gecko-dev/xpcom/tests/gtest/TestTArray.cpp

954 строки
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsTArray.h"
#include "gtest/gtest.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/RefPtr.h"
using namespace mozilla;
namespace TestTArray {
struct Copyable {
Copyable() : mDestructionCounter(nullptr) {}
~Copyable() {
if (mDestructionCounter) {
(*mDestructionCounter)++;
}
}
Copyable(const Copyable&) = default;
Copyable& operator=(const Copyable&) = default;
uint32_t* mDestructionCounter;
};
struct Movable {
Movable() : mDestructionCounter(nullptr) {}
~Movable() {
if (mDestructionCounter) {
(*mDestructionCounter)++;
}
}
Movable(Movable&& aOther) : mDestructionCounter(aOther.mDestructionCounter) {
aOther.mDestructionCounter = nullptr;
}
uint32_t* mDestructionCounter;
};
} // namespace TestTArray
template <>
struct nsTArray_RelocationStrategy<TestTArray::Copyable> {
using Type = nsTArray_RelocateUsingMoveConstructor<TestTArray::Copyable>;
};
template <>
struct nsTArray_RelocationStrategy<TestTArray::Movable> {
using Type = nsTArray_RelocateUsingMoveConstructor<TestTArray::Movable>;
};
namespace TestTArray {
constexpr int dummyArrayData[] = {4, 1, 2, 8};
static const nsTArray<int>& DummyArray() {
static nsTArray<int> sArray;
if (sArray.IsEmpty()) {
sArray.AppendElements(dummyArrayData, ArrayLength(dummyArrayData));
}
return sArray;
}
// This returns an invalid nsTArray with a huge length in order to test that
// fallible operations actually fail.
#ifdef DEBUG
static const nsTArray<int>& FakeHugeArray() {
static nsTArray<int> sArray;
if (sArray.IsEmpty()) {
sArray.AppendElement();
((nsTArrayHeader*)sArray.DebugGetHeader())->mLength = UINT32_MAX;
}
return sArray;
}
#endif
TEST(TArray, int_AppendElements_PlainArray)
{
nsTArray<int> array;
int* ptr = array.AppendElements(dummyArrayData, ArrayLength(dummyArrayData));
ASSERT_EQ(&array[0], ptr);
ASSERT_EQ(DummyArray(), array);
ptr = array.AppendElements(dummyArrayData, ArrayLength(dummyArrayData));
ASSERT_EQ(&array[DummyArray().Length()], ptr);
nsTArray<int> expected;
expected.AppendElements(DummyArray());
expected.AppendElements(DummyArray());
ASSERT_EQ(expected, array);
}
TEST(TArray, int_AppendElements_PlainArray_Fallible)
{
nsTArray<int> array;
int* ptr = array.AppendElements(dummyArrayData, ArrayLength(dummyArrayData),
fallible);
ASSERT_EQ(&array[0], ptr);
ASSERT_EQ(DummyArray(), array);
ptr = array.AppendElements(dummyArrayData, ArrayLength(dummyArrayData),
fallible);
ASSERT_EQ(&array[DummyArray().Length()], ptr);
nsTArray<int> expected;
expected.AppendElements(DummyArray());
expected.AppendElements(DummyArray());
ASSERT_EQ(expected, array);
}
TEST(TArray, int_AppendElements_TArray_Copy)
{
nsTArray<int> array;
const nsTArray<int> temp(DummyArray().Clone());
int* ptr = array.AppendElements(temp);
ASSERT_EQ(&array[0], ptr);
ASSERT_EQ(DummyArray(), array);
ASSERT_FALSE(temp.IsEmpty());
ptr = array.AppendElements(temp);
ASSERT_EQ(&array[DummyArray().Length()], ptr);
nsTArray<int> expected;
expected.AppendElements(DummyArray());
expected.AppendElements(DummyArray());
ASSERT_EQ(expected, array);
ASSERT_FALSE(temp.IsEmpty());
}
TEST(TArray, int_AppendElements_TArray_Copy_Fallible)
{
nsTArray<int> array;
const nsTArray<int> temp(DummyArray().Clone());
int* ptr = array.AppendElements(temp, fallible);
ASSERT_EQ(&array[0], ptr);
ASSERT_EQ(DummyArray(), array);
ASSERT_FALSE(temp.IsEmpty());
ptr = array.AppendElements(temp, fallible);
ASSERT_EQ(&array[DummyArray().Length()], ptr);
nsTArray<int> expected;
expected.AppendElements(DummyArray());
expected.AppendElements(DummyArray());
ASSERT_EQ(expected, array);
ASSERT_FALSE(temp.IsEmpty());
}
TEST(TArray, int_AppendElements_TArray_Rvalue)
{
nsTArray<int> array;
nsTArray<int> temp(DummyArray().Clone());
int* ptr = array.AppendElements(std::move(temp));
ASSERT_EQ(&array[0], ptr);
ASSERT_EQ(DummyArray(), array);
ASSERT_TRUE(temp.IsEmpty());
temp = DummyArray().Clone();
ptr = array.AppendElements(std::move(temp));
ASSERT_EQ(&array[DummyArray().Length()], ptr);
nsTArray<int> expected;
expected.AppendElements(DummyArray());
expected.AppendElements(DummyArray());
ASSERT_EQ(expected, array);
ASSERT_TRUE(temp.IsEmpty());
}
TEST(TArray, int_AppendElements_TArray_Rvalue_Fallible)
{
nsTArray<int> array;
nsTArray<int> temp(DummyArray().Clone());
int* ptr = array.AppendElements(std::move(temp), fallible);
ASSERT_EQ(&array[0], ptr);
ASSERT_EQ(DummyArray(), array);
ASSERT_TRUE(temp.IsEmpty());
temp = DummyArray().Clone();
ptr = array.AppendElements(std::move(temp), fallible);
ASSERT_EQ(&array[DummyArray().Length()], ptr);
nsTArray<int> expected;
expected.AppendElements(DummyArray());
expected.AppendElements(DummyArray());
ASSERT_EQ(expected, array);
ASSERT_TRUE(temp.IsEmpty());
}
TEST(TArray, int_AppendElements_FallibleArray_Rvalue)
{
nsTArray<int> array;
FallibleTArray<int> temp;
ASSERT_TRUE(temp.AppendElements(DummyArray(), fallible));
int* ptr = array.AppendElements(std::move(temp));
ASSERT_EQ(&array[0], ptr);
ASSERT_EQ(DummyArray(), array);
ASSERT_TRUE(temp.IsEmpty());
ASSERT_TRUE(temp.AppendElements(DummyArray(), fallible));
ptr = array.AppendElements(std::move(temp));
ASSERT_EQ(&array[DummyArray().Length()], ptr);
nsTArray<int> expected;
expected.AppendElements(DummyArray());
expected.AppendElements(DummyArray());
ASSERT_EQ(expected, array);
ASSERT_TRUE(temp.IsEmpty());
}
TEST(TArray, int_AppendElements_FallibleArray_Rvalue_Fallible)
{
nsTArray<int> array;
FallibleTArray<int> temp;
ASSERT_TRUE(temp.AppendElements(DummyArray(), fallible));
int* ptr = array.AppendElements(std::move(temp), fallible);
ASSERT_EQ(&array[0], ptr);
ASSERT_EQ(DummyArray(), array);
ASSERT_TRUE(temp.IsEmpty());
ASSERT_TRUE(temp.AppendElements(DummyArray(), fallible));
ptr = array.AppendElements(std::move(temp), fallible);
ASSERT_EQ(&array[DummyArray().Length()], ptr);
nsTArray<int> expected;
expected.AppendElements(DummyArray());
expected.AppendElements(DummyArray());
ASSERT_EQ(expected, array);
ASSERT_TRUE(temp.IsEmpty());
}
TEST(TArray, AppendElementsSpan)
{
nsTArray<int> array;
nsTArray<int> temp(DummyArray().Clone());
Span<int> span = temp;
array.AppendElements(span);
ASSERT_EQ(DummyArray(), array);
Span<const int> constSpan = temp;
array.AppendElements(constSpan);
nsTArray<int> expected;
expected.AppendElements(DummyArray());
expected.AppendElements(DummyArray());
ASSERT_EQ(expected, array);
}
TEST(TArray, int_AppendElement_NoElementArg)
{
nsTArray<int> array;
array.AppendElement();
ASSERT_EQ(1u, array.Length());
}
TEST(TArray, int_AppendElement_NoElementArg_Fallible)
{
nsTArray<int> array;
ASSERT_NE(nullptr, array.AppendElement(fallible));
ASSERT_EQ(1u, array.Length());
}
TEST(TArray, int_AppendElement_NoElementArg_Address)
{
nsTArray<int> array;
*array.AppendElement() = 42;
ASSERT_EQ(1u, array.Length());
ASSERT_EQ(42, array[0]);
}
TEST(TArray, int_AppendElement_NoElementArg_Fallible_Address)
{
nsTArray<int> array;
*array.AppendElement(fallible) = 42;
ASSERT_EQ(1u, array.Length());
ASSERT_EQ(42, array[0]);
}
TEST(TArray, int_AppendElement_ElementArg)
{
nsTArray<int> array;
array.AppendElement(42);
ASSERT_EQ(1u, array.Length());
ASSERT_EQ(42, array[0]);
}
TEST(TArray, int_AppendElement_ElementArg_Fallible)
{
nsTArray<int> array;
ASSERT_NE(nullptr, array.AppendElement(42, fallible));
ASSERT_EQ(1u, array.Length());
ASSERT_EQ(42, array[0]);
}
constexpr size_t dummyMovableArrayLength = 4;
uint32_t dummyMovableArrayDestructorCounter;
static nsTArray<Movable> DummyMovableArray() {
nsTArray<Movable> res;
res.SetLength(dummyMovableArrayLength);
for (size_t i = 0; i < dummyMovableArrayLength; ++i) {
res[i].mDestructionCounter = &dummyMovableArrayDestructorCounter;
}
return res;
}
TEST(TArray, Movable_AppendElements_TArray_Rvalue)
{
dummyMovableArrayDestructorCounter = 0;
{
nsTArray<Movable> array;
nsTArray<Movable> temp(DummyMovableArray());
Movable* ptr = array.AppendElements(std::move(temp));
ASSERT_EQ(&array[0], ptr);
ASSERT_TRUE(temp.IsEmpty());
temp = DummyMovableArray();
ptr = array.AppendElements(std::move(temp));
ASSERT_EQ(&array[dummyMovableArrayLength], ptr);
ASSERT_TRUE(temp.IsEmpty());
}
ASSERT_EQ(2 * dummyMovableArrayLength, dummyMovableArrayDestructorCounter);
}
TEST(TArray, Movable_AppendElements_TArray_Rvalue_Fallible)
{
dummyMovableArrayDestructorCounter = 0;
{
nsTArray<Movable> array;
nsTArray<Movable> temp(DummyMovableArray());
Movable* ptr = array.AppendElements(std::move(temp), fallible);
ASSERT_EQ(&array[0], ptr);
ASSERT_TRUE(temp.IsEmpty());
temp = DummyMovableArray();
ptr = array.AppendElements(std::move(temp), fallible);
ASSERT_EQ(&array[dummyMovableArrayLength], ptr);
ASSERT_TRUE(temp.IsEmpty());
}
ASSERT_EQ(2 * dummyMovableArrayLength, dummyMovableArrayDestructorCounter);
}
TEST(TArray, Movable_AppendElements_FallibleArray_Rvalue)
{
dummyMovableArrayDestructorCounter = 0;
{
nsTArray<Movable> array;
FallibleTArray<Movable> temp(DummyMovableArray());
Movable* ptr = array.AppendElements(std::move(temp));
ASSERT_EQ(&array[0], ptr);
ASSERT_TRUE(temp.IsEmpty());
temp = DummyMovableArray();
ptr = array.AppendElements(std::move(temp));
ASSERT_EQ(&array[dummyMovableArrayLength], ptr);
ASSERT_TRUE(temp.IsEmpty());
}
ASSERT_EQ(2 * dummyMovableArrayLength, dummyMovableArrayDestructorCounter);
}
TEST(TArray, Movable_AppendElements_FallibleArray_Rvalue_Fallible)
{
dummyMovableArrayDestructorCounter = 0;
{
nsTArray<Movable> array;
FallibleTArray<Movable> temp(DummyMovableArray());
Movable* ptr = array.AppendElements(std::move(temp), fallible);
ASSERT_EQ(&array[0], ptr);
ASSERT_TRUE(temp.IsEmpty());
temp = DummyMovableArray();
ptr = array.AppendElements(std::move(temp), fallible);
ASSERT_EQ(&array[dummyMovableArrayLength], ptr);
ASSERT_TRUE(temp.IsEmpty());
}
ASSERT_EQ(2 * dummyMovableArrayLength, dummyMovableArrayDestructorCounter);
}
TEST(TArray, Movable_AppendElement_NoElementArg)
{
nsTArray<Movable> array;
array.AppendElement();
ASSERT_EQ(1u, array.Length());
}
TEST(TArray, Movable_AppendElement_NoElementArg_Fallible)
{
nsTArray<Movable> array;
ASSERT_NE(nullptr, array.AppendElement(fallible));
ASSERT_EQ(1u, array.Length());
}
TEST(TArray, Movable_AppendElement_NoElementArg_Address)
{
dummyMovableArrayDestructorCounter = 0;
{
nsTArray<Movable> array;
array.AppendElement()->mDestructionCounter =
&dummyMovableArrayDestructorCounter;
ASSERT_EQ(1u, array.Length());
}
ASSERT_EQ(1u, dummyMovableArrayDestructorCounter);
}
TEST(TArray, Movable_AppendElement_NoElementArg_Fallible_Address)
{
dummyMovableArrayDestructorCounter = 0;
{
nsTArray<Movable> array;
array.AppendElement(fallible)->mDestructionCounter =
&dummyMovableArrayDestructorCounter;
ASSERT_EQ(1u, array.Length());
ASSERT_EQ(&dummyMovableArrayDestructorCounter,
array[0].mDestructionCounter);
}
ASSERT_EQ(1u, dummyMovableArrayDestructorCounter);
}
TEST(TArray, Movable_AppendElement_ElementArg)
{
dummyMovableArrayDestructorCounter = 0;
Movable movable;
movable.mDestructionCounter = &dummyMovableArrayDestructorCounter;
{
nsTArray<Movable> array;
array.AppendElement(std::move(movable));
ASSERT_EQ(1u, array.Length());
ASSERT_EQ(&dummyMovableArrayDestructorCounter,
array[0].mDestructionCounter);
}
ASSERT_EQ(1u, dummyMovableArrayDestructorCounter);
}
TEST(TArray, Movable_AppendElement_ElementArg_Fallible)
{
dummyMovableArrayDestructorCounter = 0;
Movable movable;
movable.mDestructionCounter = &dummyMovableArrayDestructorCounter;
{
nsTArray<Movable> array;
ASSERT_NE(nullptr, array.AppendElement(std::move(movable), fallible));
ASSERT_EQ(1u, array.Length());
ASSERT_EQ(&dummyMovableArrayDestructorCounter,
array[0].mDestructionCounter);
}
ASSERT_EQ(1u, dummyMovableArrayDestructorCounter);
}
TEST(TArray, int_Assign)
{
nsTArray<int> array;
array.Assign(DummyArray());
ASSERT_EQ(DummyArray(), array);
ASSERT_TRUE(array.Assign(DummyArray(), fallible));
ASSERT_EQ(DummyArray(), array);
#ifdef DEBUG
ASSERT_FALSE(array.Assign(FakeHugeArray(), fallible));
#endif
nsTArray<int> array2;
array2.Assign(std::move(array));
ASSERT_TRUE(array.IsEmpty());
ASSERT_EQ(DummyArray(), array2);
}
TEST(TArray, int_AssignmentOperatorSelfAssignment)
{
CopyableTArray<int> array;
array = DummyArray();
array = *&array;
ASSERT_EQ(DummyArray(), array);
#if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wself-move"
#endif
array = std::move(array); // self-move
ASSERT_EQ(DummyArray(), array);
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
}
TEST(TArray, Movable_CopyOverlappingForwards)
{
const size_t rangeLength = 8;
const size_t initialLength = 2 * rangeLength;
uint32_t destructionCounters[initialLength];
nsTArray<Movable> array;
array.AppendElements(initialLength);
for (uint32_t i = 0; i < initialLength; ++i) {
destructionCounters[i] = 0;
}
for (uint32_t i = 0; i < initialLength; ++i) {
array[i].mDestructionCounter = &destructionCounters[i];
}
const size_t removedLength = rangeLength / 2;
array.RemoveElementsAt(0, removedLength);
for (uint32_t i = 0; i < removedLength; ++i) {
ASSERT_EQ(destructionCounters[i], 1u);
}
for (uint32_t i = removedLength; i < initialLength; ++i) {
ASSERT_EQ(destructionCounters[i], 0u);
}
}
// The code to copy overlapping regions had a bug in that it wouldn't correctly
// destroy all over the source elements being copied.
TEST(TArray, Copyable_CopyOverlappingBackwards)
{
const size_t rangeLength = 8;
const size_t initialLength = 2 * rangeLength;
uint32_t destructionCounters[initialLength];
nsTArray<Copyable> array;
array.SetCapacity(3 * rangeLength);
array.AppendElements(initialLength);
// To tickle the bug, we need to copy a source region:
//
// ..XXXXX..
//
// such that it overlaps the destination region:
//
// ....XXXXX
//
// so we are forced to copy back-to-front to ensure correct behavior.
// The easiest way to do that is to call InsertElementsAt, which will force
// the desired kind of shift.
for (uint32_t i = 0; i < initialLength; ++i) {
destructionCounters[i] = 0;
}
for (uint32_t i = 0; i < initialLength; ++i) {
array[i].mDestructionCounter = &destructionCounters[i];
}
array.InsertElementsAt(0, rangeLength);
for (uint32_t i = 0; i < initialLength; ++i) {
ASSERT_EQ(destructionCounters[i], 1u);
}
}
namespace {
class E {
public:
E() : mA(-1), mB(-2) { constructCount++; }
E(int a, int b) : mA(a), mB(b) { constructCount++; }
E(E&& aRhs) : mA(aRhs.mA), mB(aRhs.mB) {
aRhs.mA = 0;
aRhs.mB = 0;
moveCount++;
}
E& operator=(E&& aRhs) {
mA = aRhs.mA;
aRhs.mA = 0;
mB = aRhs.mB;
aRhs.mB = 0;
moveCount++;
return *this;
}
int a() const { return mA; }
int b() const { return mB; }
E(const E&) = delete;
E& operator=(const E&) = delete;
static size_t constructCount;
static size_t moveCount;
private:
int mA;
int mB;
};
size_t E::constructCount = 0;
size_t E::moveCount = 0;
} // namespace
TEST(TArray, Emplace)
{
nsTArray<E> array;
array.SetCapacity(20);
ASSERT_EQ(array.Length(), 0u);
for (int i = 0; i < 10; i++) {
E s(i, i * i);
array.AppendElement(std::move(s));
}
ASSERT_EQ(array.Length(), 10u);
ASSERT_EQ(E::constructCount, 10u);
ASSERT_EQ(E::moveCount, 10u);
for (int i = 10; i < 20; i++) {
array.EmplaceBack(i, i * i);
}
ASSERT_EQ(array.Length(), 20u);
ASSERT_EQ(E::constructCount, 20u);
ASSERT_EQ(E::moveCount, 10u);
for (int i = 0; i < 20; i++) {
ASSERT_EQ(array[i].a(), i);
ASSERT_EQ(array[i].b(), i * i);
}
array.EmplaceBack();
ASSERT_EQ(array.Length(), 21u);
ASSERT_EQ(E::constructCount, 21u);
ASSERT_EQ(E::moveCount, 10u);
ASSERT_EQ(array[20].a(), -1);
ASSERT_EQ(array[20].b(), -2);
}
TEST(TArray, UnorderedRemoveElements)
{
// When removing an element from the end of the array, it can be removed in
// place, by destroying it and decrementing the length.
//
// [ 1, 2, 3 ] => [ 1, 2 ]
// ^
{
nsTArray<int> array{1, 2, 3};
array.UnorderedRemoveElementAt(2);
nsTArray<int> goal{1, 2};
ASSERT_EQ(array, goal);
}
// When removing any other single element, it is removed by swapping it with
// the last element, and then decrementing the length as before.
//
// [ 1, 2, 3, 4, 5, 6 ] => [ 1, 6, 3, 4, 5 ]
// ^
{
nsTArray<int> array{1, 2, 3, 4, 5, 6};
array.UnorderedRemoveElementAt(1);
nsTArray<int> goal{1, 6, 3, 4, 5};
ASSERT_EQ(array, goal);
}
// This method also supports efficiently removing a range of elements. If they
// are at the end, then they can all be removed like in the one element case.
//
// [ 1, 2, 3, 4, 5, 6 ] => [ 1, 2 ]
// ^--------^
{
nsTArray<int> array{1, 2, 3, 4, 5, 6};
array.UnorderedRemoveElementsAt(2, 4);
nsTArray<int> goal{1, 2};
ASSERT_EQ(array, goal);
}
// If more elements are removed than exist after the removed section, the
// remaining elements will be shifted down like in a normal removal.
//
// [ 1, 2, 3, 4, 5, 6, 7, 8 ] => [ 1, 2, 7, 8 ]
// ^--------^
{
nsTArray<int> array{1, 2, 3, 4, 5, 6, 7, 8};
array.UnorderedRemoveElementsAt(2, 4);
nsTArray<int> goal{1, 2, 7, 8};
ASSERT_EQ(array, goal);
}
// And if fewer elements are removed than exist after the removed section,
// elements will be moved from the end of the array to fill the vacated space.
//
// [ 1, 2, 3, 4, 5, 6, 7, 8 ] => [ 1, 7, 8, 4, 5, 6 ]
// ^--^
{
nsTArray<int> array{1, 2, 3, 4, 5, 6, 7, 8};
array.UnorderedRemoveElementsAt(1, 2);
nsTArray<int> goal{1, 7, 8, 4, 5, 6};
ASSERT_EQ(array, goal);
}
// We should do the right thing if we drain the entire array.
{
nsTArray<int> array{1, 2, 3, 4, 5};
array.UnorderedRemoveElementsAt(0, 5);
nsTArray<int> goal{};
ASSERT_EQ(array, goal);
}
{
nsTArray<int> array{1};
array.UnorderedRemoveElementAt(0);
nsTArray<int> goal{};
ASSERT_EQ(array, goal);
}
// We should do the right thing if we remove the same number of elements that
// we have remaining.
{
nsTArray<int> array{1, 2, 3, 4, 5, 6};
array.UnorderedRemoveElementsAt(2, 2);
nsTArray<int> goal{1, 2, 5, 6};
ASSERT_EQ(array, goal);
}
{
nsTArray<int> array{1, 2, 3};
array.UnorderedRemoveElementAt(1);
nsTArray<int> goal{1, 3};
ASSERT_EQ(array, goal);
}
// We should be able to remove elements from the front without issue.
{
nsTArray<int> array{1, 2, 3, 4, 5, 6};
array.UnorderedRemoveElementsAt(0, 2);
nsTArray<int> goal{5, 6, 3, 4};
ASSERT_EQ(array, goal);
}
{
nsTArray<int> array{1, 2, 3, 4};
array.UnorderedRemoveElementAt(0);
nsTArray<int> goal{4, 2, 3};
ASSERT_EQ(array, goal);
}
}
TEST(TArray, RemoveFromEnd)
{
{
nsTArray<int> array{1, 2, 3, 4};
ASSERT_EQ(array.PopLastElement(), 4);
array.RemoveLastElement();
ASSERT_EQ(array.PopLastElement(), 2);
array.RemoveLastElement();
ASSERT_TRUE(array.IsEmpty());
}
}
TEST(TArray, ConvertIteratorToConstIterator)
{
nsTArray<int> array{1, 2, 3, 4};
nsTArray<int>::const_iterator it = array.begin();
ASSERT_EQ(array.cbegin(), it);
}
TEST(TArray, RemoveElementAt_ByIterator)
{
nsTArray<int> array{1, 2, 3, 4};
const auto it = std::find(array.begin(), array.end(), 3);
const auto itAfter = array.RemoveElementAt(it);
// Based on the implementation of the iterator, we could compare it and
// itAfter, but we should not rely on such implementation details.
ASSERT_EQ(2, std::distance(array.cbegin(), itAfter));
const nsTArray<int> expected{1, 2, 4};
ASSERT_EQ(expected, array);
}
TEST(TArray, RemoveElementsRange_ByIterator)
{
nsTArray<int> array{1, 2, 3, 4};
const auto it = std::find(array.begin(), array.end(), 3);
const auto itAfter = array.RemoveElementsRange(it, array.end());
// Based on the implementation of the iterator, we could compare it and
// itAfter, but we should not rely on such implementation details.
ASSERT_EQ(2, std::distance(array.cbegin(), itAfter));
const nsTArray<int> expected{1, 2};
ASSERT_EQ(expected, array);
}
TEST(TArray, RemoveLastElements_None)
{
const nsTArray<int> original{1, 2, 3, 4};
nsTArray<int> array = original.Clone();
array.RemoveLastElements(0);
ASSERT_EQ(original, array);
}
TEST(TArray, RemoveLastElements_Empty_None)
{
nsTArray<int> array;
array.RemoveLastElements(0);
ASSERT_EQ(0u, array.Length());
}
TEST(TArray, RemoveLastElements_All)
{
nsTArray<int> array{1, 2, 3, 4};
array.RemoveLastElements(4);
ASSERT_EQ(0u, array.Length());
}
TEST(TArray, RemoveLastElements_One)
{
nsTArray<int> array{1, 2, 3, 4};
array.RemoveLastElements(1);
ASSERT_EQ((nsTArray<int>{1, 2, 3}), array);
}
static_assert(std::is_copy_assignable<decltype(
MakeBackInserter(std::declval<nsTArray<int>&>()))>::value,
"output iteraror must be copy-assignable");
static_assert(std::is_copy_constructible<decltype(
MakeBackInserter(std::declval<nsTArray<int>&>()))>::value,
"output iterator must be copy-constructible");
TEST(TArray, MakeBackInserter)
{
const std::vector<int> src{1, 2, 3, 4};
nsTArray<int> dst;
std::copy(src.begin(), src.end(), MakeBackInserter(dst));
const nsTArray<int> expected{1, 2, 3, 4};
ASSERT_EQ(expected, dst);
}
TEST(TArray, MakeBackInserter_Move)
{
uint32_t destructionCounter = 0;
{
std::vector<Movable> src(1);
src[0].mDestructionCounter = &destructionCounter;
nsTArray<Movable> dst;
std::copy(std::make_move_iterator(src.begin()),
std::make_move_iterator(src.end()), MakeBackInserter(dst));
ASSERT_EQ(1u, dst.Length());
ASSERT_EQ(0u, destructionCounter);
}
ASSERT_EQ(1u, destructionCounter);
}
TEST(TArray, ConvertToSpan)
{
nsTArray<int> arr = {1, 2, 3, 4, 5};
// from const
{
const auto& constArrRef = arr;
auto span = Span{constArrRef};
static_assert(std::is_same_v<decltype(span), Span<const int>>);
}
// from non-const
{
auto span = Span{arr};
static_assert(std::is_same_v<decltype(span), Span<int>>);
}
}
// This should compile:
struct RefCounted;
class Foo {
~Foo(); // Intentionally out of line
nsTArray<RefPtr<RefCounted>> mArray;
const RefCounted* GetFirst() const { return mArray.SafeElementAt(0); }
};
TEST(TArray, ArrayView)
{
const nsTArray<int> expected = {1, 2, 3, 4, 5};
const nsTArrayView<int> view(expected.Clone());
nsTArray<int> fromSpan;
fromSpan.AppendElements(view.AsSpan());
EXPECT_EQ(expected, fromSpan);
for (auto& element : view) {
element++;
}
int i = 2;
for (const auto& element : view) {
EXPECT_EQ(i++, element);
}
}
TEST(TArray, StableSort)
{
const nsTArray<std::pair<int, int>> expected = {
std::pair(1, 9), std::pair(1, 8), std::pair(1, 7), std::pair(2, 0),
std::pair(3, 0)};
nsTArray<std::pair<int, int>> array = {std::pair(1, 9), std::pair(2, 0),
std::pair(1, 8), std::pair(3, 0),
std::pair(1, 7)};
array.StableSort([](std::pair<int, int> left, std::pair<int, int> right) {
return left.first - right.first;
});
EXPECT_EQ(expected, array);
}
} // namespace TestTArray