gecko-dev/third_party/aom/tools/aom_entropy_optimizer.c

806 строки
31 KiB
C

/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
// This tool is a gadget for offline probability training.
// A binary executable aom_entropy_optimizer will be generated in tools/. It
// parses a binary file consisting of counts written in the format of
// FRAME_COUNTS in entropymode.h, and computes optimized probability tables
// and CDF tables, which will be written to a new c file optimized_probs.c
// according to format in the codebase.
//
// Command line: ./aom_entropy_optimizer [directory of the count file]
//
// The input file can either be generated by encoding a single clip by
// turning on entropy_stats experiment, or be collected at a larger scale at
// which a python script which will be provided soon can be used to aggregate
// multiple stats output.
#include <assert.h>
#include <stdio.h>
#include "./aom_config.h"
#include "av1/common/entropymode.h"
#if CONFIG_ALT_INTRA
#if CONFIG_SMOOTH_HV
const aom_tree_index av1_intra_mode_tree[TREE_SIZE(INTRA_MODES)] = {
-DC_PRED,
2, /* 0 = DC_NODE */
-TM_PRED,
4, /* 1 = TM_NODE */
-V_PRED,
6, /* 2 = V_NODE */
8,
12, /* 3 = COM_NODE */
-H_PRED,
10, /* 4 = H_NODE */
-D135_PRED,
-D117_PRED, /* 5 = D135_NODE */
-D45_PRED,
14, /* 6 = D45_NODE */
-D63_PRED,
16, /* 7 = D63_NODE */
-D153_PRED,
18, /* 8 = D153_NODE */
-D207_PRED,
20, /* 9 = D207_NODE */
-SMOOTH_PRED,
22, /* 10 = SMOOTH_NODE */
-SMOOTH_V_PRED,
-SMOOTH_H_PRED /* 11 = SMOOTH_V_NODE */
};
#else
const aom_tree_index av1_intra_mode_tree[TREE_SIZE(INTRA_MODES)] = {
-DC_PRED, 2, /* 0 = DC_NODE */
-TM_PRED, 4, /* 1 = TM_NODE */
-V_PRED, 6, /* 2 = V_NODE */
8, 12, /* 3 = COM_NODE */
-H_PRED, 10, /* 4 = H_NODE */
-D135_PRED, -D117_PRED, /* 5 = D135_NODE */
-D45_PRED, 14, /* 6 = D45_NODE */
-D63_PRED, 16, /* 7 = D63_NODE */
-D153_PRED, 18, /* 8 = D153_NODE */
-D207_PRED, -SMOOTH_PRED, /* 9 = D207_NODE */
};
#endif // CONFIG_SMOOTH_HV
#else
const aom_tree_index av1_intra_mode_tree[TREE_SIZE(INTRA_MODES)] = {
-DC_PRED, 2, /* 0 = DC_NODE */
-TM_PRED, 4, /* 1 = TM_NODE */
-V_PRED, 6, /* 2 = V_NODE */
8, 12, /* 3 = COM_NODE */
-H_PRED, 10, /* 4 = H_NODE */
-D135_PRED, -D117_PRED, /* 5 = D135_NODE */
-D45_PRED, 14, /* 6 = D45_NODE */
-D63_PRED, 16, /* 7 = D63_NODE */
-D153_PRED, -D207_PRED /* 8 = D153_NODE */
};
#endif // CONFIG_ALT_INTRA
#define SPACES_PER_TAB 2
typedef unsigned int aom_count_type;
// A log file recording parsed counts
static FILE *logfile; // TODO(yuec): make it a command line option
// Optimized probabilities will be stored in probs[].
static unsigned int optimize_tree_probs(const aom_tree_index *tree,
unsigned int idx,
const unsigned int *counts,
aom_prob *probs) {
const int l = tree[idx];
const unsigned int left_count =
(l <= 0) ? counts[-l] : optimize_tree_probs(tree, l, counts, probs);
const int r = tree[idx + 1];
const unsigned int right_count =
(r <= 0) ? counts[-r] : optimize_tree_probs(tree, r, counts, probs);
probs[idx >> 1] = get_binary_prob(left_count, right_count);
return left_count + right_count;
}
static int parse_stats(aom_count_type **ct_ptr, FILE *const probsfile, int tabs,
int dim_of_cts, int *cts_each_dim,
const aom_tree_index *tree, int flatten_last_dim) {
if (dim_of_cts < 1) {
fprintf(stderr, "The dimension of a counts vector should be at least 1!\n");
return 1;
}
if (dim_of_cts == 1) {
const int total_modes = cts_each_dim[0];
aom_count_type *counts1d = *ct_ptr;
aom_prob *probs = aom_malloc(sizeof(*probs) * (total_modes - 1));
if (probs == NULL) {
fprintf(stderr, "Allocating prob array failed!\n");
return 1;
}
(*ct_ptr) += total_modes;
if (tree != NULL) {
optimize_tree_probs(tree, 0, counts1d, probs);
} else {
assert(total_modes == 2);
probs[0] = get_binary_prob(counts1d[0], counts1d[1]);
}
if (tabs > 0) fprintf(probsfile, "%*c", tabs * SPACES_PER_TAB, ' ');
for (int k = 0; k < total_modes - 1; ++k) {
if (k == total_modes - 2)
fprintf(probsfile, " %3d ", probs[k]);
else
fprintf(probsfile, " %3d,", probs[k]);
fprintf(logfile, "%d ", counts1d[k]);
}
fprintf(logfile, "%d\n", counts1d[total_modes - 1]);
} else if (dim_of_cts == 2 && flatten_last_dim) {
assert(cts_each_dim[1] == 2);
for (int k = 0; k < cts_each_dim[0]; ++k) {
if (k == cts_each_dim[0] - 1) {
fprintf(probsfile, " %3d ",
get_binary_prob((*ct_ptr)[0], (*ct_ptr)[1]));
} else {
fprintf(probsfile, " %3d,",
get_binary_prob((*ct_ptr)[0], (*ct_ptr)[1]));
}
fprintf(logfile, "%d %d\n", (*ct_ptr)[0], (*ct_ptr)[1]);
(*ct_ptr) += 2;
}
} else {
for (int k = 0; k < cts_each_dim[0]; ++k) {
int tabs_next_level;
if (dim_of_cts == 2 || (dim_of_cts == 3 && flatten_last_dim)) {
fprintf(probsfile, "%*c{", tabs * SPACES_PER_TAB, ' ');
tabs_next_level = 0;
} else {
fprintf(probsfile, "%*c{\n", tabs * SPACES_PER_TAB, ' ');
tabs_next_level = tabs + 1;
}
if (parse_stats(ct_ptr, probsfile, tabs_next_level, dim_of_cts - 1,
cts_each_dim + 1, tree, flatten_last_dim)) {
return 1;
}
if (dim_of_cts == 2 || (dim_of_cts == 3 && flatten_last_dim)) {
if (k == cts_each_dim[0] - 1)
fprintf(probsfile, "}\n");
else
fprintf(probsfile, "},\n");
} else {
if (k == cts_each_dim[0] - 1)
fprintf(probsfile, "%*c}\n", tabs * SPACES_PER_TAB, ' ');
else
fprintf(probsfile, "%*c},\n", tabs * SPACES_PER_TAB, ' ');
}
}
}
return 0;
}
// This function parses the stats of a syntax, either binary or multi-symbol,
// in different contexts, and writes the optimized probability table to
// probsfile.
// counts: pointer of the first count element in counts array
// probsfile: output file
// dim_of_cts: number of dimensions of counts array
// cts_each_dim: an array storing size of each dimension of counts array
// tree: binary tree for a multi-symbol syntax, or NULL for a binary one
// flatten_last_dim: for a binary syntax, if flatten_last_dim is 0, probs in
// different contexts will be written separately, e.g.,
// {{p1}, {p2}, ...};
// otherwise will be grouped together at the second last
// dimension, i.e.,
// {p1, p2, ...}.
// prefix: declaration header for the entropy table
static void optimize_entropy_table(aom_count_type *counts,
FILE *const probsfile, int dim_of_cts,
int *cts_each_dim,
const aom_tree_index *tree,
int flatten_last_dim, char *prefix) {
aom_count_type *ct_ptr = counts;
assert(!flatten_last_dim || cts_each_dim[dim_of_cts - 1] == 2);
fprintf(probsfile, "%s = {\n", prefix);
if (parse_stats(&ct_ptr, probsfile, 1, dim_of_cts, cts_each_dim, tree,
flatten_last_dim)) {
fprintf(probsfile, "Optimizer failed!\n");
}
fprintf(probsfile, "};\n\n");
fprintf(logfile, "\n");
}
static int counts_to_cdf(const aom_count_type *counts, aom_cdf_prob *cdf,
int modes) {
int64_t *csum = aom_malloc(sizeof(*csum) * modes);
if (csum == NULL) {
fprintf(stderr, "Allocating csum array failed!\n");
return 1;
}
csum[0] = counts[0];
for (int i = 1; i < modes; ++i) csum[i] = counts[i] + csum[i - 1];
int64_t sum = csum[modes - 1];
int64_t round_shift = sum >> 1;
for (int i = 0; i < modes; ++i) {
if (sum <= 0)
cdf[i] = CDF_PROB_TOP;
else
cdf[i] = (csum[i] * CDF_PROB_TOP + round_shift) / sum;
}
return 0;
}
static int parse_counts_for_cdf_opt(aom_count_type **ct_ptr,
FILE *const probsfile, int tabs,
int dim_of_cts, int *cts_each_dim) {
if (dim_of_cts < 1) {
fprintf(stderr, "The dimension of a counts vector should be at least 1!\n");
return 1;
}
if (dim_of_cts == 1) {
const int total_modes = cts_each_dim[0];
aom_count_type *counts1d = *ct_ptr;
aom_cdf_prob *cdfs = aom_malloc(sizeof(*cdfs) * total_modes);
if (cdfs == NULL) {
fprintf(stderr, "Allocating cdf array failed!\n");
return 1;
}
counts_to_cdf(counts1d, cdfs, total_modes);
(*ct_ptr) += total_modes;
if (tabs > 0) fprintf(probsfile, "%*c", tabs * SPACES_PER_TAB, ' ');
for (int k = 0; k < total_modes; ++k)
fprintf(probsfile, " AOM_ICDF(%d),", cdfs[k]);
fprintf(probsfile, " 0 ");
} else {
for (int k = 0; k < cts_each_dim[0]; ++k) {
int tabs_next_level;
if (dim_of_cts == 2)
fprintf(probsfile, "%*c{", tabs * SPACES_PER_TAB, ' ');
else
fprintf(probsfile, "%*c{\n", tabs * SPACES_PER_TAB, ' ');
tabs_next_level = dim_of_cts == 2 ? 0 : tabs + 1;
if (parse_counts_for_cdf_opt(ct_ptr, probsfile, tabs_next_level,
dim_of_cts - 1, cts_each_dim + 1)) {
return 1;
}
if (dim_of_cts == 2) {
if (k == cts_each_dim[0] - 1)
fprintf(probsfile, "}\n");
else
fprintf(probsfile, "},\n");
} else {
if (k == cts_each_dim[0] - 1)
fprintf(probsfile, "%*c}\n", tabs * SPACES_PER_TAB, ' ');
else
fprintf(probsfile, "%*c},\n", tabs * SPACES_PER_TAB, ' ');
}
}
}
return 0;
}
static void optimize_cdf_table(aom_count_type *counts, FILE *const probsfile,
int dim_of_cts, int *cts_each_dim,
char *prefix) {
aom_count_type *ct_ptr = counts;
fprintf(probsfile, "%s = {\n", prefix);
if (parse_counts_for_cdf_opt(&ct_ptr, probsfile, 1, dim_of_cts,
cts_each_dim)) {
fprintf(probsfile, "Optimizer failed!\n");
}
fprintf(probsfile, "};\n\n");
}
int main(int argc, const char **argv) {
if (argc < 2) {
fprintf(stderr, "Please specify the input stats file!\n");
exit(EXIT_FAILURE);
}
FILE *const statsfile = fopen(argv[1], "rb");
if (statsfile == NULL) {
fprintf(stderr, "Failed to open input file!\n");
exit(EXIT_FAILURE);
}
FRAME_COUNTS fc;
fread(&fc, sizeof(FRAME_COUNTS), 1, statsfile);
FILE *const probsfile = fopen("optimized_probs.c", "w");
if (probsfile == NULL) {
fprintf(stderr,
"Failed to create output file for optimized entropy tables!\n");
exit(EXIT_FAILURE);
}
logfile = fopen("aom_entropy_optimizer_parsed_counts.log", "w");
if (logfile == NULL) {
fprintf(stderr, "Failed to create log file for parsed counts!\n");
exit(EXIT_FAILURE);
}
int cts_each_dim[10];
/* Intra mode (keyframe luma) */
cts_each_dim[0] = INTRA_MODES;
cts_each_dim[1] = INTRA_MODES;
cts_each_dim[2] = INTRA_MODES;
optimize_entropy_table(
&fc.kf_y_mode[0][0][0], probsfile, 3, cts_each_dim, av1_intra_mode_tree,
0,
"const aom_prob av1_kf_y_mode_prob[INTRA_MODES][INTRA_MODES]"
"[INTRA_MODES - 1]");
optimize_cdf_table(
&fc.kf_y_mode[0][0][0], probsfile, 3, cts_each_dim,
"const aom_cdf_prob\n"
"av1_kf_y_mode_cdf[INTRA_MODES][INTRA_MODES][CDF_SIZE(INTRA_MODES)]");
/* Intra mode (non-keyframe luma) */
cts_each_dim[0] = BLOCK_SIZE_GROUPS;
cts_each_dim[1] = INTRA_MODES;
optimize_entropy_table(
&fc.y_mode[0][0], probsfile, 2, cts_each_dim, av1_intra_mode_tree, 0,
"static const aom_prob default_if_y_probs[BLOCK_SIZE_GROUPS]"
"[INTRA_MODES - 1]");
optimize_cdf_table(
&fc.y_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_if_y_mode_cdf[BLOCK_SIZE_GROUPS][CDF_SIZE(INTRA_MODES)]");
/* Intra mode (chroma) */
cts_each_dim[0] = INTRA_MODES;
cts_each_dim[1] = UV_INTRA_MODES;
optimize_entropy_table(&fc.uv_mode[0][0], probsfile, 2, cts_each_dim,
av1_intra_mode_tree, 0,
"static const aom_prob default_uv_probs[INTRA_MODES]"
"[UV_INTRA_MODES - 1]");
optimize_cdf_table(
&fc.uv_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_uv_mode_cdf[INTRA_MODES][CDF_SIZE(UV_INTRA_MODES)]");
/* Partition */
cts_each_dim[0] = PARTITION_CONTEXTS;
#if CONFIG_EXT_PARTITION_TYPES
cts_each_dim[1] = EXT_PARTITION_TYPES;
// TODO(yuec): Wrong prob for context = 0, because the old tree is used
optimize_entropy_table(&fc.partition[0][0], probsfile, 2, cts_each_dim,
av1_ext_partition_tree, 0,
"static const aom_prob default_partition_probs"
"[PARTITION_CONTEXTS][EXT_PARTITION_TYPES - 1]");
optimize_cdf_table(&fc.partition[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_partition_cdf[PARTITION_CONTEXTS][CDF_SIZE(EXT_"
"PARTITION_TYPES)]");
#else
cts_each_dim[1] = PARTITION_TYPES;
optimize_entropy_table(&fc.partition[0][0], probsfile, 2, cts_each_dim,
av1_partition_tree, 0,
"static const aom_prob default_partition_probs"
"[PARTITION_CONTEXTS][PARTITION_TYPES - 1]");
optimize_cdf_table(
&fc.partition[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_partition_cdf[PARTITION_CONTEXTS][CDF_SIZE(PARTITION_TYPES)]");
#endif
/* Interpolation filter */
cts_each_dim[0] = SWITCHABLE_FILTER_CONTEXTS;
cts_each_dim[1] = SWITCHABLE_FILTERS;
optimize_entropy_table(
&fc.switchable_interp[0][0], probsfile, 2, cts_each_dim,
av1_switchable_interp_tree, 0,
"static const aom_prob \n"
"default_switchable_interp_prob[SWITCHABLE_FILTER_CONTEXTS]"
"[SWITCHABLE_FILTERS - 1]");
optimize_cdf_table(&fc.switchable_interp[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_switchable_interp_cdf[SWITCHABLE_FILTER_CONTEXTS]"
"[CDF_SIZE(SWITCHABLE_FILTERS)]");
/* Blockzero */
cts_each_dim[0] = TX_SIZES;
cts_each_dim[1] = PLANE_TYPES;
cts_each_dim[2] = REF_TYPES;
cts_each_dim[3] = BLOCKZ_CONTEXTS;
cts_each_dim[4] = 2;
optimize_entropy_table(
&fc.blockz_count[0][0][0][0][0], probsfile, 5, cts_each_dim, NULL, 1,
"static const aom_prob av1_default_blockzero_probs[TX_SIZES]"
"[PLANE_TYPES][REF_TYPES][BLOCKZ_CONTEXTS]");
/* Motion vector referencing */
cts_each_dim[0] = NEWMV_MODE_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.newmv_mode[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_newmv_prob[NEWMV_MODE_CONTEXTS]");
optimize_cdf_table(&fc.newmv_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_newmv_cdf[NEWMV_MODE_CONTEXTS][CDF_SIZE(2)]");
cts_each_dim[0] = ZEROMV_MODE_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.zeromv_mode[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_zeromv_prob[ZEROMV_MODE_CONTEXTS]");
optimize_cdf_table(&fc.zeromv_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_zeromv_cdf[ZEROMV_MODE_CONTEXTS][CDF_SIZE(2)]");
cts_each_dim[0] = REFMV_MODE_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.refmv_mode[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_refmv_prob[REFMV_MODE_CONTEXTS]");
optimize_cdf_table(&fc.refmv_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_refmv_cdf[REFMV_MODE_CONTEXTS][CDF_SIZE(2)]");
cts_each_dim[0] = DRL_MODE_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.drl_mode[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_drl_prob[DRL_MODE_CONTEXTS]");
optimize_cdf_table(&fc.drl_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_drl_cdf[DRL_MODE_CONTEXTS][CDF_SIZE(2)]");
/* ext_inter experiment */
#if CONFIG_EXT_INTER
/* New compound mode */
cts_each_dim[0] = INTER_MODE_CONTEXTS;
cts_each_dim[1] = INTER_COMPOUND_MODES;
optimize_entropy_table(
&fc.inter_compound_mode[0][0], probsfile, 2, cts_each_dim,
av1_inter_compound_mode_tree, 0,
"static const aom_prob default_inter_compound_mode_probs\n"
"[INTER_MODE_CONTEXTS][INTER_COMPOUND_MODES - 1]");
optimize_cdf_table(&fc.inter_compound_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_inter_compound_mode_cdf[INTER_MODE_CONTEXTS][CDF_"
"SIZE(INTER_COMPOUND_MODES)]");
#if CONFIG_COMPOUND_SINGLEREF
/* Compound singleref mode */
cts_each_dim[0] = INTER_MODE_CONTEXTS;
cts_each_dim[1] = INTER_SINGLEREF_COMP_MODES;
optimize_entropy_table(
&fc.inter_singleref_comp_mode[0][0], probsfile, 2, cts_each_dim,
av1_inter_singleref_comp_mode_tree, 0,
"static const aom_prob default_inter_singleref_comp_mode_probs\n"
"[INTER_MODE_CONTEXTS][INTER_SINGLEREF_COMP_MODES - 1]");
optimize_cdf_table(&fc.inter_singleref_comp_mode[0][0], probsfile, 2,
cts_each_dim,
"static const aom_cdf_prob\n"
"default_inter_singleref_comp_mode_cdf[INTER_MODE_"
"CONTEXTS][CDF_SIZE(INTER_SINGLEREF_COMP_MODES)]");
#endif
#if CONFIG_INTERINTRA
/* Interintra */
cts_each_dim[0] = BLOCK_SIZE_GROUPS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.interintra[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_interintra_prob[BLOCK_SIZE_GROUPS]");
optimize_cdf_table(&fc.interintra[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_interintra_cdf[BLOCK_SIZE_GROUPS][CDF_SIZE(2)]");
cts_each_dim[0] = BLOCK_SIZE_GROUPS;
cts_each_dim[1] = INTERINTRA_MODES;
optimize_entropy_table(
&fc.interintra_mode[0][0], probsfile, 2, cts_each_dim,
av1_interintra_mode_tree, 0,
"static const aom_prob "
"default_interintra_mode_prob[BLOCK_SIZE_GROUPS][INTERINTRA_MODES - 1]");
optimize_cdf_table(&fc.interintra_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_interintra_mode_cdf[BLOCK_SIZE_GROUPS][CDF_SIZE("
"INTERINTRA_MODES)]");
cts_each_dim[0] = BLOCK_SIZES_ALL;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.wedge_interintra[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_wedge_interintra_prob[BLOCK_SIZES_ALL]");
optimize_cdf_table(
&fc.wedge_interintra[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_wedge_interintra_cdf[BLOCK_SIZES_ALL][CDF_SIZE(2)]");
#endif
/* Compound type */
cts_each_dim[0] = BLOCK_SIZES_ALL;
cts_each_dim[1] = COMPOUND_TYPES;
optimize_entropy_table(&fc.compound_interinter[0][0], probsfile, 2,
cts_each_dim, av1_compound_type_tree, 0,
"static const aom_prob default_compound_type_probs"
"[BLOCK_SIZES_ALL][COMPOUND_TYPES - 1]");
optimize_cdf_table(
&fc.compound_interinter[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_compound_type_cdf[BLOCK_SIZES_ALL][CDF_SIZE(COMPOUND_TYPES)]");
#endif
/* motion_var and warped_motion experiments */
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
cts_each_dim[0] = BLOCK_SIZES_ALL;
cts_each_dim[1] = MOTION_MODES;
optimize_entropy_table(
&fc.motion_mode[0][0], probsfile, 2, cts_each_dim, av1_motion_mode_tree,
0,
"static const aom_prob default_motion_mode_prob[BLOCK_SIZES]"
"[MOTION_MODES - 1]");
optimize_cdf_table(
&fc.motion_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_motion_mode_cdf[BLOCK_SIZES_ALL][CDF_SIZE(MOTION_MODES)]");
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
cts_each_dim[0] = BLOCK_SIZES_ALL;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.obmc[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_obmc_prob[BLOCK_SIZES_ALL]");
optimize_cdf_table(&fc.obmc[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_obmc_cdf[BLOCK_SIZES_ALL][CDF_SIZE(2)]");
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
/* Intra/inter flag */
cts_each_dim[0] = INTRA_INTER_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(&fc.intra_inter[0][0], probsfile, 2, cts_each_dim,
NULL, 1,
"static const aom_prob default_intra_inter_p"
"[INTRA_INTER_CONTEXTS]");
optimize_cdf_table(
&fc.intra_inter[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_intra_inter_cdf[INTRA_INTER_CONTEXTS][CDF_SIZE(2)]");
/* Single/comp ref flag */
cts_each_dim[0] = COMP_INTER_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(&fc.comp_inter[0][0], probsfile, 2, cts_each_dim, NULL,
1,
"static const aom_prob default_comp_inter_p"
"[COMP_INTER_CONTEXTS]");
optimize_cdf_table(
&fc.comp_inter[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_comp_inter_cdf[COMP_INTER_CONTEXTS][CDF_SIZE(2)]");
/* ext_comp_refs experiment */
#if CONFIG_EXT_COMP_REFS
cts_each_dim[0] = COMP_REF_TYPE_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.comp_ref_type[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_comp_ref_type_p[COMP_REF_TYPE_CONTEXTS]");
optimize_cdf_table(
&fc.comp_ref_type[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_comp_ref_type_cdf[COMP_REF_TYPE_CONTEXTS][CDF_SIZE(2)]");
cts_each_dim[0] = UNI_COMP_REF_CONTEXTS;
cts_each_dim[1] = UNIDIR_COMP_REFS - 1;
cts_each_dim[2] = 2;
optimize_entropy_table(
&fc.uni_comp_ref[0][0][0], probsfile, 3, cts_each_dim, NULL, 1,
"static const aom_prob\n"
"default_uni_comp_ref_p[UNI_COMP_REF_CONTEXTS][UNIDIR_COMP_REFS - 1]");
optimize_cdf_table(&fc.uni_comp_ref[0][0][0], probsfile, 3, cts_each_dim,
"static const aom_cdf_prob\n"
"default_uni_comp_ref_cdf[UNI_COMP_REF_CONTEXTS][UNIDIR_"
"COMP_REFS - 1][CDF_SIZE(2)]");
#endif
/* Reference frame (single ref) */
cts_each_dim[0] = REF_CONTEXTS;
cts_each_dim[1] = SINGLE_REFS - 1;
cts_each_dim[2] = 2;
optimize_entropy_table(
&fc.single_ref[0][0][0], probsfile, 3, cts_each_dim, NULL, 1,
"static const aom_prob default_single_ref_p[REF_CONTEXTS]"
"[SINGLE_REFS - 1]");
optimize_cdf_table(
&fc.single_ref[0][0][0], probsfile, 3, cts_each_dim,
"static const aom_cdf_prob\n"
"default_single_ref_cdf[REF_CONTEXTS][SINGLE_REFS - 1][CDF_SIZE(2)]");
#if CONFIG_EXT_REFS
/* ext_refs experiment */
cts_each_dim[0] = REF_CONTEXTS;
cts_each_dim[1] = FWD_REFS - 1;
cts_each_dim[2] = 2;
optimize_entropy_table(
&fc.comp_ref[0][0][0], probsfile, 3, cts_each_dim, NULL, 1,
"static const aom_prob default_comp_ref_p[REF_CONTEXTS][FWD_REFS - 1]");
optimize_cdf_table(
&fc.comp_ref[0][0][0], probsfile, 3, cts_each_dim,
"static const aom_cdf_prob\n"
"default_comp_ref_cdf[REF_CONTEXTS][FWD_REFS - 1][CDF_SIZE(2)]");
cts_each_dim[0] = REF_CONTEXTS;
cts_each_dim[1] = BWD_REFS - 1;
cts_each_dim[2] = 2;
optimize_entropy_table(&fc.comp_bwdref[0][0][0], probsfile, 3, cts_each_dim,
NULL, 1,
"static const aom_prob "
"default_comp_bwdref_p[REF_CONTEXTS][BWD_REFS - 1]");
optimize_cdf_table(
&fc.comp_bwdref[0][0][0], probsfile, 3, cts_each_dim,
"static const aom_cdf_prob\n"
"default_comp_bwdref_cdf[REF_CONTEXTS][BWD_REFS - 1][CDF_SIZE(2)]");
#else
/* Reference frame (compound refs) */
cts_each_dim[0] = REF_CONTEXTS;
cts_each_dim[1] = COMP_REFS - 1;
cts_each_dim[2] = 2;
optimize_entropy_table(
&fc.comp_ref[0][0][0], probsfile, 3, cts_each_dim, NULL, 1,
"static const aom_prob default_comp_ref_p[REF_CONTEXTS]"
"[COMP_REFS - 1]");
optimize_cdf_table(
&fc.comp_ref[0][0][0], probsfile, 3, cts_each_dim,
"static const aom_cdf_prob\n"
"default_comp_ref_cdf[REF_CONTEXTS][COMP_REFS - 1][CDF_SIZE(2)]");
#endif // CONFIG_EXT_REFS
/* Compound single ref inter mode */
#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
cts_each_dim[0] = COMP_INTER_MODE_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(&fc.comp_inter_mode[0][0], probsfile, 2, cts_each_dim,
NULL, 1,
"static const aom_prob "
"default_comp_inter_mode_p[COMP_INTER_MODE_CONTEXTS]");
optimize_cdf_table(&fc.comp_inter_mode[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_comp_inter_mode_cdf[COMP_INTER_MODE_CONTEXTS]["
"CDF_SIZE(2)]");
#endif
/* Transform size */
// TODO(yuec): av1_tx_size_tree has variable sizes, so needs special handling
#if CONFIG_RECT_TX_EXT && (CONFIG_EXT_TX || CONFIG_VAR_TX)
cts_each_dim[0] = 2;
optimize_entropy_table(&fc.quarter_tx_size[0], probsfile, 1, cts_each_dim,
NULL, 1,
"static const aom_prob default_quarter_tx_size_prob");
optimize_cdf_table(
&fc.quarter_tx_size[0], probsfile, 1, cts_each_dim,
"static const aom_cdf_prob default_quarter_tx_size_cdf[CDF_SIZE(2)]");
#endif
#if CONFIG_VAR_TX
cts_each_dim[0] = TXFM_PARTITION_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.txfm_partition[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob "
"default_txfm_partition_probs[TXFM_PARTITION_CONTEXTS]");
optimize_cdf_table(
&fc.txfm_partition[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob\n"
"default_txfm_partition_cdf[TXFM_PARTITION_CONTEXTS][CDF_SIZE(2)]");
#endif
/* Skip flag */
cts_each_dim[0] = SKIP_CONTEXTS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.skip[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_skip_probs[SKIP_CONTEXTS]");
optimize_cdf_table(&fc.skip[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_skip_cdfs[SKIP_CONTEXTS][CDF_SIZE(2)]");
/* intrabc experiment */
#if CONFIG_INTRABC
cts_each_dim[0] = 2;
optimize_entropy_table(&fc.intrabc[0], probsfile, 1, cts_each_dim, NULL, 1,
"INTRABC_PROB_DEFAULT");
optimize_cdf_table(
&fc.intrabc[0], probsfile, 1, cts_each_dim,
"static const aom_cdf_prob default_intrabc_cdf[CDF_SIZE(2)]");
#endif
/* delta_q experiment */
#if CONFIG_DELTA_Q
cts_each_dim[0] = DELTA_Q_PROBS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.delta_q[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_delta_q_probs[DELTA_Q_PROBS]");
#if CONFIG_EXT_DELTA_Q
cts_each_dim[0] = DELTA_LF_PROBS;
cts_each_dim[1] = 2;
optimize_entropy_table(
&fc.delta_lf[0][0], probsfile, 2, cts_each_dim, NULL, 1,
"static const aom_prob default_delta_lf_probs[DELTA_LF_PROBS]");
#endif
#endif
/* Transform type */
#if CONFIG_EXT_TX
// TODO(yuec): different trees are used depending on selected ext tx set
#else
// TODO(yuec): intra_ext_tx use different trees depending on the context
cts_each_dim[0] = EXT_TX_SIZES;
cts_each_dim[1] = TX_TYPES;
optimize_entropy_table(&fc.inter_ext_tx[0][0], probsfile, 2, cts_each_dim,
av1_ext_tx_tree, 0,
"static const aom_prob default_inter_ext_tx_prob"
"[EXT_TX_SIZES][TX_TYPES - 1]");
optimize_cdf_table(&fc.inter_ext_tx[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_inter_ext_tx_prob[EXT_TX_SIZES][CDF_SIZE(TX_"
"TYPES)]");
#endif
/* supertx experiment */
#if CONFIG_SUPERTX
cts_each_dim[0] = PARTITION_SUPERTX_CONTEXTS;
cts_each_dim[1] = TX_SIZES;
cts_each_dim[2] = 2;
optimize_entropy_table(
&fc.supertx[0][0][0], probsfile, 3, cts_each_dim, NULL, 1,
"static const aom_prob\n"
"default_supertx_prob[PARTITION_SUPERTX_CONTEXTS][TX_SIZES]");
optimize_cdf_table(&fc.supertx[0][0][0], probsfile, 3, cts_each_dim,
"static const aom_cdf_prob "
"default_supertx_cdf[PARTITION_SUPERTX_CONTEXTS][TX_SIZES]"
"[CDF_SIZE(2)]");
#endif
/* ext_intra experiment */
#if CONFIG_EXT_INTRA
#if CONFIG_INTRA_INTERP
cts_each_dim[0] = INTRA_FILTERS + 1;
cts_each_dim[1] = INTRA_FILTERS;
optimize_entropy_table(
&fc.intra_filter[0][0], probsfile, 2, cts_each_dim, av1_intra_filter_tree,
0,
"static const aom_prob\n"
"default_intra_filter_probs[INTRA_FILTERS + 1][INTRA_FILTERS - 1]");
optimize_cdf_table(&fc.intra_filter[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob "
"default_intra_filter_cdf[INTRA_FILTERS + "
"1][CDF_SIZE(INTRA_FILTERS)]");
#endif
#endif
/* filter_intra experiment */
#if CONFIG_FILTER_INTRA
cts_each_dim[0] = PLANE_TYPES;
cts_each_dim[1] = 2;
optimize_entropy_table(&fc.filter_intra[0][0], probsfile, 2, cts_each_dim,
NULL, 1,
"static const aom_prob default_filter_intra_probs[2]");
optimize_cdf_table(
&fc.filter_intra[0][0], probsfile, 2, cts_each_dim,
"static const aom_cdf_prob default_filter_intra_cdf[2][CDF_SIZE(2)]");
#endif
fclose(statsfile);
fclose(logfile);
fclose(probsfile);
return 0;
}