зеркало из https://github.com/mozilla/gecko-dev.git
640 строки
22 KiB
C++
640 строки
22 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "TiledContentHost.h"
|
|
#include "gfxPrefs.h" // for gfxPrefs
|
|
#include "PaintedLayerComposite.h" // for PaintedLayerComposite
|
|
#include "mozilla/gfx/BaseSize.h" // for BaseSize
|
|
#include "mozilla/gfx/Matrix.h" // for Matrix4x4
|
|
#include "mozilla/gfx/Point.h" // for IntSize
|
|
#include "mozilla/layers/Compositor.h" // for Compositor
|
|
#include "mozilla/layers/Effects.h" // for TexturedEffect, Effect, etc
|
|
#include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper
|
|
#include "mozilla/layers/TextureHostOGL.h" // for TextureHostOGL
|
|
#include "nsAString.h"
|
|
#include "nsDebug.h" // for NS_WARNING
|
|
#include "nsPoint.h" // for IntPoint
|
|
#include "nsPrintfCString.h" // for nsPrintfCString
|
|
#include "nsRect.h" // for IntRect
|
|
#include "mozilla/layers/TiledContentClient.h"
|
|
|
|
class gfxReusableSurfaceWrapper;
|
|
|
|
namespace mozilla {
|
|
using namespace gfx;
|
|
namespace layers {
|
|
|
|
class Layer;
|
|
|
|
TiledLayerBufferComposite::TiledLayerBufferComposite()
|
|
: mFrameResolution()
|
|
{}
|
|
|
|
TiledLayerBufferComposite::~TiledLayerBufferComposite()
|
|
{
|
|
Clear();
|
|
}
|
|
|
|
/* static */ void
|
|
TiledLayerBufferComposite::RecycleCallback(TextureHost* textureHost, void* aClosure)
|
|
{
|
|
textureHost->CompositorRecycle();
|
|
}
|
|
|
|
void
|
|
TiledLayerBufferComposite::SetCompositor(Compositor* aCompositor)
|
|
{
|
|
MOZ_ASSERT(aCompositor);
|
|
for (TileHost& tile : mRetainedTiles) {
|
|
if (tile.IsPlaceholderTile()) continue;
|
|
tile.mTextureHost->SetCompositor(aCompositor);
|
|
if (tile.mTextureHostOnWhite) {
|
|
tile.mTextureHostOnWhite->SetCompositor(aCompositor);
|
|
}
|
|
}
|
|
}
|
|
|
|
TiledContentHost::TiledContentHost(const TextureInfo& aTextureInfo)
|
|
: ContentHost(aTextureInfo)
|
|
, mTiledBuffer(TiledLayerBufferComposite())
|
|
, mLowPrecisionTiledBuffer(TiledLayerBufferComposite())
|
|
{
|
|
MOZ_COUNT_CTOR(TiledContentHost);
|
|
}
|
|
|
|
TiledContentHost::~TiledContentHost()
|
|
{
|
|
MOZ_COUNT_DTOR(TiledContentHost);
|
|
}
|
|
|
|
void
|
|
TiledContentHost::Attach(Layer* aLayer,
|
|
Compositor* aCompositor,
|
|
AttachFlags aFlags /* = NO_FLAGS */)
|
|
{
|
|
CompositableHost::Attach(aLayer, aCompositor, aFlags);
|
|
}
|
|
|
|
void
|
|
TiledContentHost::Detach(Layer* aLayer,
|
|
AttachFlags aFlags /* = NO_FLAGS */)
|
|
{
|
|
if (!mKeepAttached || aLayer == mLayer || aFlags & FORCE_DETACH) {
|
|
// Clear the TiledLayerBuffers, which will take care of releasing the
|
|
// copy-on-write locks.
|
|
mTiledBuffer.Clear();
|
|
mLowPrecisionTiledBuffer.Clear();
|
|
}
|
|
CompositableHost::Detach(aLayer,aFlags);
|
|
}
|
|
|
|
bool
|
|
TiledContentHost::UseTiledLayerBuffer(ISurfaceAllocator* aAllocator,
|
|
const SurfaceDescriptorTiles& aTiledDescriptor)
|
|
{
|
|
if (aTiledDescriptor.resolution() < 1) {
|
|
if (!mLowPrecisionTiledBuffer.UseTiles(aTiledDescriptor, mCompositor, aAllocator)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!mTiledBuffer.UseTiles(aTiledDescriptor, mCompositor, aAllocator)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void
|
|
UseTileTexture(CompositableTextureHostRef& aTexture,
|
|
CompositableTextureSourceRef& aTextureSource,
|
|
const IntRect& aUpdateRect,
|
|
Compositor* aCompositor)
|
|
{
|
|
MOZ_ASSERT(aTexture);
|
|
if (!aTexture) {
|
|
return;
|
|
}
|
|
|
|
if (aCompositor) {
|
|
aTexture->SetCompositor(aCompositor);
|
|
}
|
|
|
|
if (!aUpdateRect.IsEmpty()) {
|
|
#ifdef MOZ_GFX_OPTIMIZE_MOBILE
|
|
aTexture->Updated(nullptr);
|
|
#else
|
|
// We possibly upload the entire texture contents here. This is a purposeful
|
|
// decision, as sub-image upload can often be slow and/or unreliable, but
|
|
// we may want to reevaluate this in the future.
|
|
// For !HasInternalBuffer() textures, this is likely a no-op.
|
|
nsIntRegion region = aUpdateRect;
|
|
aTexture->Updated(®ion);
|
|
#endif
|
|
}
|
|
|
|
aTexture->PrepareTextureSource(aTextureSource);
|
|
}
|
|
|
|
bool
|
|
GetCopyOnWriteLock(const TileLock& ipcLock, TileHost& aTile, ISurfaceAllocator* aAllocator) {
|
|
MOZ_ASSERT(aAllocator);
|
|
|
|
nsRefPtr<gfxSharedReadLock> sharedLock;
|
|
if (ipcLock.type() == TileLock::TShmemSection) {
|
|
sharedLock = gfxShmSharedReadLock::Open(aAllocator, ipcLock.get_ShmemSection());
|
|
} else {
|
|
if (!aAllocator->IsSameProcess()) {
|
|
// Trying to use a memory based lock instead of a shmem based one in
|
|
// the cross-process case is a bad security violation.
|
|
NS_ERROR("A client process may be trying to peek at the host's address space!");
|
|
return false;
|
|
}
|
|
sharedLock = reinterpret_cast<gfxMemorySharedReadLock*>(ipcLock.get_uintptr_t());
|
|
if (sharedLock) {
|
|
// The corresponding AddRef is in TiledClient::GetTileDescriptor
|
|
sharedLock.get()->Release();
|
|
}
|
|
}
|
|
aTile.mSharedLock = sharedLock;
|
|
return true;
|
|
}
|
|
|
|
void
|
|
TiledLayerBufferComposite::MarkTilesForUnlock()
|
|
{
|
|
// Tiles without an internal buffer will have internal locks
|
|
// held by the gpu driver until the previous draw operation has finished.
|
|
// We don't know when that will be exactly, so wait until we start the
|
|
// next composite before unlocking.
|
|
for (TileHost& tile : mRetainedTiles) {
|
|
// Tile with an internal buffer get unlocked as soon as we've uploaded,
|
|
// so won't have a lock at this point.
|
|
if (tile.mTextureHost && tile.mSharedLock) {
|
|
mDelayedUnlocks.AppendElement(tile.mSharedLock);
|
|
tile.mSharedLock = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
class TextureSourceRecycler
|
|
{
|
|
public:
|
|
explicit TextureSourceRecycler(nsTArray<TileHost>&& aTileSet)
|
|
: mTiles(Move(aTileSet))
|
|
, mFirstPossibility(0)
|
|
{}
|
|
|
|
// Attempts to recycle a texture source that is already bound to the
|
|
// texture host for aTile.
|
|
void RecycleTextureSourceForTile(TileHost& aTile) {
|
|
for (size_t i = mFirstPossibility; i < mTiles.Length(); i++) {
|
|
// Skip over existing tiles without a retained texture source
|
|
// and make sure we don't iterate them in the future.
|
|
if (!mTiles[i].mTextureSource) {
|
|
if (i == mFirstPossibility) {
|
|
mFirstPossibility++;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If this tile matches, then copy across the retained texture source (if
|
|
// any).
|
|
if (aTile.mTextureHost == mTiles[i].mTextureHost) {
|
|
aTile.mTextureSource = Move(mTiles[i].mTextureSource);
|
|
if (aTile.mTextureHostOnWhite) {
|
|
aTile.mTextureSourceOnWhite = Move(mTiles[i].mTextureSourceOnWhite);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Attempts to recycle any texture source to avoid needing to allocate
|
|
// a new one.
|
|
void RecycleTextureSource(TileHost& aTile) {
|
|
for (size_t i = mFirstPossibility; i < mTiles.Length(); i++) {
|
|
if (!mTiles[i].mTextureSource) {
|
|
if (i == mFirstPossibility) {
|
|
mFirstPossibility++;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (mTiles[i].mTextureSource &&
|
|
mTiles[i].mTextureHost->GetFormat() == aTile.mTextureHost->GetFormat()) {
|
|
aTile.mTextureSource = Move(mTiles[i].mTextureSource);
|
|
if (aTile.mTextureHostOnWhite) {
|
|
aTile.mTextureSourceOnWhite = Move(mTiles[i].mTextureSourceOnWhite);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
protected:
|
|
nsTArray<TileHost> mTiles;
|
|
size_t mFirstPossibility;
|
|
};
|
|
|
|
bool
|
|
TiledLayerBufferComposite::UseTiles(const SurfaceDescriptorTiles& aTiles,
|
|
Compositor* aCompositor,
|
|
ISurfaceAllocator* aAllocator)
|
|
{
|
|
if (mResolution != aTiles.resolution() ||
|
|
aTiles.tileSize() != mTileSize) {
|
|
Clear();
|
|
}
|
|
MOZ_ASSERT(aAllocator);
|
|
MOZ_ASSERT(aCompositor);
|
|
if (!aAllocator || !aCompositor) {
|
|
return false;
|
|
}
|
|
|
|
if (aTiles.resolution() == 0 || IsNaN(aTiles.resolution())) {
|
|
// There are divisions by mResolution so this protects the compositor process
|
|
// against malicious content processes and fuzzing.
|
|
return false;
|
|
}
|
|
|
|
TilesPlacement newTiles(aTiles.firstTileX(), aTiles.firstTileY(),
|
|
aTiles.retainedWidth(), aTiles.retainedHeight());
|
|
|
|
const InfallibleTArray<TileDescriptor>& tileDescriptors = aTiles.tiles();
|
|
|
|
// Step 1, unlock all the old tiles that haven't been unlocked yet. Any tiles that
|
|
// exist in both the old and new sets will have been locked again by content, so this
|
|
// doesn't result in the surface being writeable again.
|
|
MarkTilesForUnlock();
|
|
|
|
TextureSourceRecycler oldRetainedTiles(Move(mRetainedTiles));
|
|
mRetainedTiles.SetLength(tileDescriptors.Length());
|
|
|
|
// Step 2, deserialize the incoming set of tiles into mRetainedTiles, and attempt
|
|
// to recycle the TextureSource for any repeated tiles.
|
|
//
|
|
// Since we don't have any retained 'tile' object, we have to search for instances
|
|
// of the same TextureHost in the old tile set. The cost of binding a TextureHost
|
|
// to a TextureSource for gralloc (binding EGLImage to GL texture) can be really
|
|
// high, so we avoid this whenever possible.
|
|
for (size_t i = 0; i < tileDescriptors.Length(); i++) {
|
|
const TileDescriptor& tileDesc = tileDescriptors[i];
|
|
|
|
TileHost& tile = mRetainedTiles[i];
|
|
|
|
if (tileDesc.type() != TileDescriptor::TTexturedTileDescriptor) {
|
|
NS_WARN_IF_FALSE(tileDesc.type() == TileDescriptor::TPlaceholderTileDescriptor,
|
|
"Unrecognised tile descriptor type");
|
|
continue;
|
|
}
|
|
|
|
const TexturedTileDescriptor& texturedDesc = tileDesc.get_TexturedTileDescriptor();
|
|
|
|
const TileLock& ipcLock = texturedDesc.sharedLock();
|
|
if (!GetCopyOnWriteLock(ipcLock, tile, aAllocator)) {
|
|
return false;
|
|
}
|
|
|
|
tile.mTextureHost = TextureHost::AsTextureHost(texturedDesc.textureParent());
|
|
tile.mTextureHost->SetCompositor(aCompositor);
|
|
|
|
if (texturedDesc.textureOnWhite().type() == MaybeTexture::TPTextureParent) {
|
|
tile.mTextureHostOnWhite =
|
|
TextureHost::AsTextureHost(texturedDesc.textureOnWhite().get_PTextureParent());
|
|
}
|
|
|
|
tile.mTilePosition = newTiles.TilePosition(i);
|
|
|
|
// If this same tile texture existed in the old tile set then this will move the texture
|
|
// source into our new tile.
|
|
oldRetainedTiles.RecycleTextureSourceForTile(tile);
|
|
}
|
|
|
|
// Step 3, attempt to recycle unused texture sources from the old tile set into new tiles.
|
|
//
|
|
// For gralloc, binding a new TextureHost to the existing TextureSource is the fastest way
|
|
// to ensure that any implicit locking on the old gralloc image is released.
|
|
for (TileHost& tile : mRetainedTiles) {
|
|
if (!tile.mTextureHost || tile.mTextureSource) {
|
|
continue;
|
|
}
|
|
oldRetainedTiles.RecycleTextureSource(tile);
|
|
}
|
|
|
|
// Step 4, handle the texture uploads, texture source binding and release the
|
|
// copy-on-write locks for textures with an internal buffer.
|
|
for (size_t i = 0; i < mRetainedTiles.Length(); i++) {
|
|
TileHost& tile = mRetainedTiles[i];
|
|
if (!tile.mTextureHost) {
|
|
continue;
|
|
}
|
|
|
|
const TileDescriptor& tileDesc = tileDescriptors[i];
|
|
const TexturedTileDescriptor& texturedDesc = tileDesc.get_TexturedTileDescriptor();
|
|
|
|
UseTileTexture(tile.mTextureHost,
|
|
tile.mTextureSource,
|
|
texturedDesc.updateRect(),
|
|
aCompositor);
|
|
|
|
if (tile.mTextureHostOnWhite) {
|
|
UseTileTexture(tile.mTextureHostOnWhite,
|
|
tile.mTextureSourceOnWhite,
|
|
texturedDesc.updateRect(),
|
|
aCompositor);
|
|
}
|
|
|
|
if (tile.mTextureHost->HasInternalBuffer()) {
|
|
// Now that we did the texture upload (in UseTileTexture), we can release
|
|
// the lock.
|
|
tile.ReadUnlock();
|
|
}
|
|
}
|
|
|
|
mTiles = newTiles;
|
|
mTileSize = aTiles.tileSize();
|
|
mTileOrigin = aTiles.tileOrigin();
|
|
mValidRegion = aTiles.validRegion();
|
|
mResolution = aTiles.resolution();
|
|
mFrameResolution = CSSToParentLayerScale2D(aTiles.frameXResolution(),
|
|
aTiles.frameYResolution());
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
TiledLayerBufferComposite::ProcessDelayedUnlocks()
|
|
{
|
|
for (gfxSharedReadLock* lock : mDelayedUnlocks) {
|
|
lock->ReadUnlock();
|
|
}
|
|
mDelayedUnlocks.Clear();
|
|
}
|
|
|
|
void
|
|
TiledLayerBufferComposite::Clear()
|
|
{
|
|
for (TileHost& tile : mRetainedTiles) {
|
|
tile.ReadUnlock();
|
|
}
|
|
mRetainedTiles.Clear();
|
|
ProcessDelayedUnlocks();
|
|
mTiles.mFirst = TileIntPoint();
|
|
mTiles.mSize = TileIntSize();
|
|
mValidRegion = nsIntRegion();
|
|
mResolution = 1.0;
|
|
}
|
|
|
|
void
|
|
TiledContentHost::Composite(LayerComposite* aLayer,
|
|
EffectChain& aEffectChain,
|
|
float aOpacity,
|
|
const gfx::Matrix4x4& aTransform,
|
|
const gfx::Filter& aFilter,
|
|
const gfx::Rect& aClipRect,
|
|
const nsIntRegion* aVisibleRegion /* = nullptr */)
|
|
{
|
|
MOZ_ASSERT(mCompositor);
|
|
// Reduce the opacity of the low-precision buffer to make it a
|
|
// little more subtle and less jarring. In particular, text
|
|
// rendered at low-resolution and scaled tends to look pretty
|
|
// heavy and this helps mitigate that. When we reduce the opacity
|
|
// we also make sure to draw the background color behind the
|
|
// reduced-opacity tile so that content underneath doesn't show
|
|
// through.
|
|
// However, in cases where the background is transparent, or the layer
|
|
// already has some opacity, we want to skip this behaviour. Otherwise
|
|
// we end up changing the expected overall transparency of the content,
|
|
// and it just looks wrong.
|
|
Color backgroundColor;
|
|
if (aOpacity == 1.0f && gfxPrefs::LowPrecisionOpacity() < 1.0f) {
|
|
// Background colors are only stored on scrollable layers. Grab
|
|
// the one from the nearest scrollable ancestor layer.
|
|
for (LayerMetricsWrapper ancestor(GetLayer(), LayerMetricsWrapper::StartAt::BOTTOM); ancestor; ancestor = ancestor.GetParent()) {
|
|
if (ancestor.Metrics().IsScrollable()) {
|
|
backgroundColor = ancestor.Metrics().GetBackgroundColor();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
float lowPrecisionOpacityReduction =
|
|
(aOpacity == 1.0f && backgroundColor.a == 1.0f)
|
|
? gfxPrefs::LowPrecisionOpacity() : 1.0f;
|
|
|
|
nsIntRegion tmpRegion;
|
|
const nsIntRegion* renderRegion = aVisibleRegion;
|
|
#ifndef MOZ_IGNORE_PAINT_WILL_RESAMPLE
|
|
if (PaintWillResample()) {
|
|
// If we're resampling, then the texture image will contain exactly the
|
|
// entire visible region's bounds, and we should draw it all in one quad
|
|
// to avoid unexpected aliasing.
|
|
tmpRegion = aVisibleRegion->GetBounds();
|
|
renderRegion = &tmpRegion;
|
|
}
|
|
#endif
|
|
|
|
// Render the low and high precision buffers.
|
|
RenderLayerBuffer(mLowPrecisionTiledBuffer,
|
|
lowPrecisionOpacityReduction < 1.0f ? &backgroundColor : nullptr,
|
|
aEffectChain, lowPrecisionOpacityReduction * aOpacity,
|
|
aFilter, aClipRect, *renderRegion, aTransform);
|
|
RenderLayerBuffer(mTiledBuffer, nullptr, aEffectChain, aOpacity, aFilter,
|
|
aClipRect, *renderRegion, aTransform);
|
|
mLowPrecisionTiledBuffer.ProcessDelayedUnlocks();
|
|
mTiledBuffer.ProcessDelayedUnlocks();
|
|
}
|
|
|
|
|
|
void
|
|
TiledContentHost::RenderTile(TileHost& aTile,
|
|
EffectChain& aEffectChain,
|
|
float aOpacity,
|
|
const gfx::Matrix4x4& aTransform,
|
|
const gfx::Filter& aFilter,
|
|
const gfx::Rect& aClipRect,
|
|
const nsIntRegion& aScreenRegion,
|
|
const IntPoint& aTextureOffset,
|
|
const IntSize& aTextureBounds,
|
|
const gfx::Rect& aVisibleRect)
|
|
{
|
|
MOZ_ASSERT(!aTile.IsPlaceholderTile());
|
|
|
|
AutoLockTextureHost autoLock(aTile.mTextureHost);
|
|
AutoLockTextureHost autoLockOnWhite(aTile.mTextureHostOnWhite);
|
|
if (autoLock.Failed() ||
|
|
autoLockOnWhite.Failed()) {
|
|
NS_WARNING("Failed to lock tile");
|
|
return;
|
|
}
|
|
|
|
if (!aTile.mTextureHost->BindTextureSource(aTile.mTextureSource)) {
|
|
return;
|
|
}
|
|
|
|
if (aTile.mTextureHostOnWhite && !aTile.mTextureHostOnWhite->BindTextureSource(aTile.mTextureSourceOnWhite)) {
|
|
return;
|
|
}
|
|
|
|
nsRefPtr<TexturedEffect> effect =
|
|
CreateTexturedEffect(aTile.mTextureSource,
|
|
aTile.mTextureSourceOnWhite,
|
|
aFilter,
|
|
true,
|
|
aTile.mTextureHost->GetRenderState());
|
|
if (!effect) {
|
|
return;
|
|
}
|
|
|
|
aEffectChain.mPrimaryEffect = effect;
|
|
|
|
nsIntRegionRectIterator it(aScreenRegion);
|
|
for (const IntRect* rect = it.Next(); rect != nullptr; rect = it.Next()) {
|
|
Rect graphicsRect(rect->x, rect->y, rect->width, rect->height);
|
|
Rect textureRect(rect->x - aTextureOffset.x, rect->y - aTextureOffset.y,
|
|
rect->width, rect->height);
|
|
|
|
effect->mTextureCoords = Rect(textureRect.x / aTextureBounds.width,
|
|
textureRect.y / aTextureBounds.height,
|
|
textureRect.width / aTextureBounds.width,
|
|
textureRect.height / aTextureBounds.height);
|
|
mCompositor->DrawQuad(graphicsRect, aClipRect, aEffectChain, aOpacity, aTransform, aVisibleRect);
|
|
}
|
|
DiagnosticFlags flags = DiagnosticFlags::CONTENT | DiagnosticFlags::TILE;
|
|
if (aTile.mTextureHostOnWhite) {
|
|
flags |= DiagnosticFlags::COMPONENT_ALPHA;
|
|
}
|
|
mCompositor->DrawDiagnostics(flags,
|
|
aScreenRegion, aClipRect, aTransform, mFlashCounter);
|
|
}
|
|
|
|
void
|
|
TiledContentHost::RenderLayerBuffer(TiledLayerBufferComposite& aLayerBuffer,
|
|
const Color* aBackgroundColor,
|
|
EffectChain& aEffectChain,
|
|
float aOpacity,
|
|
const gfx::Filter& aFilter,
|
|
const gfx::Rect& aClipRect,
|
|
nsIntRegion aVisibleRegion,
|
|
gfx::Matrix4x4 aTransform)
|
|
{
|
|
if (!mCompositor) {
|
|
NS_WARNING("Can't render tiled content host - no compositor");
|
|
return;
|
|
}
|
|
float resolution = aLayerBuffer.GetResolution();
|
|
gfx::Size layerScale(1, 1);
|
|
|
|
// We assume that the current frame resolution is the one used in our high
|
|
// precision layer buffer. Compensate for a changing frame resolution when
|
|
// rendering the low precision buffer.
|
|
if (aLayerBuffer.GetFrameResolution() != mTiledBuffer.GetFrameResolution()) {
|
|
const CSSToParentLayerScale2D& layerResolution = aLayerBuffer.GetFrameResolution();
|
|
const CSSToParentLayerScale2D& localResolution = mTiledBuffer.GetFrameResolution();
|
|
layerScale.width = layerResolution.xScale / localResolution.xScale;
|
|
layerScale.height = layerResolution.yScale / localResolution.yScale;
|
|
aVisibleRegion.ScaleRoundOut(layerScale.width, layerScale.height);
|
|
}
|
|
|
|
// Make sure we don't render at low resolution where we have valid high
|
|
// resolution content, to avoid overdraw and artifacts with semi-transparent
|
|
// layers.
|
|
nsIntRegion maskRegion;
|
|
if (resolution != mTiledBuffer.GetResolution()) {
|
|
maskRegion = mTiledBuffer.GetValidRegion();
|
|
// XXX This should be ScaleRoundIn, but there is no such function on
|
|
// nsIntRegion.
|
|
maskRegion.ScaleRoundOut(layerScale.width, layerScale.height);
|
|
}
|
|
|
|
// Make sure the resolution and difference in frame resolution are accounted
|
|
// for in the layer transform.
|
|
aTransform.PreScale(1/(resolution * layerScale.width),
|
|
1/(resolution * layerScale.height), 1);
|
|
|
|
DiagnosticFlags componentAlphaDiagnostic = DiagnosticFlags::NO_DIAGNOSTIC;
|
|
|
|
nsIntRegion compositeRegion = aLayerBuffer.GetValidRegion();
|
|
compositeRegion.AndWith(aVisibleRegion);
|
|
compositeRegion.SubOut(maskRegion);
|
|
|
|
IntRect visibleRect = aVisibleRegion.GetBounds();
|
|
|
|
if (compositeRegion.IsEmpty()) {
|
|
return;
|
|
}
|
|
|
|
if (aBackgroundColor) {
|
|
nsIntRegion backgroundRegion = compositeRegion;
|
|
backgroundRegion.ScaleRoundOut(resolution, resolution);
|
|
EffectChain effect;
|
|
effect.mPrimaryEffect = new EffectSolidColor(*aBackgroundColor);
|
|
nsIntRegionRectIterator it(backgroundRegion);
|
|
for (const IntRect* rect = it.Next(); rect != nullptr; rect = it.Next()) {
|
|
Rect graphicsRect(rect->x, rect->y, rect->width, rect->height);
|
|
mCompositor->DrawQuad(graphicsRect, aClipRect, effect, 1.0, aTransform);
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < aLayerBuffer.GetTileCount(); ++i) {
|
|
TileHost& tile = aLayerBuffer.GetTile(i);
|
|
if (tile.IsPlaceholderTile()) {
|
|
continue;
|
|
}
|
|
|
|
TileIntPoint tilePosition = aLayerBuffer.GetPlacement().TilePosition(i);
|
|
// A sanity check that catches a lot of mistakes.
|
|
MOZ_ASSERT(tilePosition.x == tile.mTilePosition.x && tilePosition.y == tile.mTilePosition.y);
|
|
|
|
IntPoint tileOffset = aLayerBuffer.GetTileOffset(tilePosition);
|
|
nsIntRegion tileDrawRegion = IntRect(tileOffset, aLayerBuffer.GetScaledTileSize());
|
|
tileDrawRegion.AndWith(compositeRegion);
|
|
|
|
if (tileDrawRegion.IsEmpty()) {
|
|
continue;
|
|
}
|
|
|
|
tileDrawRegion.ScaleRoundOut(resolution, resolution);
|
|
RenderTile(tile, aEffectChain, aOpacity,
|
|
aTransform, aFilter, aClipRect, tileDrawRegion,
|
|
tileOffset * resolution, aLayerBuffer.GetTileSize(),
|
|
gfx::Rect(visibleRect.x, visibleRect.y,
|
|
visibleRect.width, visibleRect.height));
|
|
if (tile.mTextureHostOnWhite) {
|
|
componentAlphaDiagnostic = DiagnosticFlags::COMPONENT_ALPHA;
|
|
}
|
|
}
|
|
|
|
gfx::Rect rect(visibleRect.x, visibleRect.y,
|
|
visibleRect.width, visibleRect.height);
|
|
GetCompositor()->DrawDiagnostics(DiagnosticFlags::CONTENT | componentAlphaDiagnostic,
|
|
rect, aClipRect, aTransform, mFlashCounter);
|
|
}
|
|
|
|
void
|
|
TiledContentHost::PrintInfo(std::stringstream& aStream, const char* aPrefix)
|
|
{
|
|
aStream << aPrefix;
|
|
aStream << nsPrintfCString("TiledContentHost (0x%p)", this).get();
|
|
|
|
if (gfxPrefs::LayersDumpTexture() || profiler_feature_active("layersdump")) {
|
|
nsAutoCString pfx(aPrefix);
|
|
pfx += " ";
|
|
|
|
Dump(aStream, pfx.get(), false);
|
|
}
|
|
}
|
|
|
|
void
|
|
TiledContentHost::Dump(std::stringstream& aStream,
|
|
const char* aPrefix,
|
|
bool aDumpHtml)
|
|
{
|
|
mTiledBuffer.Dump(aStream, aPrefix, aDumpHtml,
|
|
TextureDumpMode::DoNotCompress /* compression not supported on host side */);
|
|
}
|
|
|
|
} // namespace layers
|
|
} // namespace mozilla
|