily at the beginning. The size of
|
|
// buffer is given in bufferSize, and must be at least as large as given by dtosStandardBufferSize
|
|
// or dtosVariableBufferSize, whichever is appropriate.
|
|
char *JS::doubleToStr(char *buffer, size_t DEBUG_ONLY(bufferSize), double value, DToStrMode mode, int precision)
|
|
{
|
|
int decPt; // Position of decimal point relative to first digit returned by doubleToAscii
|
|
bool negative; // True if the sign bit was set in value
|
|
int nDigits; // Number of significand digits returned by doubleToAscii
|
|
char *numBegin = buffer+2; // Pointer to the digits returned by doubleToAscii; the +2 leaves space for
|
|
// the sign and/or decimal point
|
|
char *numEnd; // Pointer past the digits returned by doubleToAscii
|
|
|
|
ASSERT(bufferSize >= (size_t)(mode <= dtosStandardExponential ? dtosStandardBufferSize : dtosVariableBufferSize(precision)));
|
|
|
|
if (mode == dtosFixed && (value >= 1e21 || value <= -1e21))
|
|
mode = dtosStandard; // Change mode here rather than below because the buffer may not be large enough to hold a large integer.
|
|
|
|
numEnd = doubleToAscii(value, doubleToAsciiModes[mode], mode >= dtosFixed, precision, &decPt, &negative, numBegin);
|
|
nDigits = numEnd - numBegin;
|
|
|
|
// If Infinity, -Infinity, or NaN, return the string regardless of the mode.
|
|
if (decPt != 9999) {
|
|
bool exponentialNotation = false;
|
|
int minNDigits = 0; // Minimum number of significand digits required by mode and precision
|
|
char *p;
|
|
char *q;
|
|
|
|
switch (mode) {
|
|
case dtosStandard:
|
|
if (decPt < -5 || decPt > 21)
|
|
exponentialNotation = true;
|
|
else
|
|
minNDigits = decPt;
|
|
break;
|
|
|
|
case dtosFixed:
|
|
if (precision >= 0)
|
|
minNDigits = decPt + precision;
|
|
else
|
|
minNDigits = decPt;
|
|
break;
|
|
|
|
case dtosExponential:
|
|
ASSERT(precision > 0);
|
|
minNDigits = precision;
|
|
// Fall through
|
|
case dtosStandardExponential:
|
|
exponentialNotation = true;
|
|
break;
|
|
|
|
case dtosPrecision:
|
|
ASSERT(precision > 0);
|
|
minNDigits = precision;
|
|
if (decPt < -5 || decPt > precision)
|
|
exponentialNotation = true;
|
|
break;
|
|
}
|
|
|
|
// If the number has fewer than minNDigits, pad it with zeros at the end
|
|
if (nDigits < minNDigits) {
|
|
p = numBegin + minNDigits;
|
|
nDigits = minNDigits;
|
|
do {
|
|
*numEnd++ = '0';
|
|
} while (numEnd != p);
|
|
*numEnd = '\0';
|
|
}
|
|
|
|
if (exponentialNotation) {
|
|
// Insert a decimal point if more than one significand digit
|
|
if (nDigits != 1) {
|
|
numBegin--;
|
|
numBegin[0] = numBegin[1];
|
|
numBegin[1] = '.';
|
|
}
|
|
sprintf(numEnd, "e%+d", decPt-1);
|
|
} else if (decPt != nDigits) {
|
|
// Some kind of a fraction in fixed notation
|
|
ASSERT(decPt <= nDigits);
|
|
if (decPt > 0) {
|
|
// dd...dd . dd...dd
|
|
p = --numBegin;
|
|
do {
|
|
*p = p[1];
|
|
p++;
|
|
} while (--decPt);
|
|
*p = '.';
|
|
} else {
|
|
// 0 . 00...00dd...dd
|
|
p = numEnd;
|
|
numEnd += 1 - decPt;
|
|
q = numEnd;
|
|
ASSERT(numEnd < buffer + bufferSize);
|
|
*numEnd = '\0';
|
|
while (p != numBegin)
|
|
*--q = *--p;
|
|
for (p = numBegin + 1; p != q; p++)
|
|
*p = '0';
|
|
*numBegin = '.';
|
|
*--numBegin = '0';
|
|
}
|
|
}
|
|
}
|
|
|
|
// If negative and neither -0.0 nor NaN, output a leading '-'.
|
|
if (negative &&
|
|
!(word0(value) == Sign_bit && word1(value) == 0) &&
|
|
!((word0(value) & Exp_mask) == Exp_mask &&
|
|
(word1(value) || (word0(value) & Frac_mask)))) {
|
|
*--numBegin = '-';
|
|
}
|
|
return numBegin;
|
|
}
|
|
|
|
|
|
inline char baseDigit(uint32 digit)
|
|
{
|
|
if (digit >= 10)
|
|
return char('a' - 10 + digit);
|
|
else
|
|
return char('0' + digit);
|
|
}
|
|
|
|
|
|
// Convert value to a string in the given base. The integral part of value will be printed exactly
|
|
// in that base, regardless of how large it is, because there is no exponential notation for non-base-ten
|
|
// numbers. The fractional part will be rounded to as few digits as possible while still preserving
|
|
// the round-trip property (analogous to that of printing decimal numbers). In other words, if one were
|
|
// to read the resulting string in via a hypothetical base-number-reading routine that rounds to the nearest
|
|
// IEEE double (and to an even significand if there are two equally near doubles), then the result would
|
|
// equal value (except for -0.0, which converts to "0", and NaN, which is not equal to itself).
|
|
//
|
|
// Store the result in the given buffer, which must have at least dtobasesBufferSize bytes.
|
|
// Return the number of characters stored.
|
|
size_t JS::doubleToBaseStr(char *buffer, double value, uint base)
|
|
{
|
|
ASSERT(base >= 2 && base <= 36);
|
|
|
|
char *p = buffer; // Pointer to current position in the buffer
|
|
if (value < 0.0
|
|
#ifdef _WIN32
|
|
&& !((word0(value) & Exp_mask) == Exp_mask && ((word0(value) & Frac_mask) || word1(value))) // Visual C++ doesn't know how to compare against NaN
|
|
#endif
|
|
) {
|
|
*p++ = '-';
|
|
value = -value;
|
|
}
|
|
|
|
// Check for Infinity and NaN
|
|
if ((word0(value) & Exp_mask) == Exp_mask) {
|
|
strcpy(p, !word1(value) && !(word0(value) & Frac_mask) ? "Infinity" : "NaN");
|
|
return strlen(buffer);
|
|
}
|
|
|
|
// Output the integer part of value with the digits in reverse order.
|
|
char *pInt = p; // Pointer to the beginning of the integer part of the string
|
|
double valueInt = floor(value); // value truncated to an integer
|
|
uint32 digit;
|
|
if (valueInt <= 4294967295.0) {
|
|
uint32 n = (uint32)valueInt;
|
|
if (n)
|
|
do {
|
|
uint32 m = n / base;
|
|
digit = n - m*base;
|
|
n = m;
|
|
ASSERT(digit < base);
|
|
*p++ = baseDigit(digit);
|
|
} while (n);
|
|
else *p++ = '0';
|
|
} else {
|
|
int32 e;
|
|
int32 bits; // Number of significant bits in valueInt; not used.
|
|
BigInt b;
|
|
b.init(valueInt, e, bits);
|
|
b.pow2Mul(e);
|
|
do {
|
|
digit = b.divRem(base);
|
|
ASSERT(digit < base);
|
|
*p++ = baseDigit(digit);
|
|
} while (!b.isZero());
|
|
}
|
|
// Reverse the digits of the integer part of value.
|
|
char *q = p-1;
|
|
while (q > pInt) {
|
|
char ch = *pInt;
|
|
*pInt++ = *q;
|
|
*q-- = ch;
|
|
}
|
|
|
|
double valueFrac = value - valueInt; // The fractional part of value
|
|
if (valueFrac != 0.0) {
|
|
// We have a fraction.
|
|
*p++ = '.';
|
|
|
|
int32 e, bbits;
|
|
BigInt b;
|
|
b.init(valueFrac, e, bbits);
|
|
ASSERT(e < 0);
|
|
// At this point valueFrac = b * 2^e. e must be less than zero because 0 < valueFrac < 1.
|
|
|
|
int32 s2 = -int32(word0(value) >> Exp_shift1 & Exp_mask>>Exp_shift1);
|
|
#ifndef Sudden_Underflow
|
|
if (!s2)
|
|
s2 = -1;
|
|
#endif
|
|
s2 += Bias + P;
|
|
// 1/2^s2 = (nextDouble(value) - value)/2
|
|
ASSERT(-s2 < e);
|
|
|
|
BigInt mLow;
|
|
BigInt mHigh;
|
|
bool useMHigh = false; // If false, assume that mHigh == mLow
|
|
|
|
mLow.init(1);
|
|
if (!word1(value) && !(word0(value) & Bndry_mask)
|
|
#ifndef Sudden_Underflow
|
|
&& word0(value) & (Exp_mask & Exp_mask << 1)
|
|
#endif
|
|
) {
|
|
// The special case. Here we want to be within a quarter of the last input
|
|
// significant digit instead of one half of it when the output string's value is less than value.
|
|
s2 += Log2P;
|
|
useMHigh = true;
|
|
mHigh.init(1u<<Log2P);
|
|
}
|
|
b.pow2Mul(e + s2);
|
|
|
|
BigInt s;
|
|
s.init(1);
|
|
s.pow2Mul(s2);
|
|
|
|
// At this point we have the following:
|
|
// s = 2^s2;
|
|
// 1 > valueFrac = b/2^s2 > 0;
|
|
// (value - prevDouble(value))/2 = mLow/2^s2;
|
|
// (nextDouble(value) - value)/2 = mHigh/2^s2.
|
|
|
|
bool done = false;
|
|
do {
|
|
int32 j, j1;
|
|
|
|
b.mulAdd(base, 0);
|
|
digit = b.quoRem2(s2);
|
|
mLow.mulAdd(base, 0);
|
|
if (useMHigh)
|
|
mHigh.mulAdd(base, 0);
|
|
|
|
// Do we yet have the shortest string that will round to value?
|
|
j = b.cmp(mLow);
|
|
// j is b/2^s2 compared with mLow/2^s2.
|
|
{
|
|
BigInt delta;
|
|
delta.initDiff(s, useMHigh ? mHigh : mLow);
|
|
j1 = delta.negative ? 1 : b.cmp(delta);
|
|
}
|
|
// j1 is b/2^s2 compared with 1 - mHigh/2^s2.
|
|
|
|
#ifndef ROUND_BIASED
|
|
if (j1 == 0 && !(word1(value) & 1)) {
|
|
if (j > 0)
|
|
digit++;
|
|
done = true;
|
|
} else
|
|
#endif
|
|
if (j < 0 || (j == 0
|
|
#ifndef ROUND_BIASED
|
|
&& !(word1(value) & 1)
|
|
#endif
|
|
)) {
|
|
if (j1 > 0) {
|
|
// Either dig or dig+1 would work here as the least significant digit.
|
|
// Use whichever would produce an output value closer to value.
|
|
b.pow2Mul(1);
|
|
j1 = b.cmp(s);
|
|
if (j1 > 0) // The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output
|
|
// such as 3.5 in base 3.
|
|
digit++;
|
|
}
|
|
done = true;
|
|
} else if (j1 > 0) {
|
|
digit++;
|
|
done = true;
|
|
}
|
|
ASSERT(digit < base);
|
|
*p++ = baseDigit(digit);
|
|
} while (!done);
|
|
}
|
|
ASSERT(p < buffer + dtobasesBufferSize);
|
|
*p = '\0';
|
|
return size_t(p - buffer);
|
|
}
|
|
|
|
|
|
// A version of doubleToStr that appends to the end of String dst.
|
|
// precision should not exceed 101.
|
|
void JS::appendDouble(String &dst, double value, DToStrMode mode, int precision)
|
|
{
|
|
char buffer[dtosVariableBufferSize(101)];
|
|
ASSERT(uint(precision) <= 101);
|
|
|
|
dst += doubleToStr(buffer, sizeof buffer, value, mode, precision);
|
|
}
|
|
|
|
|
|
// A version of doubleToStr that prints to Formatter f.
|
|
// precision should not exceed 101.
|
|
void JS::printDouble(Formatter &f, double value, DToStrMode mode, int precision)
|
|
{
|
|
char buffer[dtosVariableBufferSize(101)];
|
|
ASSERT(uint(precision) <= 101);
|
|
|
|
f << doubleToStr(buffer, sizeof buffer, value, mode, precision);
|
|
}
|