gecko-dev/layout/generic/nsGridContainerFrame.cpp

9711 строки
401 KiB
C++
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода!

Этот файл содержит неоднозначные символы Юникода, которые могут быть перепутаны с другими в текущей локали. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы подсветить эти символы.

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* rendering object for CSS "display: grid | inline-grid" */
#include "nsGridContainerFrame.h"
#include <functional>
#include <limits>
#include <stdlib.h> // for div()
#include <type_traits>
#include "gfxContext.h"
#include "mozilla/AutoRestore.h"
#include "mozilla/ComputedStyle.h"
#include "mozilla/CSSAlignUtils.h"
#include "mozilla/dom/GridBinding.h"
#include "mozilla/IntegerRange.h"
#include "mozilla/Maybe.h"
#include "mozilla/PodOperations.h" // for PodZero
#include "mozilla/Poison.h"
#include "mozilla/PresShell.h"
#include "nsAbsoluteContainingBlock.h"
#include "nsAlgorithm.h" // for clamped()
#include "nsBoxLayoutState.h"
#include "nsCSSAnonBoxes.h"
#include "nsCSSFrameConstructor.h"
#include "nsDataHashtable.h"
#include "nsDisplayList.h"
#include "nsHashKeys.h"
#include "nsFieldSetFrame.h"
#include "nsIFrameInlines.h"
#include "nsPlaceholderFrame.h"
#include "nsPresContext.h"
#include "nsReadableUtils.h"
#include "nsTableWrapperFrame.h"
using namespace mozilla;
typedef nsAbsoluteContainingBlock::AbsPosReflowFlags AbsPosReflowFlags;
typedef nsGridContainerFrame::TrackSize TrackSize;
typedef mozilla::CSSAlignUtils::AlignJustifyFlags AlignJustifyFlags;
using GridTemplate = StyleGridTemplateComponent;
using TrackListValue =
StyleGenericTrackListValue<LengthPercentage, StyleInteger>;
using TrackRepeat = StyleGenericTrackRepeat<LengthPercentage, StyleInteger>;
using NameList = StyleOwnedSlice<StyleCustomIdent>;
using SizingConstraint = nsGridContainerFrame::SizingConstraint;
static const int32_t kMaxLine = StyleMAX_GRID_LINE;
static const int32_t kMinLine = StyleMIN_GRID_LINE;
// The maximum line number, in the zero-based translated grid.
static const uint32_t kTranslatedMaxLine = uint32_t(kMaxLine - kMinLine);
static const uint32_t kAutoLine = kTranslatedMaxLine + 3457U;
static const nsFrameState kIsSubgridBits =
(NS_STATE_GRID_IS_COL_SUBGRID | NS_STATE_GRID_IS_ROW_SUBGRID);
namespace mozilla {
template <>
inline Span<const StyleOwnedSlice<StyleCustomIdent>>
GridTemplate::LineNameLists(bool aIsSubgrid) const {
if (IsTrackList()) {
return AsTrackList()->line_names.AsSpan();
}
if (IsSubgrid() && aIsSubgrid) {
return AsSubgrid()->names.AsSpan();
}
MOZ_ASSERT(IsNone() || IsMasonry() || (IsSubgrid() && !aIsSubgrid));
return {};
}
template <>
inline const StyleTrackBreadth& StyleTrackSize::GetMax() const {
if (IsBreadth()) {
return AsBreadth();
}
if (IsMinmax()) {
return AsMinmax()._1;
}
MOZ_ASSERT(IsFitContent());
return AsFitContent();
}
template <>
inline const StyleTrackBreadth& StyleTrackSize::GetMin() const {
static const StyleTrackBreadth kAuto = StyleTrackBreadth::Auto();
if (IsBreadth()) {
// <flex> behaves like minmax(auto, <flex>)
return AsBreadth().IsFr() ? kAuto : AsBreadth();
}
if (IsMinmax()) {
return AsMinmax()._0;
}
MOZ_ASSERT(IsFitContent());
return kAuto;
}
} // namespace mozilla
static nscoord ClampToCSSMaxBSize(nscoord aSize,
const ReflowInput* aReflowInput) {
auto maxSize = aReflowInput->ComputedMaxBSize();
if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
aSize = std::min(aSize, maxSize);
}
return aSize;
}
// Same as above and set aStatus INCOMPLETE if aSize wasn't clamped.
// (If we clamp aSize it means our size is less than the break point,
// i.e. we're effectively breaking in our overflow, so we should leave
// aStatus as is (it will likely be set to OVERFLOW_INCOMPLETE later)).
static nscoord ClampToCSSMaxBSize(nscoord aSize,
const ReflowInput* aReflowInput,
nsReflowStatus* aStatus) {
auto maxSize = aReflowInput->ComputedMaxBSize();
if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
if (aSize < maxSize) {
aStatus->SetIncomplete();
} else {
aSize = maxSize;
}
} else {
aStatus->SetIncomplete();
}
return aSize;
}
template <typename Size>
static bool IsPercentOfIndefiniteSize(const Size& aCoord,
nscoord aPercentBasis) {
return aPercentBasis == NS_UNCONSTRAINEDSIZE && aCoord.HasPercent();
}
static nscoord ResolveToDefiniteSize(const StyleTrackBreadth& aBreadth,
nscoord aPercentBasis) {
MOZ_ASSERT(aBreadth.IsBreadth());
if (::IsPercentOfIndefiniteSize(aBreadth.AsBreadth(), aPercentBasis)) {
return nscoord(0);
}
return std::max(nscoord(0), aBreadth.AsBreadth().Resolve(aPercentBasis));
}
// Synthesize a baseline from a border box. For an alphabetical baseline
// this is the end edge of the border box. For a central baseline it's
// the center of the border box.
// https://drafts.csswg.org/css-align-3/#synthesize-baselines
// For a 'first baseline' the measure is from the border-box start edge and
// for a 'last baseline' the measure is from the border-box end edge.
static nscoord SynthesizeBaselineFromBorderBox(BaselineSharingGroup aGroup,
WritingMode aWM,
nscoord aBorderBoxSize) {
if (aGroup == BaselineSharingGroup::First) {
return aWM.IsAlphabeticalBaseline() ? aBorderBoxSize : aBorderBoxSize / 2;
}
MOZ_ASSERT(aGroup == BaselineSharingGroup::Last);
// Round up for central baseline offset, to be consistent with eFirst.
return aWM.IsAlphabeticalBaseline()
? 0
: (aBorderBoxSize / 2) + (aBorderBoxSize % 2);
}
// The input sizes for calculating the number of repeat(auto-fill/fit) tracks.
// https://drafts.csswg.org/css-grid/#auto-repeat
struct RepeatTrackSizingInput {
explicit RepeatTrackSizingInput(WritingMode aWM)
: mMin(aWM, 0, 0),
mSize(aWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE),
mMax(aWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE) {}
RepeatTrackSizingInput(const LogicalSize& aMin, const LogicalSize& aSize,
const LogicalSize& aMax)
: mMin(aMin), mSize(aSize), mMax(aMax) {}
// This should be used in intrinsic sizing (i.e. when we can't initialize
// the sizes directly from ReflowInput values).
void InitFromStyle(LogicalAxis aAxis, WritingMode aWM,
const ComputedStyle* aStyle) {
const auto& pos = aStyle->StylePosition();
const bool borderBoxSizing = pos->mBoxSizing == StyleBoxSizing::Border;
nscoord bp = NS_UNCONSTRAINEDSIZE; // a sentinel to calculate it only once
auto adjustForBoxSizing = [borderBoxSizing, aWM, aAxis, aStyle,
&bp](nscoord aSize) {
if (!borderBoxSizing) {
return aSize;
}
if (bp == NS_UNCONSTRAINEDSIZE) {
const auto& padding = aStyle->StylePadding()->mPadding;
LogicalMargin border(aWM, aStyle->StyleBorder()->GetComputedBorder());
// We can use zero percentage basis since this is only called from
// intrinsic sizing code.
const nscoord percentageBasis = 0;
if (aAxis == eLogicalAxisInline) {
bp = std::max(padding.GetIStart(aWM).Resolve(percentageBasis), 0) +
std::max(padding.GetIEnd(aWM).Resolve(percentageBasis), 0) +
border.IStartEnd(aWM);
} else {
bp = std::max(padding.GetBStart(aWM).Resolve(percentageBasis), 0) +
std::max(padding.GetBEnd(aWM).Resolve(percentageBasis), 0) +
border.BStartEnd(aWM);
}
}
return std::max(aSize - bp, 0);
};
nscoord& min = mMin.Size(aAxis, aWM);
nscoord& size = mSize.Size(aAxis, aWM);
nscoord& max = mMax.Size(aAxis, aWM);
const auto& minCoord =
aAxis == eLogicalAxisInline ? pos->MinISize(aWM) : pos->MinBSize(aWM);
if (minCoord.ConvertsToLength()) {
min = adjustForBoxSizing(minCoord.ToLength());
}
const auto& maxCoord =
aAxis == eLogicalAxisInline ? pos->MaxISize(aWM) : pos->MaxBSize(aWM);
if (maxCoord.ConvertsToLength()) {
max = std::max(min, adjustForBoxSizing(maxCoord.ToLength()));
}
const auto& sizeCoord =
aAxis == eLogicalAxisInline ? pos->ISize(aWM) : pos->BSize(aWM);
if (sizeCoord.ConvertsToLength()) {
size = Clamp(adjustForBoxSizing(sizeCoord.ToLength()), min, max);
}
}
LogicalSize mMin;
LogicalSize mSize;
LogicalSize mMax;
};
enum class GridLineSide {
BeforeGridGap,
AfterGridGap,
};
struct nsGridContainerFrame::TrackSize {
enum StateBits : uint16_t {
// clang-format off
eAutoMinSizing = 0x1,
eMinContentMinSizing = 0x2,
eMaxContentMinSizing = 0x4,
eMinOrMaxContentMinSizing = eMinContentMinSizing | eMaxContentMinSizing,
eIntrinsicMinSizing = eMinOrMaxContentMinSizing | eAutoMinSizing,
eModified = 0x8,
eAutoMaxSizing = 0x10,
eMinContentMaxSizing = 0x20,
eMaxContentMaxSizing = 0x40,
eAutoOrMaxContentMaxSizing = eAutoMaxSizing | eMaxContentMaxSizing,
eIntrinsicMaxSizing = eAutoOrMaxContentMaxSizing | eMinContentMaxSizing,
eFlexMaxSizing = 0x80,
eFrozen = 0x100,
eSkipGrowUnlimited1 = 0x200,
eSkipGrowUnlimited2 = 0x400,
eSkipGrowUnlimited = eSkipGrowUnlimited1 | eSkipGrowUnlimited2,
eBreakBefore = 0x800,
eFitContent = 0x1000,
eInfinitelyGrowable = 0x2000,
// These are only used in the masonry axis. They share the same value
// as *MinSizing above, but that's OK because we don't use those in
// the masonry axis.
//
// This track corresponds to an item margin-box size that is stretching.
eItemStretchSize = 0x1,
// This bit says that we should clamp that size to mLimit.
eClampToLimit = 0x2,
// This bit says that the corresponding item has `auto` margin(s).
eItemHasAutoMargin = 0x4,
// clang-format on
};
StateBits Initialize(nscoord aPercentageBasis, const StyleTrackSize&);
bool IsFrozen() const { return mState & eFrozen; }
#ifdef DEBUG
static void DumpStateBits(StateBits aState);
void Dump() const;
#endif
static bool IsDefiniteMaxSizing(StateBits aStateBits) {
return (aStateBits & (eIntrinsicMaxSizing | eFlexMaxSizing)) == 0;
}
nscoord mBase;
nscoord mLimit;
nscoord mPosition; // zero until we apply 'align/justify-content'
// mBaselineSubtreeSize is the size of a baseline-aligned subtree within
// this track. One subtree per baseline-sharing group (per track).
PerBaseline<nscoord> mBaselineSubtreeSize;
StateBits mState;
};
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(TrackSize::StateBits)
namespace mozilla {
template <>
struct IsPod<nsGridContainerFrame::TrackSize> : std::true_type {};
} // namespace mozilla
TrackSize::StateBits nsGridContainerFrame::TrackSize::Initialize(
nscoord aPercentageBasis, const StyleTrackSize& aSize) {
using Tag = StyleTrackBreadth::Tag;
MOZ_ASSERT(mBase == 0 && mLimit == 0 && mState == 0,
"track size data is expected to be initialized to zero");
mBaselineSubtreeSize[BaselineSharingGroup::First] = nscoord(0);
mBaselineSubtreeSize[BaselineSharingGroup::Last] = nscoord(0);
auto& min = aSize.GetMin();
auto& max = aSize.GetMax();
Tag minSizeTag = min.tag;
Tag maxSizeTag = max.tag;
if (aSize.IsFitContent()) {
// In layout, fit-content(size) behaves as minmax(auto, max-content), with
// 'size' as an additional upper-bound.
mState = eFitContent;
minSizeTag = Tag::Auto;
maxSizeTag = Tag::MaxContent;
}
if (::IsPercentOfIndefiniteSize(min, aPercentageBasis)) {
// https://drafts.csswg.org/css-grid/#valdef-grid-template-columns-percentage
// "If the inline or block size of the grid container is indefinite,
// <percentage> values relative to that size are treated as 'auto'."
minSizeTag = Tag::Auto;
}
if (::IsPercentOfIndefiniteSize(max, aPercentageBasis)) {
maxSizeTag = Tag::Auto;
}
// http://dev.w3.org/csswg/css-grid/#algo-init
switch (minSizeTag) {
case Tag::Auto:
mState |= eAutoMinSizing;
break;
case Tag::MinContent:
mState |= eMinContentMinSizing;
break;
case Tag::MaxContent:
mState |= eMaxContentMinSizing;
break;
default:
MOZ_ASSERT(!min.IsFr(), "<flex> min-sizing is invalid as a track size");
mBase = ::ResolveToDefiniteSize(min, aPercentageBasis);
}
switch (maxSizeTag) {
case Tag::Auto:
mState |= eAutoMaxSizing;
mLimit = NS_UNCONSTRAINEDSIZE;
break;
case Tag::MinContent:
case Tag::MaxContent:
mState |= maxSizeTag == Tag::MinContent ? eMinContentMaxSizing
: eMaxContentMaxSizing;
mLimit = NS_UNCONSTRAINEDSIZE;
break;
case Tag::Fr:
mState |= eFlexMaxSizing;
mLimit = mBase;
break;
default:
mLimit = ::ResolveToDefiniteSize(max, aPercentageBasis);
if (mLimit < mBase) {
mLimit = mBase;
}
}
return mState;
}
/**
* A LineRange can be definite or auto - when it's definite it represents
* a consecutive set of tracks between a starting line and an ending line.
* Before it's definite it can also represent an auto position with a span,
* where mStart == kAutoLine and mEnd is the (non-zero positive) span.
* For normal-flow items, the invariant mStart < mEnd holds when both
* lines are definite.
*
* For abs.pos. grid items, mStart and mEnd may both be kAutoLine, meaning
* "attach this side to the grid container containing block edge".
* Additionally, mStart <= mEnd holds when both are definite (non-kAutoLine),
* i.e. the invariant is slightly relaxed compared to normal flow items.
*/
struct nsGridContainerFrame::LineRange {
LineRange(int32_t aStart, int32_t aEnd)
: mUntranslatedStart(aStart), mUntranslatedEnd(aEnd) {
#ifdef DEBUG
if (!IsAutoAuto()) {
if (IsAuto()) {
MOZ_ASSERT(aEnd >= kMinLine && aEnd <= kMaxLine, "invalid span");
} else {
MOZ_ASSERT(aStart >= kMinLine && aStart <= kMaxLine,
"invalid start line");
MOZ_ASSERT(aEnd == int32_t(kAutoLine) ||
(aEnd >= kMinLine && aEnd <= kMaxLine),
"invalid end line");
}
}
#endif
}
bool IsAutoAuto() const { return mStart == kAutoLine && mEnd == kAutoLine; }
bool IsAuto() const { return mStart == kAutoLine; }
bool IsDefinite() const { return mStart != kAutoLine; }
uint32_t Extent() const {
MOZ_ASSERT(mEnd != kAutoLine, "Extent is undefined for abs.pos. 'auto'");
if (IsAuto()) {
MOZ_ASSERT(mEnd >= 1 && mEnd < uint32_t(kMaxLine), "invalid span");
return mEnd;
}
return mEnd - mStart;
}
/**
* Return an object suitable for iterating this range.
*/
auto Range() const { return IntegerRange<uint32_t>(mStart, mEnd); }
/**
* Resolve this auto range to start at aStart, making it definite.
* @param aClampMaxLine the maximum allowed line number (zero-based)
* Precondition: this range IsAuto()
*/
void ResolveAutoPosition(uint32_t aStart, uint32_t aClampMaxLine) {
MOZ_ASSERT(IsAuto(), "Why call me?");
mStart = aStart;
mEnd += aStart;
// Clamp to aClampMaxLine, which is where kMaxLine is in the explicit
// grid in a non-subgrid axis; this implements clamping per
// http://dev.w3.org/csswg/css-grid/#overlarge-grids
// In a subgrid axis it's the end of the grid in that axis.
if (MOZ_UNLIKELY(mStart >= aClampMaxLine)) {
mEnd = aClampMaxLine;
mStart = mEnd - 1;
} else if (MOZ_UNLIKELY(mEnd > aClampMaxLine)) {
mEnd = aClampMaxLine;
}
}
/**
* Translate the lines to account for (empty) removed tracks. This method
* is only for grid items and should only be called after placement.
* aNumRemovedTracks contains a count for each line in the grid how many
* tracks were removed between the start of the grid and that line.
*/
void AdjustForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks) {
MOZ_ASSERT(mStart != kAutoLine, "invalid resolved line for a grid item");
MOZ_ASSERT(mEnd != kAutoLine, "invalid resolved line for a grid item");
uint32_t numRemovedTracks = aNumRemovedTracks[mStart];
MOZ_ASSERT(numRemovedTracks == aNumRemovedTracks[mEnd],
"tracks that a grid item spans can't be removed");
mStart -= numRemovedTracks;
mEnd -= numRemovedTracks;
}
/**
* Translate the lines to account for (empty) removed tracks. This method
* is only for abs.pos. children and should only be called after placement.
* Same as for in-flow items, but we don't touch 'auto' lines here and we
* also need to adjust areas that span into the removed tracks.
*/
void AdjustAbsPosForRemovedTracks(
const nsTArray<uint32_t>& aNumRemovedTracks) {
if (mStart != kAutoLine) {
mStart -= aNumRemovedTracks[mStart];
}
if (mEnd != kAutoLine) {
MOZ_ASSERT(mStart == kAutoLine || mEnd > mStart, "invalid line range");
mEnd -= aNumRemovedTracks[mEnd];
}
}
/**
* Return the contribution of this line range for step 2 in
* http://dev.w3.org/csswg/css-grid/#auto-placement-algo
*/
uint32_t HypotheticalEnd() const { return mEnd; }
/**
* Given an array of track sizes, return the starting position and length
* of the tracks in this line range.
*/
void ToPositionAndLength(const nsTArray<TrackSize>& aTrackSizes,
nscoord* aPos, nscoord* aLength) const;
/**
* Given an array of track sizes, return the length of the tracks in this
* line range.
*/
nscoord ToLength(const nsTArray<TrackSize>& aTrackSizes) const;
/**
* Given an array of track sizes and a grid origin coordinate, adjust the
* abs.pos. containing block along an axis given by aPos and aLength.
* aPos and aLength should already be initialized to the grid container
* containing block for this axis before calling this method.
*/
void ToPositionAndLengthForAbsPos(const Tracks& aTracks, nscoord aGridOrigin,
nscoord* aPos, nscoord* aLength) const;
void Translate(int32_t aOffset) {
MOZ_ASSERT(IsDefinite());
mStart += aOffset;
mEnd += aOffset;
}
/** Swap the start/end sides of this range. */
void ReverseDirection(uint32_t aGridEnd) {
MOZ_ASSERT(IsDefinite());
MOZ_ASSERT(aGridEnd >= mEnd);
uint32_t newStart = aGridEnd - mEnd;
mEnd = aGridEnd - mStart;
mStart = newStart;
}
/**
* @note We'll use the signed member while resolving definite positions
* to line numbers (1-based), which may become negative for implicit lines
* to the top/left of the explicit grid. PlaceGridItems() then translates
* the whole grid to a 0,0 origin and we'll use the unsigned member from
* there on.
*/
union {
uint32_t mStart;
int32_t mUntranslatedStart;
};
union {
uint32_t mEnd;
int32_t mUntranslatedEnd;
};
protected:
LineRange() : mStart(0), mEnd(0) {}
};
/**
* Helper class to construct a LineRange from translated lines.
* The ctor only accepts translated definite line numbers.
*/
struct nsGridContainerFrame::TranslatedLineRange : public LineRange {
TranslatedLineRange(uint32_t aStart, uint32_t aEnd) {
MOZ_ASSERT(aStart < aEnd && aEnd <= kTranslatedMaxLine);
mStart = aStart;
mEnd = aEnd;
}
};
/**
* A GridArea is the area in the grid for a grid item.
* The area is represented by two LineRanges, both of which can be auto
* (@see LineRange) in intermediate steps while the item is being placed.
* @see PlaceGridItems
*/
struct nsGridContainerFrame::GridArea {
GridArea(const LineRange& aCols, const LineRange& aRows)
: mCols(aCols), mRows(aRows) {}
bool IsDefinite() const { return mCols.IsDefinite() && mRows.IsDefinite(); }
LineRange& LineRangeForAxis(LogicalAxis aAxis) {
return aAxis == eLogicalAxisInline ? mCols : mRows;
}
const LineRange& LineRangeForAxis(LogicalAxis aAxis) const {
return aAxis == eLogicalAxisInline ? mCols : mRows;
}
LineRange mCols;
LineRange mRows;
};
struct nsGridContainerFrame::GridItemInfo {
/**
* Item state per axis.
*/
enum StateBits : uint16_t {
// clang-format off
eIsFlexing = 0x1, // does the item span a flex track?
eFirstBaseline = 0x2, // participate in 'first baseline' alignment?
// ditto 'last baseline', mutually exclusive w. eFirstBaseline
eLastBaseline = 0x4,
eIsBaselineAligned = eFirstBaseline | eLastBaseline,
// One of e[Self|Content]Baseline is set when eIsBaselineAligned is true
eSelfBaseline = 0x8, // is it *-self:[last ]baseline alignment?
// Ditto *-content:[last ]baseline. Mutually exclusive w. eSelfBaseline.
eContentBaseline = 0x10,
// The baseline affects the margin or padding on the item's end side when
// this bit is set. In a grid-axis it's always set for eLastBaseline and
// always unset for eFirstBaseline. In a masonry-axis, it's set for
// baseline groups in the EndStretch set and unset for the StartStretch set.
eEndSideBaseline = 0x20,
eAllBaselineBits = eIsBaselineAligned | eSelfBaseline | eContentBaseline |
eEndSideBaseline,
// Should apply Automatic Minimum Size per:
// https://drafts.csswg.org/css-grid/#min-size-auto
eApplyAutoMinSize = 0x40,
// Clamp per https://drafts.csswg.org/css-grid/#min-size-auto
eClampMarginBoxMinSize = 0x80,
eIsSubgrid = 0x100,
// set on subgrids and items in subgrids if they are adjacent to the grid
// start/end edge (excluding grid-aligned abs.pos. frames)
eStartEdge = 0x200,
eEndEdge = 0x400,
eEdgeBits = eStartEdge | eEndEdge,
// Set if this item was auto-placed in this axis.
eAutoPlacement = 0x800,
// Set if this item is the last item in its track (masonry layout only)
eIsLastItemInMasonryTrack = 0x1000,
// clang-format on
};
GridItemInfo(nsIFrame* aFrame, const GridArea& aArea);
static bool BaselineAlignmentAffectsEndSide(StateBits state) {
return state & StateBits::eEndSideBaseline;
}
/**
* Inhibit subgrid layout unless the item is placed in the first "track" in
* a parent masonry-axis, or has definite placement or spans all tracks in
* the parent grid-axis.
* TODO: this is stricter than what the Masonry proposal currently states
* (bug 1627581)
*/
void MaybeInhibitSubgridInMasonry(nsGridContainerFrame* aParent,
uint32_t aGridAxisTrackCount);
/**
* Inhibit subgridding in aAxis for this item.
*/
void InhibitSubgrid(nsGridContainerFrame* aParent, LogicalAxis aAxis);
/**
* Return a copy of this item with its row/column data swapped.
*/
GridItemInfo Transpose() const {
GridItemInfo info(mFrame, GridArea(mArea.mRows, mArea.mCols));
info.mState[0] = mState[1];
info.mState[1] = mState[0];
info.mBaselineOffset[0] = mBaselineOffset[1];
info.mBaselineOffset[1] = mBaselineOffset[0];
return info;
}
/** Swap the start/end sides in aAxis. */
inline void ReverseDirection(LogicalAxis aAxis, uint32_t aGridEnd);
// Is this item a subgrid in the given container axis?
bool IsSubgrid(LogicalAxis aAxis) const {
return mState[aAxis] & StateBits::eIsSubgrid;
}
// Is this item a subgrid in either axis?
bool IsSubgrid() const {
return IsSubgrid(eLogicalAxisInline) || IsSubgrid(eLogicalAxisBlock);
}
// Return the (inner) grid container frame associated with this subgrid item.
nsGridContainerFrame* SubgridFrame() const {
MOZ_ASSERT(IsSubgrid());
nsGridContainerFrame* gridFrame = GetGridContainerFrame(mFrame);
MOZ_ASSERT(gridFrame && gridFrame->IsSubgrid());
return gridFrame;
}
/**
* Adjust our grid areas to account for removed auto-fit tracks in aAxis.
*/
void AdjustForRemovedTracks(LogicalAxis aAxis,
const nsTArray<uint32_t>& aNumRemovedTracks);
/**
* If the item is [align|justify]-self:[last ]baseline aligned in the given
* axis then set aBaselineOffset to the baseline offset and return aAlign.
* Otherwise, return a fallback alignment.
*/
StyleAlignFlags GetSelfBaseline(StyleAlignFlags aAlign, LogicalAxis aAxis,
nscoord* aBaselineOffset) const {
MOZ_ASSERT(aAlign == StyleAlignFlags::BASELINE ||
aAlign == StyleAlignFlags::LAST_BASELINE);
if (!(mState[aAxis] & eSelfBaseline)) {
return aAlign == StyleAlignFlags::BASELINE ? StyleAlignFlags::SELF_START
: StyleAlignFlags::SELF_END;
}
*aBaselineOffset = mBaselineOffset[aAxis];
return aAlign;
}
// Return true if we should apply Automatic Minimum Size to this item.
// https://drafts.csswg.org/css-grid/#min-size-auto
// @note the caller should also check that the item spans at least one track
// that has a min track sizing function that is 'auto' before applying it.
bool ShouldApplyAutoMinSize(WritingMode aContainerWM,
LogicalAxis aContainerAxis,
nscoord aPercentageBasis) const {
const bool isInlineAxis = aContainerAxis == eLogicalAxisInline;
const auto* pos =
mFrame->IsTableWrapperFrame()
? mFrame->PrincipalChildList().FirstChild()->StylePosition()
: mFrame->StylePosition();
const auto& size =
isInlineAxis ? pos->ISize(aContainerWM) : pos->BSize(aContainerWM);
// max-content and min-content should behave as initial value in block axis.
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
// for block size dimension on sizing properties (e.g. height), so we
// treat it as `auto`.
bool isAuto = size.IsAuto() ||
(isInlineAxis ==
aContainerWM.IsOrthogonalTo(mFrame->GetWritingMode()) &&
size.IsExtremumLength());
// NOTE: if we have a definite size then our automatic minimum size
// can't affect our size. Excluding these simplifies applying
// the clamping in the right cases later.
if (!isAuto && !::IsPercentOfIndefiniteSize(size, aPercentageBasis)) {
return false;
}
const auto& minSize = isInlineAxis ? pos->MinISize(aContainerWM)
: pos->MinBSize(aContainerWM);
// max-content and min-content should behave as initial value in block axis.
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
// for block size dimension on sizing properties (e.g. height), so we
// treat it as `auto`.
isAuto = minSize.IsAuto() ||
(isInlineAxis ==
aContainerWM.IsOrthogonalTo(mFrame->GetWritingMode()) &&
minSize.IsExtremumLength());
return isAuto &&
mFrame->StyleDisplay()->mOverflowX == StyleOverflow::Visible;
}
#ifdef DEBUG
void Dump() const;
#endif
static bool IsStartRowLessThan(const GridItemInfo* a, const GridItemInfo* b) {
return a->mArea.mRows.mStart < b->mArea.mRows.mStart;
}
// Sorting functions for 'masonry-auto-flow:next'. We sort the items that
// were placed into the first track by the Grid placement algorithm first
// (to honor that placement). All other items will be placed by the Masonry
// layout algorithm (their Grid placement in the masonry axis is irrelevant).
static bool RowMasonryOrdered(const GridItemInfo* a, const GridItemInfo* b) {
return a->mArea.mRows.mStart == 0 && b->mArea.mRows.mStart != 0 &&
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
}
static bool ColMasonryOrdered(const GridItemInfo* a, const GridItemInfo* b) {
return a->mArea.mCols.mStart == 0 && b->mArea.mCols.mStart != 0 &&
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
}
// Sorting functions for 'masonry-auto-flow:definite-first'. Similar to
// the above, but here we also sort items with a definite item placement in
// the grid axis in track order before 'auto'-placed items. We also sort all
// continuations first since they use the same placement as their
// first-in-flow (we treat them as "definite" regardless of eAutoPlacement).
static bool RowMasonryDefiniteFirst(const GridItemInfo* a,
const GridItemInfo* b) {
bool isContinuationA = a->mFrame->GetPrevInFlow();
bool isContinuationB = b->mFrame->GetPrevInFlow();
if (isContinuationA != isContinuationB) {
return isContinuationA;
}
auto masonryA = a->mArea.mRows.mStart;
auto gridA = a->mState[eLogicalAxisInline] & StateBits::eAutoPlacement;
auto masonryB = b->mArea.mRows.mStart;
auto gridB = b->mState[eLogicalAxisInline] & StateBits::eAutoPlacement;
return (masonryA == 0 ? masonryB != 0 : (masonryB != 0 && gridA < gridB)) &&
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
}
static bool ColMasonryDefiniteFirst(const GridItemInfo* a,
const GridItemInfo* b) {
MOZ_ASSERT(!a->mFrame->GetPrevInFlow() && !b->mFrame->GetPrevInFlow(),
"fragmentation not supported in inline axis");
auto masonryA = a->mArea.mCols.mStart;
auto gridA = a->mState[eLogicalAxisBlock] & StateBits::eAutoPlacement;
auto masonryB = b->mArea.mCols.mStart;
auto gridB = b->mState[eLogicalAxisBlock] & StateBits::eAutoPlacement;
return (masonryA == 0 ? masonryB != 0 : (masonryB != 0 && gridA < gridB)) &&
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
}
nsIFrame* const mFrame;
GridArea mArea;
// Offset from the margin edge to the baseline (LogicalAxis index). It's from
// the start edge when eFirstBaseline is set, end edge otherwise. It's mutable
// since we update the value fairly late (just before reflowing the item).
mutable nscoord mBaselineOffset[2];
mutable StateBits mState[2]; // state bits per axis (LogicalAxis index)
static_assert(mozilla::eLogicalAxisBlock == 0, "unexpected index value");
static_assert(mozilla::eLogicalAxisInline == 1, "unexpected index value");
};
using GridItemInfo = nsGridContainerFrame::GridItemInfo;
using ItemState = GridItemInfo::StateBits;
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(ItemState)
GridItemInfo::GridItemInfo(nsIFrame* aFrame, const GridArea& aArea)
: mFrame(aFrame), mArea(aArea) {
mState[eLogicalAxisBlock] =
StateBits(mArea.mRows.mStart == kAutoLine ? eAutoPlacement : 0);
mState[eLogicalAxisInline] =
StateBits(mArea.mCols.mStart == kAutoLine ? eAutoPlacement : 0);
if (auto* gridFrame = GetGridContainerFrame(mFrame)) {
auto parentWM = aFrame->GetParent()->GetWritingMode();
bool isOrthogonal = parentWM.IsOrthogonalTo(gridFrame->GetWritingMode());
if (gridFrame->IsColSubgrid()) {
mState[isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline] |=
StateBits::eIsSubgrid;
}
if (gridFrame->IsRowSubgrid()) {
mState[isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock] |=
StateBits::eIsSubgrid;
}
}
mBaselineOffset[eLogicalAxisBlock] = nscoord(0);
mBaselineOffset[eLogicalAxisInline] = nscoord(0);
}
void GridItemInfo::ReverseDirection(LogicalAxis aAxis, uint32_t aGridEnd) {
mArea.LineRangeForAxis(aAxis).ReverseDirection(aGridEnd);
ItemState& state = mState[aAxis];
ItemState newState = state & ~ItemState::eEdgeBits;
if (state & ItemState::eStartEdge) {
newState |= ItemState::eEndEdge;
}
if (state & ItemState::eEndEdge) {
newState |= ItemState::eStartEdge;
}
state = newState;
}
void GridItemInfo::InhibitSubgrid(nsGridContainerFrame* aParent,
LogicalAxis aAxis) {
MOZ_ASSERT(IsSubgrid(aAxis));
auto bit = NS_STATE_GRID_IS_COL_SUBGRID;
if (aParent->GetWritingMode().IsOrthogonalTo(mFrame->GetWritingMode()) !=
(aAxis == eLogicalAxisBlock)) {
bit = NS_STATE_GRID_IS_ROW_SUBGRID;
}
MOZ_ASSERT(SubgridFrame()->HasAnyStateBits(bit));
SubgridFrame()->RemoveStateBits(bit);
mState[aAxis] &= StateBits(~StateBits::eIsSubgrid);
}
void GridItemInfo::MaybeInhibitSubgridInMasonry(nsGridContainerFrame* aParent,
uint32_t aGridAxisTrackCount) {
if (IsSubgrid(eLogicalAxisInline) && aParent->IsMasonry(eLogicalAxisBlock) &&
mArea.mRows.mStart != 0 && mArea.mCols.Extent() != aGridAxisTrackCount &&
(mState[eLogicalAxisInline] & eAutoPlacement)) {
InhibitSubgrid(aParent, eLogicalAxisInline);
return;
}
if (IsSubgrid(eLogicalAxisBlock) && aParent->IsMasonry(eLogicalAxisInline) &&
mArea.mCols.mStart != 0 && mArea.mRows.Extent() != aGridAxisTrackCount &&
(mState[eLogicalAxisBlock] & eAutoPlacement)) {
InhibitSubgrid(aParent, eLogicalAxisBlock);
}
}
// Each subgrid stores this data about its items etc on a frame property.
struct nsGridContainerFrame::Subgrid {
Subgrid(const GridArea& aArea, bool aIsOrthogonal, WritingMode aCBWM)
: mArea(aArea),
mGridColEnd(0),
mGridRowEnd(0),
mMarginBorderPadding(aCBWM),
mIsOrthogonal(aIsOrthogonal) {}
// Return the relevant line range for the subgrid column axis.
const LineRange& SubgridCols() const {
return mIsOrthogonal ? mArea.mRows : mArea.mCols;
}
// Return the relevant line range for the subgrid row axis.
const LineRange& SubgridRows() const {
return mIsOrthogonal ? mArea.mCols : mArea.mRows;
}
// The subgrid's items.
nsTArray<GridItemInfo> mGridItems;
// The subgrid's abs.pos. items.
nsTArray<GridItemInfo> mAbsPosItems;
// The subgrid's area as a grid item, i.e. in its parent's grid space.
GridArea mArea;
// The (inner) grid size for the subgrid, zero-based.
uint32_t mGridColEnd;
uint32_t mGridRowEnd;
// The margin+border+padding for the subgrid box in its parent grid's WM.
// (This also includes the size of any scrollbars.)
LogicalMargin mMarginBorderPadding;
// Does the subgrid frame have orthogonal writing-mode to its parent grid
// container?
bool mIsOrthogonal;
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, Subgrid)
};
using Subgrid = nsGridContainerFrame::Subgrid;
void GridItemInfo::AdjustForRemovedTracks(
LogicalAxis aAxis, const nsTArray<uint32_t>& aNumRemovedTracks) {
const bool abspos = mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
auto& lines = mArea.LineRangeForAxis(aAxis);
if (abspos) {
lines.AdjustAbsPosForRemovedTracks(aNumRemovedTracks);
} else {
lines.AdjustForRemovedTracks(aNumRemovedTracks);
}
if (IsSubgrid()) {
auto* subgrid = SubgridFrame()->GetProperty(Subgrid::Prop());
if (subgrid) {
auto& lines = subgrid->mArea.LineRangeForAxis(aAxis);
if (abspos) {
lines.AdjustAbsPosForRemovedTracks(aNumRemovedTracks);
} else {
lines.AdjustForRemovedTracks(aNumRemovedTracks);
}
}
}
}
/**
* Track size data for use by subgrids (which don't do sizing of their own
* in a subgridded axis). A non-subgrid container stores its resolved sizes,
* but only if it has any subgrid children. A subgrid always stores one.
* In a subgridded axis, we copy the parent's sizes (see CopyUsedTrackSizes).
*
* This struct us stored on a frame property, which may be null before the track
* sizing step for the given container. A null property is semantically
* equivalent to mCanResolveLineRangeSize being false in both axes.
* @note the axis used to access this data is in the grid container's own
* writing-mode, same as in other track-sizing functions.
*/
struct nsGridContainerFrame::UsedTrackSizes {
UsedTrackSizes() : mCanResolveLineRangeSize{false, false} {}
/**
* Setup mSizes by copying track sizes from aFrame's grid container
* parent when aAxis is subgridded (and recurse if the parent is a subgrid
* that doesn't have sizes yet), or by running the Track Sizing Algo when
* the axis is not subgridded (for a subgrid).
* Set mCanResolveLineRangeSize[aAxis] to true once we have obtained
* sizes for an axis (if it's already true then this method is a NOP).
*/
void ResolveTrackSizesForAxis(nsGridContainerFrame* aFrame, LogicalAxis aAxis,
gfxContext& aRC);
/** Helper function for the above method */
void ResolveSubgridTrackSizesForAxis(nsGridContainerFrame* aFrame,
LogicalAxis aAxis, Subgrid* aSubgrid,
gfxContext& aRC,
nscoord aContentBoxSize);
// This only has valid sizes when mCanResolveLineRangeSize is true in
// the same axis. It may have zero tracks (a grid with only abs.pos.
// subgrids/items may have zero tracks).
PerLogicalAxis<nsTArray<TrackSize>> mSizes;
// True if mSizes can be used to resolve line range sizes in an axis.
PerLogicalAxis<bool> mCanResolveLineRangeSize;
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, UsedTrackSizes)
};
using UsedTrackSizes = nsGridContainerFrame::UsedTrackSizes;
#ifdef DEBUG
void nsGridContainerFrame::GridItemInfo::Dump() const {
auto Dump1 = [this](const char* aMsg, LogicalAxis aAxis) {
auto state = mState[aAxis];
if (!state) {
return;
}
printf("%s", aMsg);
if (state & ItemState::eEdgeBits) {
printf("subgrid-adjacent-edges(");
if (state & ItemState::eStartEdge) {
printf("start ");
}
if (state & ItemState::eEndEdge) {
printf("end");
}
printf(") ");
}
if (state & ItemState::eAutoPlacement) {
printf("masonry-auto ");
}
if (state & ItemState::eIsSubgrid) {
printf("subgrid ");
}
if (state & ItemState::eIsFlexing) {
printf("flexing ");
}
if (state & ItemState::eApplyAutoMinSize) {
printf("auto-min-size ");
}
if (state & ItemState::eClampMarginBoxMinSize) {
printf("clamp ");
}
if (state & ItemState::eIsLastItemInMasonryTrack) {
printf("last-in-track ");
}
if (state & ItemState::eFirstBaseline) {
printf("first baseline %s-alignment ",
(state & ItemState::eSelfBaseline) ? "self" : "content");
}
if (state & ItemState::eLastBaseline) {
printf("last baseline %s-alignment ",
(state & ItemState::eSelfBaseline) ? "self" : "content");
}
if (state & ItemState::eIsBaselineAligned) {
printf("%.2fpx", NSAppUnitsToFloatPixels(mBaselineOffset[aAxis],
AppUnitsPerCSSPixel()));
}
printf("\n");
};
printf("grid-row: %d %d\n", mArea.mRows.mStart, mArea.mRows.mEnd);
Dump1(" grid block-axis: ", eLogicalAxisBlock);
printf("grid-column: %d %d\n", mArea.mCols.mStart, mArea.mCols.mEnd);
Dump1(" grid inline-axis: ", eLogicalAxisInline);
}
#endif
/**
* Encapsulates CSS track-sizing functions.
*/
struct nsGridContainerFrame::TrackSizingFunctions {
private:
TrackSizingFunctions(const GridTemplate& aTemplate,
const StyleImplicitGridTracks& aAutoSizing,
const Maybe<size_t>& aRepeatAutoIndex, bool aIsSubgrid)
: mTemplate(aTemplate),
mTrackListValues(aTemplate.TrackListValues()),
mAutoSizing(aAutoSizing),
mExplicitGridOffset(0),
mRepeatAutoStart(aRepeatAutoIndex.valueOr(0)),
mRepeatAutoEnd(mRepeatAutoStart),
mHasRepeatAuto(aRepeatAutoIndex.isSome()) {
MOZ_ASSERT(!mHasRepeatAuto || !aIsSubgrid,
"a track-list for a subgrid can't have an <auto-repeat> track");
if (!aIsSubgrid) {
ExpandNonRepeatAutoTracks();
}
#ifdef DEBUG
if (mHasRepeatAuto) {
MOZ_ASSERT(mExpandedTracks.Length() >= 1);
const unsigned maxTrack = kMaxLine - 1;
// If the exanded tracks are out of range of the maximum track, we
// can't compare the repeat-auto start. It will be removed later during
// grid item placement in that situation.
if (mExpandedTracks.Length() < maxTrack) {
MOZ_ASSERT(mRepeatAutoStart < mExpandedTracks.Length());
}
}
#endif
}
public:
TrackSizingFunctions(const GridTemplate& aGridTemplate,
const StyleImplicitGridTracks& aAutoSizing,
bool aIsSubgrid)
: TrackSizingFunctions(aGridTemplate, aAutoSizing,
aGridTemplate.RepeatAutoIndex(), aIsSubgrid) {}
private:
enum { ForSubgridFallbackTag };
TrackSizingFunctions(const GridTemplate& aGridTemplate,
const StyleImplicitGridTracks& aAutoSizing,
decltype(ForSubgridFallbackTag))
: TrackSizingFunctions(aGridTemplate, aAutoSizing, Nothing(),
/* aIsSubgrid */ true) {}
public:
/**
* This is used in a subgridded axis to resolve sizes before its parent's
* sizes are known for intrinsic sizing purposes. It copies the slice of
* the nearest non-subgridded axis' track sizing functions spanned by
* the subgrid.
*
* FIXME: this was written before there was a spec... the spec now says:
* "If calculating the layout of a grid item in this step depends on
* the available space in the block axis, assume the available space
* that it would have if any row with a definite max track sizing
* function had that size and all other rows were infinite."
* https://drafts.csswg.org/css-grid-2/#subgrid-sizing
*/
static TrackSizingFunctions ForSubgridFallback(
nsGridContainerFrame* aSubgridFrame, const Subgrid* aSubgrid,
nsGridContainerFrame* aParentGridContainer, LogicalAxis aParentAxis) {
MOZ_ASSERT(aSubgrid);
MOZ_ASSERT(aSubgridFrame->IsSubgrid(aSubgrid->mIsOrthogonal
? GetOrthogonalAxis(aParentAxis)
: aParentAxis));
nsGridContainerFrame* parent = aParentGridContainer;
auto parentAxis = aParentAxis;
LineRange range = aSubgrid->mArea.LineRangeForAxis(parentAxis);
// Find our nearest non-subgridded axis and use its track sizing functions.
while (parent->IsSubgrid(parentAxis)) {
const auto* parentSubgrid = parent->GetProperty(Subgrid::Prop());
auto* grandParent = parent->ParentGridContainerForSubgrid();
auto grandParentWM = grandParent->GetWritingMode();
bool isSameDirInAxis =
parent->GetWritingMode().ParallelAxisStartsOnSameSide(parentAxis,
grandParentWM);
if (MOZ_UNLIKELY(!isSameDirInAxis)) {
auto end = parentAxis == eLogicalAxisBlock ? parentSubgrid->mGridRowEnd
: parentSubgrid->mGridColEnd;
range.ReverseDirection(end);
// range is now in the same direction as the grand-parent's axis
}
auto grandParentAxis = parentSubgrid->mIsOrthogonal
? GetOrthogonalAxis(parentAxis)
: parentAxis;
const auto& parentRange =
parentSubgrid->mArea.LineRangeForAxis(grandParentAxis);
range.Translate(parentRange.mStart);
// range is now in the grand-parent's coordinates
parentAxis = grandParentAxis;
parent = grandParent;
}
const auto* pos = parent->StylePosition();
const auto isInlineAxis = parentAxis == eLogicalAxisInline;
const auto& szf =
isInlineAxis ? pos->mGridTemplateRows : pos->mGridTemplateColumns;
const auto& autoSizing =
isInlineAxis ? pos->mGridAutoColumns : pos->mGridAutoRows;
return TrackSizingFunctions(szf, autoSizing, ForSubgridFallbackTag);
}
/**
* Initialize the number of auto-fill/fit tracks to use.
* This can be zero if no auto-fill/fit track was specified, or if the repeat
* begins after the maximum allowed track.
*/
void InitRepeatTracks(const NonNegativeLengthPercentageOrNormal& aGridGap,
nscoord aMinSize, nscoord aSize, nscoord aMaxSize) {
const uint32_t maxTrack = kMaxLine - 1;
// Check for a repeat after the maximum allowed track.
if (MOZ_UNLIKELY(mRepeatAutoStart >= maxTrack)) {
mHasRepeatAuto = false;
mRepeatAutoStart = 0;
mRepeatAutoEnd = 0;
return;
}
uint32_t repeatTracks =
CalculateRepeatFillCount(aGridGap, aMinSize, aSize, aMaxSize) *
NumRepeatTracks();
// Clamp the number of repeat tracks to the maximum possible track.
repeatTracks = std::min(repeatTracks, maxTrack - mRepeatAutoStart);
SetNumRepeatTracks(repeatTracks);
// Blank out the removed flags for each of these tracks.
mRemovedRepeatTracks.SetLength(repeatTracks);
for (auto& track : mRemovedRepeatTracks) {
track = false;
}
}
uint32_t CalculateRepeatFillCount(
const NonNegativeLengthPercentageOrNormal& aGridGap, nscoord aMinSize,
nscoord aSize, nscoord aMaxSize) const {
if (!mHasRepeatAuto) {
return 0;
}
// At this point no tracks will have been collapsed, so the RepeatEndDelta
// should not be negative.
MOZ_ASSERT(RepeatEndDelta() >= 0);
// Note that this uses NumRepeatTracks and mRepeatAutoStart/End, although
// the result of this method is used to change those values to a fully
// expanded value. Spec quotes are from
// https://drafts.csswg.org/css-grid/#repeat-notation
const uint32_t numTracks = mExpandedTracks.Length() + RepeatEndDelta();
MOZ_ASSERT(numTracks >= 1, "expected at least the repeat() track");
if (MOZ_UNLIKELY(numTracks >= kMaxLine)) {
// The fixed tracks plus an entire repetition is either larger or as
// large as the maximum track, so we do not need to measure how many
// repetitions will fit. This also avoids needing to check for if
// kMaxLine - numTracks would underflow at the end where we clamp the
// result.
return 1;
}
nscoord maxFill = aSize != NS_UNCONSTRAINEDSIZE ? aSize : aMaxSize;
if (maxFill == NS_UNCONSTRAINEDSIZE && aMinSize == 0) {
// "Otherwise, the specified track list repeats only once."
return 1;
}
nscoord repeatTrackSum = 0;
// Note that one repeat() track size is included in |sum| in this loop.
nscoord sum = 0;
const nscoord percentBasis = aSize;
for (uint32_t i = 0; i < numTracks; ++i) {
// "treating each track as its max track sizing function if that is
// definite or as its minimum track sizing function otherwise"
// https://drafts.csswg.org/css-grid/#valdef-repeat-auto-fill
const auto& sizingFunction = SizingFor(i);
const auto& maxCoord = sizingFunction.GetMax();
const auto* coord = &maxCoord;
if (!coord->IsBreadth()) {
coord = &sizingFunction.GetMin();
if (!coord->IsBreadth()) {
return 1;
}
}
nscoord trackSize = ::ResolveToDefiniteSize(*coord, percentBasis);
if (i >= mRepeatAutoStart && i < mRepeatAutoEnd) {
// Use a minimum 1px for the repeat() track-size.
if (trackSize < AppUnitsPerCSSPixel()) {
trackSize = AppUnitsPerCSSPixel();
}
repeatTrackSum += trackSize;
}
sum += trackSize;
}
nscoord gridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aSize);
if (numTracks > 1) {
// Add grid-gaps for all the tracks including the repeat() track.
sum += gridGap * (numTracks - 1);
}
// Calculate the max number of tracks that fits without overflow.
nscoord available = maxFill != NS_UNCONSTRAINEDSIZE ? maxFill : aMinSize;
nscoord spaceToFill = available - sum;
if (spaceToFill <= 0) {
// "if any number of repetitions would overflow, then 1 repetition"
return 1;
}
// Calculate the max number of tracks that fits without overflow.
// Since we already have one repetition in sum, we can simply add one grid
// gap for each element in the repeat.
div_t q = div(spaceToFill, repeatTrackSum + gridGap * NumRepeatTracks());
// The +1 here is for the one repeat track we already accounted for above.
uint32_t numRepeatTracks = q.quot + 1;
if (q.rem != 0 && maxFill == NS_UNCONSTRAINEDSIZE) {
// "Otherwise, if the grid container has a definite min size in
// the relevant axis, the number of repetitions is the largest possible
// positive integer that fulfills that minimum requirement."
++numRepeatTracks; // one more to ensure the grid is at least min-size
}
// Clamp the number of repeat tracks so that the last line <= kMaxLine.
// (note that |numTracks| already includes one repeat() track)
MOZ_ASSERT(numTracks >= NumRepeatTracks());
const uint32_t maxRepeatTrackCount = kMaxLine - numTracks;
const uint32_t maxRepetitions = maxRepeatTrackCount / NumRepeatTracks();
return std::min(numRepeatTracks, maxRepetitions);
}
/**
* Compute the explicit grid end line number (in a zero-based grid).
* @param aGridTemplateAreasEnd 'grid-template-areas' end line in this axis
*/
uint32_t ComputeExplicitGridEnd(uint32_t aGridTemplateAreasEnd) {
uint32_t end = NumExplicitTracks() + 1;
end = std::max(end, aGridTemplateAreasEnd);
end = std::min(end, uint32_t(kMaxLine));
return end;
}
const StyleTrackSize& SizingFor(uint32_t aTrackIndex) const {
static const StyleTrackSize kAutoTrackSize =
StyleTrackSize::Breadth(StyleTrackBreadth::Auto());
// |aIndex| is the relative index to mAutoSizing. A negative value means it
// is the last Nth element.
auto getImplicitSize = [this](int32_t aIndex) -> const StyleTrackSize& {
MOZ_ASSERT(!(mAutoSizing.Length() == 1 &&
mAutoSizing.AsSpan()[0] == kAutoTrackSize),
"It's impossible to have one track with auto value because we "
"filter out this case during parsing");
if (mAutoSizing.IsEmpty()) {
return kAutoTrackSize;
}
// If multiple track sizes are given, the pattern is repeated as necessary
// to find the size of the implicit tracks.
int32_t i = aIndex % int32_t(mAutoSizing.Length());
if (i < 0) {
i += mAutoSizing.Length();
}
return mAutoSizing.AsSpan()[i];
};
if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
// The last implicit grid track before the explicit grid receives the
// last specified size, and so on backwards. Therefore we pass the
// negative relative index to imply that we should get the implicit size
// from the last Nth specified grid auto size.
return getImplicitSize(int32_t(aTrackIndex) -
int32_t(mExplicitGridOffset));
}
uint32_t index = aTrackIndex - mExplicitGridOffset;
MOZ_ASSERT(mRepeatAutoStart <= mRepeatAutoEnd);
if (index >= mRepeatAutoStart) {
if (index < mRepeatAutoEnd) {
// Expand the repeat tracks.
const auto& indices = mExpandedTracks[mRepeatAutoStart];
const TrackListValue& value = mTrackListValues[indices.first];
// We expect the default to be used for all track repeats.
MOZ_ASSERT(indices.second == 0);
const auto& repeatTracks = value.AsTrackRepeat().track_sizes.AsSpan();
// Find the repeat track to use, skipping over any collapsed tracks.
const uint32_t finalRepeatIndex = (index - mRepeatAutoStart);
uint32_t repeatWithCollapsed = 0;
// NOTE: We need SizingFor before the final collapsed tracks are known.
// We know that it's invalid to have empty mRemovedRepeatTracks when
// there are any repeat tracks, so we can detect that situation here.
if (mRemovedRepeatTracks.IsEmpty()) {
repeatWithCollapsed = finalRepeatIndex;
} else {
// Count up through the repeat tracks, until we have seen
// finalRepeatIndex number of non-collapsed tracks.
for (uint32_t repeatNoCollapsed = 0;
repeatNoCollapsed < finalRepeatIndex; repeatWithCollapsed++) {
if (!mRemovedRepeatTracks[repeatWithCollapsed]) {
repeatNoCollapsed++;
}
}
// If we stopped iterating on a collapsed track, continue to the next
// non-collapsed track.
while (mRemovedRepeatTracks[repeatWithCollapsed]) {
repeatWithCollapsed++;
}
}
return repeatTracks[repeatWithCollapsed % repeatTracks.Length()];
} else {
// The index is after the repeat auto range, adjust it to skip over the
// repeat value. This will have no effect if there is no auto repeat,
// since then RepeatEndDelta will return zero.
index -= RepeatEndDelta();
}
}
if (index >= mExpandedTracks.Length()) {
return getImplicitSize(index - mExpandedTracks.Length());
}
auto& indices = mExpandedTracks[index];
const TrackListValue& value = mTrackListValues[indices.first];
if (value.IsTrackSize()) {
MOZ_ASSERT(indices.second == 0);
return value.AsTrackSize();
}
return value.AsTrackRepeat().track_sizes.AsSpan()[indices.second];
}
const StyleTrackBreadth& MaxSizingFor(uint32_t aTrackIndex) const {
return SizingFor(aTrackIndex).GetMax();
}
const StyleTrackBreadth& MinSizingFor(uint32_t aTrackIndex) const {
return SizingFor(aTrackIndex).GetMin();
}
uint32_t NumExplicitTracks() const {
return mExpandedTracks.Length() + RepeatEndDelta();
}
uint32_t NumRepeatTracks() const { return mRepeatAutoEnd - mRepeatAutoStart; }
// The difference between mExplicitGridEnd and mSizingFunctions.Length().
int32_t RepeatEndDelta() const {
return mHasRepeatAuto ? int32_t(NumRepeatTracks()) - 1 : 0;
}
void SetNumRepeatTracks(uint32_t aNumRepeatTracks) {
MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0);
mRepeatAutoEnd = mRepeatAutoStart + aNumRepeatTracks;
}
// Store mTrackListValues into mExpandedTracks with `repeat(INTEGER, ...)`
// tracks expanded.
void ExpandNonRepeatAutoTracks() {
for (size_t i = 0; i < mTrackListValues.Length(); ++i) {
auto& value = mTrackListValues[i];
if (value.IsTrackSize()) {
mExpandedTracks.EmplaceBack(i, 0);
continue;
}
auto& repeat = value.AsTrackRepeat();
if (!repeat.count.IsNumber()) {
MOZ_ASSERT(i == mRepeatAutoStart);
mRepeatAutoStart = mExpandedTracks.Length();
mRepeatAutoEnd = mRepeatAutoStart + repeat.track_sizes.Length();
mExpandedTracks.EmplaceBack(i, 0);
continue;
}
for (auto j : IntegerRange(repeat.count.AsNumber())) {
Unused << j;
size_t trackSizesCount = repeat.track_sizes.Length();
for (auto k : IntegerRange(trackSizesCount)) {
mExpandedTracks.EmplaceBack(i, k);
}
}
}
if (MOZ_UNLIKELY(mExpandedTracks.Length() > kMaxLine - 1)) {
mExpandedTracks.TruncateLength(kMaxLine - 1);
if (mHasRepeatAuto && mRepeatAutoStart > kMaxLine - 1) {
// The `repeat(auto-fill/fit)` track is outside the clamped grid.
mHasRepeatAuto = false;
}
}
}
// Some style data references, for easy access.
const GridTemplate& mTemplate;
const Span<const TrackListValue> mTrackListValues;
const StyleImplicitGridTracks& mAutoSizing;
// An array from expanded track sizes (without expanding auto-repeat, which is
// included just once at `mRepeatAutoStart`).
//
// Each entry contains two indices, the first into mTrackListValues, and a
// second one inside mTrackListValues' repeat value, if any, or zero
// otherwise.
nsTArray<std::pair<size_t, size_t>> mExpandedTracks;
// Offset from the start of the implicit grid to the first explicit track.
uint32_t mExplicitGridOffset;
// The index of the repeat(auto-fill/fit) track, or zero if there is none.
// Relative to mExplicitGridOffset (repeat tracks are explicit by definition).
uint32_t mRepeatAutoStart;
// The (hypothetical) index of the last such repeat() track.
uint32_t mRepeatAutoEnd;
// True if there is a specified repeat(auto-fill/fit) track.
bool mHasRepeatAuto;
// True if this track (relative to mRepeatAutoStart) is a removed auto-fit.
// Indexed relative to mExplicitGridOffset + mRepeatAutoStart.
nsTArray<bool> mRemovedRepeatTracks;
};
/**
* Utility class to find line names. It provides an interface to lookup line
* names with a dynamic number of repeat(auto-fill/fit) tracks taken into
* account.
*/
class MOZ_STACK_CLASS nsGridContainerFrame::LineNameMap {
public:
/**
* Create a LineNameMap.
* @param aStylePosition the style for the grid container
* @param aImplicitNamedAreas the implicit areas for the grid container
* @param aGridTemplate is the grid-template-rows/columns data for this axis
* @param aParentLineNameMap the parent grid's map parallel to this map, or
* null if this map isn't for a subgrid
* @param aRange the subgrid's range in the parent grid, or null
* @param aIsSameDirection true if our axis progresses in the same direction
* in the subgrid and parent
*/
LineNameMap(const nsStylePosition* aStylePosition,
const ImplicitNamedAreas* aImplicitNamedAreas,
const TrackSizingFunctions& aTracks,
const LineNameMap* aParentLineNameMap, const LineRange* aRange,
bool aIsSameDirection)
: mStylePosition(aStylePosition),
mAreas(aImplicitNamedAreas),
mRepeatAutoStart(aTracks.mRepeatAutoStart),
mRepeatAutoEnd(aTracks.mRepeatAutoEnd),
mRepeatEndDelta(aTracks.RepeatEndDelta()),
mParentLineNameMap(aParentLineNameMap),
mRange(aRange),
mIsSameDirection(aIsSameDirection),
mHasRepeatAuto(aTracks.mHasRepeatAuto) {
if (MOZ_UNLIKELY(aRange)) { // subgrid case
mClampMinLine = 1;
mClampMaxLine = 1 + aRange->Extent();
mRepeatAutoEnd = mRepeatAutoStart;
const auto& styleSubgrid = aTracks.mTemplate.AsSubgrid();
const auto fillLen = styleSubgrid->fill_len;
mHasRepeatAuto = fillLen != 0;
if (mHasRepeatAuto) {
const auto& lineNameLists = styleSubgrid->names;
const int32_t extraAutoFillLineCount =
mClampMaxLine - lineNameLists.Length();
// Maximum possible number of repeat name lists. This must be reduced
// to a whole number of repetitions of the fill length.
const uint32_t possibleRepeatLength =
std::max<int32_t>(0, extraAutoFillLineCount + fillLen);
const uint32_t repeatRemainder = possibleRepeatLength % fillLen;
mRepeatAutoStart = styleSubgrid->fill_start;
mRepeatAutoEnd =
mRepeatAutoStart + possibleRepeatLength - repeatRemainder;
}
} else {
mClampMinLine = kMinLine;
mClampMaxLine = kMaxLine;
if (mHasRepeatAuto) {
mTrackAutoRepeatLineNames =
aTracks.mTemplate.GetRepeatAutoValue()->line_names.AsSpan();
}
}
ExpandRepeatLineNames(!!aRange, aTracks);
if (mHasRepeatAuto) {
// We need mTemplateLinesEnd to be after all line names.
// mExpandedLineNames has one repetition of the repeat(auto-fit/fill)
// track name lists already, so we must subtract the number of repeat
// track name lists to get to the number of non-repeat tracks, minus 2
// because the first and last line name lists are shared with the
// preceding and following non-repeat line name lists. We then add
// mRepeatEndDelta to include the interior line name lists from repeat
// tracks.
mTemplateLinesEnd = mExpandedLineNames.Length() -
(mTrackAutoRepeatLineNames.Length() - 2) +
mRepeatEndDelta;
} else {
mTemplateLinesEnd = mExpandedLineNames.Length();
}
MOZ_ASSERT(mHasRepeatAuto || mRepeatEndDelta <= 0);
MOZ_ASSERT(!mHasRepeatAuto || aRange ||
(mExpandedLineNames.Length() >= 2 &&
mRepeatAutoStart <= mExpandedLineNames.Length()));
}
// Store line names into mExpandedLineNames with `repeat(INTEGER, ...)`
// expanded (for non-subgrid), and all `repeat(...)` expanded (for subgrid).
void ExpandRepeatLineNames(bool aIsSubgrid,
const TrackSizingFunctions& aTracks) {
auto lineNameLists = aTracks.mTemplate.LineNameLists(aIsSubgrid);
const auto& trackListValues = aTracks.mTrackListValues;
const NameList* nameListToMerge = nullptr;
// NOTE(emilio): We rely on std::move clearing out the array.
SmallPointerArray<const NameList> names;
// This adjusts for outputting the repeat auto names in subgrid. In that
// case, all of the repeat values are handled in a single iteration.
const uint32_t subgridRepeatDelta =
(aIsSubgrid && mHasRepeatAuto)
? (aTracks.mTemplate.AsSubgrid()->fill_len - 1)
: 0;
const uint32_t end = std::min<uint32_t>(
lineNameLists.Length() - subgridRepeatDelta, mClampMaxLine + 1);
for (uint32_t i = 0; i < end; ++i) {
if (aIsSubgrid) {
if (MOZ_UNLIKELY(mHasRepeatAuto && i == mRepeatAutoStart)) {
// XXX expand 'auto-fill' names for subgrid for now since HasNameAt()
// only deals with auto-repeat **tracks** currently.
const auto& styleSubgrid = aTracks.mTemplate.AsSubgrid();
MOZ_ASSERT(styleSubgrid->fill_len > 0);
for (auto j = i; j < mRepeatAutoEnd; ++j) {
const auto repeatIndex = (j - i) % styleSubgrid->fill_len;
names.AppendElement(
&lineNameLists[styleSubgrid->fill_start + repeatIndex]);
mExpandedLineNames.AppendElement(std::move(names));
}
} else if (mHasRepeatAuto && i > mRepeatAutoStart) {
const auto& styleSubgrid = aTracks.mTemplate.AsSubgrid();
names.AppendElement(&lineNameLists[i + styleSubgrid->fill_len - 1]);
mExpandedLineNames.AppendElement(std::move(names));
} else {
names.AppendElement(&lineNameLists[i]);
mExpandedLineNames.AppendElement(std::move(names));
}
// XXX expand repeat(<integer>, ...) line names here (bug 1583429)
continue;
}
if (nameListToMerge) {
names.AppendElement(nameListToMerge);
nameListToMerge = nullptr;
}
names.AppendElement(&lineNameLists[i]);
if (i >= trackListValues.Length()) {
mExpandedLineNames.AppendElement(std::move(names));
continue;
}
const auto& value = trackListValues[i];
if (value.IsTrackSize()) {
mExpandedLineNames.AppendElement(std::move(names));
continue;
}
const auto& repeat = value.AsTrackRepeat();
if (!repeat.count.IsNumber()) {
const auto repeatNames = repeat.line_names.AsSpan();
// If the repeat was truncated due to more than kMaxLine tracks, then
// the repeat will no longer be set on mRepeatAutoStart).
MOZ_ASSERT(!mHasRepeatAuto ||
mRepeatAutoStart == mExpandedLineNames.Length());
MOZ_ASSERT(repeatNames.Length() >= 2);
for (const auto j : IntegerRange(repeatNames.Length() - 1)) {
names.AppendElement(&repeatNames[j]);
mExpandedLineNames.AppendElement(std::move(names));
}
nameListToMerge = &repeatNames[repeatNames.Length() - 1];
continue;
}
for (auto j : IntegerRange(repeat.count.AsNumber())) {
Unused << j;
if (nameListToMerge) {
names.AppendElement(nameListToMerge);
nameListToMerge = nullptr;
}
size_t trackSizesCount = repeat.track_sizes.Length();
auto repeatLineNames = repeat.line_names.AsSpan();
MOZ_ASSERT(repeatLineNames.Length() == trackSizesCount ||
repeatLineNames.Length() == trackSizesCount + 1);
for (auto k : IntegerRange(trackSizesCount)) {
names.AppendElement(&repeatLineNames[k]);
mExpandedLineNames.AppendElement(std::move(names));
}
if (repeatLineNames.Length() == trackSizesCount + 1) {
nameListToMerge = &repeatLineNames[trackSizesCount];
}
}
}
if (MOZ_UNLIKELY(mExpandedLineNames.Length() > uint32_t(mClampMaxLine))) {
mExpandedLineNames.TruncateLength(mClampMaxLine);
}
if (MOZ_UNLIKELY(mHasRepeatAuto && aIsSubgrid)) {
mHasRepeatAuto = false; // we've expanded all subgrid auto-fill lines
}
}
/**
* Find the aNth occurrence of aName, searching forward if aNth is positive,
* and in reverse if aNth is negative (aNth == 0 is invalid), starting from
* aFromIndex (not inclusive), and return a 1-based line number.
* Also take into account there is an unconditional match at the lines in
* aImplicitLines.
* Return zero if aNth occurrences can't be found. In that case, aNth has
* been decremented with the number of occurrences that were found (if any).
*
* E.g. to search for "A 2" forward from the start of the grid: aName is "A"
* aNth is 2 and aFromIndex is zero. To search for "A -2", aNth is -2 and
* aFromIndex is ExplicitGridEnd + 1 (which is the line "before" the last
* line when we're searching in reverse). For "span A 2", aNth is 2 when
* used on a grid-[row|column]-end property and -2 for a *-start property,
* and aFromIndex is the line (which we should skip) on the opposite property.
*/
uint32_t FindNamedLine(nsAtom* aName, int32_t* aNth, uint32_t aFromIndex,
const nsTArray<uint32_t>& aImplicitLines) const {
MOZ_ASSERT(aName);
MOZ_ASSERT(!aName->IsEmpty());
MOZ_ASSERT(aNth && *aNth != 0);
if (*aNth > 0) {
return FindLine(aName, aNth, aFromIndex, aImplicitLines);
}
int32_t nth = -*aNth;
int32_t line = RFindLine(aName, &nth, aFromIndex, aImplicitLines);
*aNth = -nth;
return line;
}
/**
* Return a set of lines in aImplicitLines which matches the area name aName
* on aSide. For example, for aName "a" and aSide being an end side, it
* returns the line numbers which would match "a-end" in the relevant axis.
* For subgrids it includes searching the relevant axis in all ancestor
* grids too (within this subgrid's spanned area). If an ancestor has
* opposite direction, we switch aSide to the opposite logical side so we
* match on the same physical side as the original subgrid we're resolving
* the name for.
*/
void FindNamedAreas(nsAtom* aName, LogicalSide aSide,
nsTArray<uint32_t>& aImplicitLines) const {
// True if we're currently in a map that has the same direction as 'this'.
bool sameDirectionAsThis = true;
uint32_t min = !mParentLineNameMap ? 1 : mClampMinLine;
uint32_t max = mClampMaxLine;
for (auto* map = this; true;) {
uint32_t line = map->FindNamedArea(aName, aSide, min, max);
if (line > 0) {
if (MOZ_LIKELY(sameDirectionAsThis)) {
line -= min - 1;
} else {
line = max - line + 1;
}
aImplicitLines.AppendElement(line);
}
auto* parent = map->mParentLineNameMap;
if (!parent) {
if (MOZ_UNLIKELY(aImplicitLines.Length() > 1)) {
// Remove duplicates and sort in ascending order.
aImplicitLines.Sort();
for (size_t i = 0; i < aImplicitLines.Length(); ++i) {
uint32_t prev = aImplicitLines[i];
auto j = i + 1;
const auto start = j;
while (j < aImplicitLines.Length() && aImplicitLines[j] == prev) {
++j;
}
if (j != start) {
aImplicitLines.RemoveElementsAt(start, j - start);
}
}
}
return;
}
if (MOZ_UNLIKELY(!map->mIsSameDirection)) {
aSide = GetOppositeSide(aSide);
sameDirectionAsThis = !sameDirectionAsThis;
}
min = map->TranslateToParentMap(min);
max = map->TranslateToParentMap(max);
if (min > max) {
MOZ_ASSERT(!map->mIsSameDirection);
std::swap(min, max);
}
map = parent;
}
}
/**
* Return true if any implicit named areas match aName, in this map or
* in any of our ancestor maps.
*/
bool HasImplicitNamedArea(nsAtom* aName) const {
const auto* map = this;
do {
if (map->mAreas && map->mAreas->has(aName)) {
return true;
}
map = map->mParentLineNameMap;
} while (map);
return false;
}
// For generating line name data for devtools.
nsTArray<nsTArray<StyleCustomIdent>>
GetResolvedLineNamesForComputedGridTrackInfo() const {
nsTArray<nsTArray<StyleCustomIdent>> result;
for (auto& expandedLine : mExpandedLineNames) {
nsTArray<StyleCustomIdent> line;
for (auto* chunk : expandedLine) {
for (auto& name : chunk->AsSpan()) {
line.AppendElement(name);
}
}
result.AppendElement(std::move(line));
}
return result;
}
nsTArray<RefPtr<nsAtom>> GetExplicitLineNamesAtIndex(uint32_t aIndex) const {
nsTArray<RefPtr<nsAtom>> lineNames;
if (aIndex < mTemplateLinesEnd) {
const auto nameLists = GetLineNamesAt(aIndex);
for (const NameList* nameList : nameLists) {
for (const auto& name : nameList->AsSpan()) {
lineNames.AppendElement(name.AsAtom());
}
}
}
return lineNames;
}
const nsTArray<SmallPointerArray<const NameList>>& ExpandedLineNames() const {
return mExpandedLineNames;
}
const Span<const StyleOwnedSlice<StyleCustomIdent>>&
TrackAutoRepeatLineNames() const {
return mTrackAutoRepeatLineNames;
}
bool HasRepeatAuto() const { return mHasRepeatAuto; }
uint32_t NumRepeatTracks() const { return mRepeatAutoEnd - mRepeatAutoStart; }
uint32_t RepeatAutoStart() const { return mRepeatAutoStart; }
// The min/max line number (1-based) for clamping.
int32_t mClampMinLine;
int32_t mClampMaxLine;
private:
// Return true if this map represents a subgridded axis.
bool IsSubgridded() const { return mParentLineNameMap != nullptr; }
/**
* @see FindNamedLine, this function searches forward.
*/
uint32_t FindLine(nsAtom* aName, int32_t* aNth, uint32_t aFromIndex,
const nsTArray<uint32_t>& aImplicitLines) const {
MOZ_ASSERT(aNth && *aNth > 0);
int32_t nth = *aNth;
// For a subgrid we need to search to the end of the grid rather than
// the end of the local name list, since ancestors might match.
const uint32_t end = IsSubgridded() ? mClampMaxLine : mTemplateLinesEnd;
uint32_t line;
uint32_t i = aFromIndex;
for (; i < end; i = line) {
line = i + 1;
if (Contains(i, aName) || aImplicitLines.Contains(line)) {
if (--nth == 0) {
return line;
}
}
}
for (auto implicitLine : aImplicitLines) {
if (implicitLine > i) {
// implicitLine is after the lines we searched above so it's last.
// (grid-template-areas has more tracks than
// grid-template-[rows|columns])
if (--nth == 0) {
return implicitLine;
}
}
}
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
*aNth = nth;
return 0;
}
/**
* @see FindNamedLine, this function searches in reverse.
*/
uint32_t RFindLine(nsAtom* aName, int32_t* aNth, uint32_t aFromIndex,
const nsTArray<uint32_t>& aImplicitLines) const {
MOZ_ASSERT(aNth && *aNth > 0);
if (MOZ_UNLIKELY(aFromIndex == 0)) {
return 0; // There are no named lines beyond the start of the explicit
// grid.
}
--aFromIndex; // (shift aFromIndex so we can treat it as inclusive)
int32_t nth = *aNth;
// Implicit lines may be beyond the explicit grid so we match those
// first if it's within the mTemplateLinesEnd..aFromIndex range.
// aImplicitLines is presumed sorted.
// For a subgrid we need to search to the end of the grid rather than
// the end of the local name list, since ancestors might match.
const uint32_t end = IsSubgridded() ? mClampMaxLine : mTemplateLinesEnd;
for (auto implicitLine : Reversed(aImplicitLines)) {
if (implicitLine <= end) {
break;
}
if (implicitLine < aFromIndex) {
if (--nth == 0) {
return implicitLine;
}
}
}
for (uint32_t i = std::min(aFromIndex, end); i; --i) {
if (Contains(i - 1, aName) || aImplicitLines.Contains(i)) {
if (--nth == 0) {
return i;
}
}
}
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
*aNth = nth;
return 0;
}
// Return true if aName exists at aIndex in this map or any parent map.
bool Contains(uint32_t aIndex, nsAtom* aName) const {
const auto* map = this;
while (true) {
if (aIndex < map->mTemplateLinesEnd && map->HasNameAt(aIndex, aName)) {
return true;
}
auto* parent = map->mParentLineNameMap;
if (!parent) {
return false;
}
uint32_t line = map->TranslateToParentMap(aIndex + 1);
MOZ_ASSERT(line >= 1, "expected a 1-based line number");
aIndex = line - 1;
map = parent;
}
MOZ_ASSERT_UNREACHABLE("we always return from inside the loop above");
}
static bool Contains(Span<const StyleCustomIdent> aNames, nsAtom* aName) {
for (auto& name : aNames) {
if (name.AsAtom() == aName) {
return true;
}
}
return false;
}
// Return true if aName exists at aIndex in this map.
bool HasNameAt(const uint32_t aIndex, nsAtom* const aName) const {
const auto nameLists = GetLineNamesAt(aIndex);
for (const NameList* nameList : nameLists) {
if (Contains(nameList->AsSpan(), aName)) {
return true;
}
}
return false;
}
// Get the line names at an index.
// This accounts for auto repeat. The results may be spread over multiple name
// lists returned in the array, which is done to avoid unneccessarily copying
// the arrays to concatenate them.
SmallPointerArray<const NameList> GetLineNamesAt(
const uint32_t aIndex) const {
SmallPointerArray<const NameList> names;
// The index into mExpandedLineNames to use, if aIndex doesn't point to a
// name inside of a auto repeat.
uint32_t repeatAdjustedIndex = aIndex;
if (mHasRepeatAuto) {
// If the index is inside of the auto repeat, use the repeat line
// names. Otherwise, if the index is past the end of the repeat it must
// be adjusted to acount for the repeat tracks.
// mExpandedLineNames has the first and last line name lists from the
// repeat in it already, so we can just ignore aIndex == mRepeatAutoStart
// and treat when aIndex == mRepeatAutoEnd the same as any line after the
// the repeat.
const uint32_t maxRepeatLine = mTrackAutoRepeatLineNames.Length() - 1;
if (aIndex > mRepeatAutoStart && aIndex < mRepeatAutoEnd) {
// The index is inside the auto repeat. Calculate the lines to use,
// including the previous repetitions final names when we roll over
// from one repetition to the next.
const uint32_t repeatIndex =
(aIndex - mRepeatAutoStart) % maxRepeatLine;
if (repeatIndex == 0) {
// The index is at the start of a new repetition. The start of the
// first repetition is intentionally ignored above, so this will
// consider both the end of the previous repetition and the start
// the one that contains aIndex.
names.AppendElement(&mTrackAutoRepeatLineNames[maxRepeatLine]);
}
names.AppendElement(&mTrackAutoRepeatLineNames[repeatIndex]);
return names;
}
if (aIndex != mRepeatAutoStart && aIndex >= mRepeatAutoEnd) {
// Adjust the index to account for the line names of the repeat.
repeatAdjustedIndex -= mRepeatEndDelta;
repeatAdjustedIndex += mTrackAutoRepeatLineNames.Length() - 2;
}
}
MOZ_ASSERT(names.IsEmpty());
// The index is not inside the repeat tracks, or no repeat tracks exist.
const auto& nameLists = mExpandedLineNames[repeatAdjustedIndex];
for (const NameList* nameList : nameLists) {
names.AppendElement(nameList);
}
return names;
}
// Translate a subgrid line (1-based) to a parent line (1-based).
uint32_t TranslateToParentMap(uint32_t aLine) const {
if (MOZ_LIKELY(mIsSameDirection)) {
return aLine + mRange->mStart;
}
MOZ_ASSERT(mRange->mEnd + 1 >= aLine);
return mRange->mEnd - (aLine - 1) + 1;
}
/**
* Return the 1-based line that match aName in 'grid-template-areas'
* on the side aSide. Clamp the result to aMin..aMax but require
* that some part of the area is inside for it to match.
* Return zero if there is no match.
*/
uint32_t FindNamedArea(nsAtom* aName, LogicalSide aSide, int32_t aMin,
int32_t aMax) const {
if (const NamedArea* area = FindNamedArea(aName)) {
int32_t start = IsBlock(aSide) ? area->rows.start : area->columns.start;
int32_t end = IsBlock(aSide) ? area->rows.end : area->columns.end;
if (IsStart(aSide)) {
if (start >= aMin) {
if (start <= aMax) {
return start;
}
} else if (end >= aMin) {
return aMin;
}
} else {
if (end <= aMax) {
if (end >= aMin) {
return end;
}
} else if (start <= aMax) {
return aMax;
}
}
}
return 0; // no match
}
/**
* A convenience method to lookup a name in 'grid-template-areas'.
* @return null if not found
*/
const NamedArea* FindNamedArea(nsAtom* aName) const {
if (mStylePosition->mGridTemplateAreas.IsNone()) {
return nullptr;
}
const auto areas = mStylePosition->mGridTemplateAreas.AsAreas();
for (const NamedArea& area : areas->areas.AsSpan()) {
if (area.name.AsAtom() == aName) {
return &area;
}
}
return nullptr;
}
// Some style data references, for easy access.
const nsStylePosition* mStylePosition;
const ImplicitNamedAreas* mAreas;
// The expanded list of line-names. Each entry is usually a single NameList,
// but can be multiple in the case where repeat() expands to something that
// has a line name list at the end.
nsTArray<SmallPointerArray<const NameList>> mExpandedLineNames;
// The repeat(auto-fill/fit) track value, if any. (always empty for subgrid)
Span<const StyleOwnedSlice<StyleCustomIdent>> mTrackAutoRepeatLineNames;
// The index of the repeat(auto-fill/fit) track, or zero if there is none.
uint32_t mRepeatAutoStart;
// The index one past the end of the repeat(auto-fill/fit) tracks. Equal to
// mRepeatAutoStart if there are no repeat(auto-fill/fit) tracks.
uint32_t mRepeatAutoEnd;
// The total number of repeat tracks minus 1.
int32_t mRepeatEndDelta;
// The end of the line name lists with repeat(auto-fill/fit) tracks accounted
// for.
uint32_t mTemplateLinesEnd;
// The parent line map, or null if this map isn't for a subgrid.
const LineNameMap* mParentLineNameMap;
// The subgrid's range, or null if this map isn't for a subgrid.
const LineRange* mRange;
// True if the subgrid/parent axes progresses in the same direction.
const bool mIsSameDirection;
// True if there is a specified repeat(auto-fill/fit) track.
bool mHasRepeatAuto;
};
/**
* State for the tracks in one dimension.
*/
struct nsGridContainerFrame::Tracks {
explicit Tracks(LogicalAxis aAxis)
: mContentBoxSize(NS_UNCONSTRAINEDSIZE),
mGridGap(NS_UNCONSTRAINEDSIZE),
mStateUnion(TrackSize::StateBits(0)),
mAxis(aAxis),
mCanResolveLineRangeSize(false),
mIsMasonry(false) {
mBaselineSubtreeAlign[BaselineSharingGroup::First] = StyleAlignFlags::AUTO;
mBaselineSubtreeAlign[BaselineSharingGroup::Last] = StyleAlignFlags::AUTO;
mBaseline[BaselineSharingGroup::First] = NS_INTRINSIC_ISIZE_UNKNOWN;
mBaseline[BaselineSharingGroup::Last] = NS_INTRINSIC_ISIZE_UNKNOWN;
}
void Initialize(const TrackSizingFunctions& aFunctions,
const NonNegativeLengthPercentageOrNormal& aGridGap,
uint32_t aNumTracks, nscoord aContentBoxSize);
/**
* Return the union of the state bits for the tracks in aRange.
*/
TrackSize::StateBits StateBitsForRange(const LineRange& aRange) const;
// Some data we collect for aligning baseline-aligned items.
struct ItemBaselineData {
uint32_t mBaselineTrack;
nscoord mBaseline;
nscoord mSize;
GridItemInfo* mGridItem;
static bool IsBaselineTrackLessThan(const ItemBaselineData& a,
const ItemBaselineData& b) {
return a.mBaselineTrack < b.mBaselineTrack;
}
};
/**
* Calculate baseline offsets for the given set of items.
* Helper for InitialzeItemBaselines.
*/
void CalculateItemBaselines(nsTArray<ItemBaselineData>& aBaselineItems,
BaselineSharingGroup aBaselineGroup);
/**
* Initialize grid item baseline state and offsets.
*/
void InitializeItemBaselines(GridReflowInput& aState,
nsTArray<GridItemInfo>& aGridItems);
/**
* A masonry axis has four baseline alignment sets and each set can have
* a first- and last-baseline alignment group, for a total of eight possible
* baseline alignment groups, as follows:
* set 1: the first item in each `start` or `stretch` grid track
* set 2: the last item in each `start` grid track
* set 3: the last item in each `end` or `stretch` grid track
* set 4: the first item in each `end` grid track
* (`start`/`end`/`stretch` refers to the relevant `align/justify-tracks`
* value of the (grid-axis) start track for the item) Baseline-alignment for
* set 1 and 2 always adjusts the item's padding or margin on the start side,
* and set 3 and 4 on the end side, for both first- and last-baseline groups
* in the set. (This is similar to regular grid which always adjusts
* first-baseline groups on the start side and last-baseline groups on the
* end-side. The crux is that those groups are always aligned to the track's
* start/end side respectively.)
*/
struct BaselineAlignmentSet {
bool MatchTrackAlignment(StyleAlignFlags aTrackAlignment) const {
if (mTrackAlignmentSet == BaselineAlignmentSet::StartStretch) {
return aTrackAlignment == StyleAlignFlags::START ||
(aTrackAlignment == StyleAlignFlags::STRETCH &&
mItemSet == BaselineAlignmentSet::FirstItems);
}
return aTrackAlignment == StyleAlignFlags::END ||
(aTrackAlignment == StyleAlignFlags::STRETCH &&
mItemSet == BaselineAlignmentSet::LastItems);
}
enum ItemSet { FirstItems, LastItems };
ItemSet mItemSet = FirstItems;
enum TrackAlignmentSet { StartStretch, EndStretch };
TrackAlignmentSet mTrackAlignmentSet = StartStretch;
};
void InitializeItemBaselinesInMasonryAxis(
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
BaselineAlignmentSet aSet, const nsSize& aContainerSize,
nsTArray<nscoord>& aTrackSizes,
nsTArray<ItemBaselineData>& aFirstBaselineItems,
nsTArray<ItemBaselineData>& aLastBaselineItems);
/**
* Apply the additional alignment needed to align the baseline-aligned subtree
* the item belongs to within its baseline track.
*/
void AlignBaselineSubtree(const GridItemInfo& aGridItem) const;
enum class TrackSizingPhase {
IntrinsicMinimums,
ContentBasedMinimums,
MaxContentMinimums,
IntrinsicMaximums,
MaxContentMaximums,
};
// Some data we collect on each item for Step 2 of the Track Sizing Algorithm
// in ResolveIntrinsicSize below.
struct Step2ItemData final {
uint32_t mSpan;
TrackSize::StateBits mState;
LineRange mLineRange;
nscoord mMinSize;
nscoord mMinContentContribution;
nscoord mMaxContentContribution;
nsIFrame* mFrame;
static bool IsSpanLessThan(const Step2ItemData& a, const Step2ItemData& b) {
return a.mSpan < b.mSpan;
}
template <TrackSizingPhase phase>
nscoord SizeContributionForPhase() const {
switch (phase) {
case TrackSizingPhase::IntrinsicMinimums:
return mMinSize;
case TrackSizingPhase::ContentBasedMinimums:
case TrackSizingPhase::IntrinsicMaximums:
return mMinContentContribution;
case TrackSizingPhase::MaxContentMinimums:
case TrackSizingPhase::MaxContentMaximums:
return mMaxContentContribution;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
}
};
using FitContentClamper =
std::function<bool(uint32_t aTrack, nscoord aMinSize, nscoord* aSize)>;
// Helper method for ResolveIntrinsicSize.
template <TrackSizingPhase phase>
bool GrowSizeForSpanningItems(nsTArray<Step2ItemData>::iterator aIter,
const nsTArray<Step2ItemData>::iterator aEnd,
nsTArray<uint32_t>& aTracks,
nsTArray<TrackSize>& aPlan,
nsTArray<TrackSize>& aItemPlan,
TrackSize::StateBits aSelector,
const FitContentClamper& aClamper = nullptr,
bool aNeedInfinitelyGrowableFlag = false);
/**
* Resolve Intrinsic Track Sizes.
* http://dev.w3.org/csswg/css-grid/#algo-content
*/
void ResolveIntrinsicSize(GridReflowInput& aState,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
LineRange GridArea::*aRange,
nscoord aPercentageBasis,
SizingConstraint aConstraint);
/**
* Helper for ResolveIntrinsicSize. It implements step 1 "size tracks to fit
* non-spanning items" in the spec. Return true if the track has a <flex>
* max-sizing function, false otherwise.
*/
bool ResolveIntrinsicSizeStep1(GridReflowInput& aState,
const TrackSizingFunctions& aFunctions,
nscoord aPercentageBasis,
SizingConstraint aConstraint,
const LineRange& aRange,
const GridItemInfo& aGridItem);
// Helper method that returns the track size to use in §11.5.1.2
// https://drafts.csswg.org/css-grid/#extra-space
template <TrackSizingPhase phase>
static nscoord StartSizeInDistribution(const TrackSize& aSize) {
switch (phase) {
case TrackSizingPhase::IntrinsicMinimums:
case TrackSizingPhase::ContentBasedMinimums:
case TrackSizingPhase::MaxContentMinimums:
return aSize.mBase;
case TrackSizingPhase::IntrinsicMaximums:
case TrackSizingPhase::MaxContentMaximums:
if (aSize.mLimit == NS_UNCONSTRAINEDSIZE) {
return aSize.mBase;
}
return aSize.mLimit;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
}
/**
* Collect the tracks which are growable (matching aSelector) into
* aGrowableTracks, and return the amount of space that can be used
* to grow those tracks. This method implements CSS Grid §11.5.1.2.
* https://drafts.csswg.org/css-grid/#extra-space
*/
template <TrackSizingPhase phase>
nscoord CollectGrowable(nscoord aAvailableSpace, const LineRange& aRange,
TrackSize::StateBits aSelector,
nsTArray<uint32_t>& aGrowableTracks) const {
MOZ_ASSERT(aAvailableSpace > 0, "why call me?");
nscoord space = aAvailableSpace - mGridGap * (aRange.Extent() - 1);
for (auto i : aRange.Range()) {
const TrackSize& sz = mSizes[i];
space -= StartSizeInDistribution<phase>(sz);
if (space <= 0) {
return 0;
}
if (sz.mState & aSelector) {
aGrowableTracks.AppendElement(i);
}
}
return aGrowableTracks.IsEmpty() ? 0 : space;
}
template <TrackSizingPhase phase>
void InitializeItemPlan(nsTArray<TrackSize>& aItemPlan,
const nsTArray<uint32_t>& aTracks) const {
for (uint32_t track : aTracks) {
auto& plan = aItemPlan[track];
const TrackSize& sz = mSizes[track];
plan.mBase = StartSizeInDistribution<phase>(sz);
bool unlimited = sz.mState & TrackSize::eInfinitelyGrowable;
plan.mLimit = unlimited ? NS_UNCONSTRAINEDSIZE : sz.mLimit;
plan.mState = sz.mState;
}
}
template <TrackSizingPhase phase>
void InitializePlan(nsTArray<TrackSize>& aPlan) const {
for (size_t i = 0, len = aPlan.Length(); i < len; ++i) {
auto& plan = aPlan[i];
const auto& sz = mSizes[i];
plan.mBase = StartSizeInDistribution<phase>(sz);
MOZ_ASSERT(phase == TrackSizingPhase::MaxContentMaximums ||
!(sz.mState & TrackSize::eInfinitelyGrowable),
"forgot to reset the eInfinitelyGrowable bit?");
plan.mState = sz.mState;
}
}
template <TrackSizingPhase phase>
void CopyPlanToSize(const nsTArray<TrackSize>& aPlan,
bool aNeedInfinitelyGrowableFlag = false) {
for (size_t i = 0, len = mSizes.Length(); i < len; ++i) {
const auto& plan = aPlan[i];
MOZ_ASSERT(plan.mBase >= 0);
auto& sz = mSizes[i];
switch (phase) {
case TrackSizingPhase::IntrinsicMinimums:
case TrackSizingPhase::ContentBasedMinimums:
case TrackSizingPhase::MaxContentMinimums:
sz.mBase = plan.mBase;
break;
case TrackSizingPhase::IntrinsicMaximums:
if (plan.mState & TrackSize::eModified) {
if (sz.mLimit == NS_UNCONSTRAINEDSIZE &&
aNeedInfinitelyGrowableFlag) {
sz.mState |= TrackSize::eInfinitelyGrowable;
}
sz.mLimit = plan.mBase;
}
break;
case TrackSizingPhase::MaxContentMaximums:
if (plan.mState & TrackSize::eModified) {
sz.mLimit = plan.mBase;
}
sz.mState &= ~TrackSize::eInfinitelyGrowable;
break;
}
}
}
/**
* Grow the planned size for tracks in aGrowableTracks up to their limit
* and then freeze them (all aGrowableTracks must be unfrozen on entry).
* Subtract the space added from aAvailableSpace and return that.
*/
nscoord GrowTracksToLimit(nscoord aAvailableSpace, nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aGrowableTracks,
const FitContentClamper& aFitContentClamper) const {
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0);
nscoord space = aAvailableSpace;
uint32_t numGrowable = aGrowableTracks.Length();
while (true) {
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
if (sz.IsFrozen()) {
continue;
}
nscoord newBase = sz.mBase + spacePerTrack;
nscoord limit = sz.mLimit;
if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
aFitContentClamper)) {
// Clamp the limit to the fit-content() size, for §12.5.2 step 5/6.
aFitContentClamper(track, sz.mBase, &limit);
}
if (newBase > limit) {
nscoord consumed = limit - sz.mBase;
if (consumed > 0) {
space -= consumed;
sz.mBase = limit;
}
sz.mState |= TrackSize::eFrozen;
if (--numGrowable == 0) {
return space;
}
} else {
sz.mBase = newBase;
space -= spacePerTrack;
}
MOZ_ASSERT(space >= 0);
if (space == 0) {
return 0;
}
}
}
MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return");
return 0;
}
/**
* Helper for GrowSelectedTracksUnlimited. For the set of tracks (S) that
* match aMinSizingSelector: if a track in S doesn't match aMaxSizingSelector
* then mark it with aSkipFlag. If all tracks in S were marked then unmark
* them. Return aNumGrowable minus the number of tracks marked. It is
* assumed that aPlan have no aSkipFlag set for tracks in aGrowableTracks
* on entry to this method.
*/
static uint32_t MarkExcludedTracks(nsTArray<TrackSize>& aPlan,
uint32_t aNumGrowable,
const nsTArray<uint32_t>& aGrowableTracks,
TrackSize::StateBits aMinSizingSelector,
TrackSize::StateBits aMaxSizingSelector,
TrackSize::StateBits aSkipFlag) {
bool foundOneSelected = false;
bool foundOneGrowable = false;
uint32_t numGrowable = aNumGrowable;
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
const auto state = sz.mState;
if (state & aMinSizingSelector) {
foundOneSelected = true;
if (state & aMaxSizingSelector) {
foundOneGrowable = true;
continue;
}
sz.mState |= aSkipFlag;
MOZ_ASSERT(numGrowable != 0);
--numGrowable;
}
}
// 12.5 "if there are no such tracks, then all affected tracks"
if (foundOneSelected && !foundOneGrowable) {
for (uint32_t track : aGrowableTracks) {
aPlan[track].mState &= ~aSkipFlag;
}
numGrowable = aNumGrowable;
}
return numGrowable;
}
/**
* Mark all tracks in aGrowableTracks with an eSkipGrowUnlimited bit if
* they *shouldn't* grow unlimited in §11.5.1.2.3 "Distribute space beyond
* growth limits" https://drafts.csswg.org/css-grid/#extra-space
* Return the number of tracks that are still growable.
*/
template <TrackSizingPhase phase>
static uint32_t MarkExcludedTracks(nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aGrowableTracks,
TrackSize::StateBits aSelector) {
uint32_t numGrowable = aGrowableTracks.Length();
if (phase == TrackSizingPhase::IntrinsicMaximums ||
phase == TrackSizingPhase::MaxContentMaximums) {
// "when handling any intrinsic growth limit: all affected tracks"
return numGrowable;
}
MOZ_ASSERT(aSelector == (aSelector & TrackSize::eIntrinsicMinSizing) &&
(aSelector & TrackSize::eMaxContentMinSizing),
"Should only get here for track sizing steps 2.1 to 2.3");
// Note that eMaxContentMinSizing is always included. We do those first:
numGrowable = MarkExcludedTracks(
aPlan, numGrowable, aGrowableTracks, TrackSize::eMaxContentMinSizing,
TrackSize::eMaxContentMaxSizing, TrackSize::eSkipGrowUnlimited1);
// Now mark min-content/auto min-sizing tracks if requested.
auto minOrAutoSelector = aSelector & ~TrackSize::eMaxContentMinSizing;
if (minOrAutoSelector) {
numGrowable = MarkExcludedTracks(
aPlan, numGrowable, aGrowableTracks, minOrAutoSelector,
TrackSize::eIntrinsicMaxSizing, TrackSize::eSkipGrowUnlimited2);
}
return numGrowable;
}
/**
* Increase the planned size for tracks in aGrowableTracks that aren't
* marked with a eSkipGrowUnlimited flag beyond their limit.
* This implements the "Distribute space beyond growth limits" step in
* https://drafts.csswg.org/css-grid/#distribute-extra-space
*/
void GrowSelectedTracksUnlimited(
nscoord aAvailableSpace, nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aGrowableTracks, uint32_t aNumGrowable,
const FitContentClamper& aFitContentClamper) const {
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0 &&
aNumGrowable <= aGrowableTracks.Length());
nscoord space = aAvailableSpace;
DebugOnly<bool> didClamp = false;
while (aNumGrowable) {
nscoord spacePerTrack = std::max<nscoord>(space / aNumGrowable, 1);
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
if (sz.mState & TrackSize::eSkipGrowUnlimited) {
continue; // an excluded track
}
nscoord delta = spacePerTrack;
nscoord newBase = sz.mBase + delta;
if (MOZ_UNLIKELY((sz.mState & TrackSize::eFitContent) &&
aFitContentClamper)) {
// Clamp newBase to the fit-content() size, for §12.5.2 step 5/6.
if (aFitContentClamper(track, sz.mBase, &newBase)) {
didClamp = true;
delta = newBase - sz.mBase;
MOZ_ASSERT(delta >= 0, "track size shouldn't shrink");
sz.mState |= TrackSize::eSkipGrowUnlimited1;
--aNumGrowable;
}
}
sz.mBase = newBase;
space -= delta;
MOZ_ASSERT(space >= 0);
if (space == 0) {
return;
}
}
}
MOZ_ASSERT(didClamp,
"we don't exit the loop above except by return, "
"unless we clamped some track's size");
}
/**
* Distribute aAvailableSpace to the planned base size for aGrowableTracks
* up to their limits, then distribute the remaining space beyond the limits.
*/
template <TrackSizingPhase phase>
void DistributeToTrackSizes(nscoord aAvailableSpace,
nsTArray<TrackSize>& aPlan,
nsTArray<TrackSize>& aItemPlan,
nsTArray<uint32_t>& aGrowableTracks,
TrackSize::StateBits aSelector,
const FitContentClamper& aFitContentClamper) {
InitializeItemPlan<phase>(aItemPlan, aGrowableTracks);
nscoord space = GrowTracksToLimit(aAvailableSpace, aItemPlan,
aGrowableTracks, aFitContentClamper);
if (space > 0) {
uint32_t numGrowable =
MarkExcludedTracks<phase>(aItemPlan, aGrowableTracks, aSelector);
GrowSelectedTracksUnlimited(space, aItemPlan, aGrowableTracks,
numGrowable, aFitContentClamper);
}
for (uint32_t track : aGrowableTracks) {
nscoord& plannedSize = aPlan[track].mBase;
nscoord itemIncurredSize = aItemPlan[track].mBase;
if (plannedSize < itemIncurredSize) {
plannedSize = itemIncurredSize;
}
}
}
/**
* Distribute aAvailableSize to the tracks. This implements 12.6 at:
* http://dev.w3.org/csswg/css-grid/#algo-grow-tracks
*/
void DistributeFreeSpace(nscoord aAvailableSize) {
const uint32_t numTracks = mSizes.Length();
if (MOZ_UNLIKELY(numTracks == 0 || aAvailableSize <= 0)) {
return;
}
if (aAvailableSize == NS_UNCONSTRAINEDSIZE) {
for (TrackSize& sz : mSizes) {
sz.mBase = sz.mLimit;
}
} else {
// Compute free space and count growable tracks.
nscoord space = aAvailableSize;
uint32_t numGrowable = numTracks;
for (const TrackSize& sz : mSizes) {
space -= sz.mBase;
MOZ_ASSERT(sz.mBase <= sz.mLimit);
if (sz.mBase == sz.mLimit) {
--numGrowable;
}
}
// Distribute the free space evenly to the growable tracks. If not exactly
// divisable the remainder is added to the leading tracks.
while (space > 0 && numGrowable) {
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
for (uint32_t i = 0; i < numTracks && space > 0; ++i) {
TrackSize& sz = mSizes[i];
if (sz.mBase == sz.mLimit) {
continue;
}
nscoord newBase = sz.mBase + spacePerTrack;
if (newBase >= sz.mLimit) {
space -= sz.mLimit - sz.mBase;
sz.mBase = sz.mLimit;
--numGrowable;
} else {
space -= spacePerTrack;
sz.mBase = newBase;
}
}
}
}
}
/**
* Implements "12.7.1. Find the Size of an 'fr'".
* http://dev.w3.org/csswg/css-grid/#algo-find-fr-size
* (The returned value is a 'nscoord' divided by a factor - a floating type
* is used to avoid intermediary rounding errors.)
*/
float FindFrUnitSize(const LineRange& aRange,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions,
nscoord aSpaceToFill) const;
/**
* Implements the "find the used flex fraction" part of StretchFlexibleTracks.
* (The returned value is a 'nscoord' divided by a factor - a floating type
* is used to avoid intermediary rounding errors.)
*/
float FindUsedFlexFraction(GridReflowInput& aState,
nsTArray<GridItemInfo>& aGridItems,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions,
nscoord aAvailableSize) const;
/**
* Implements "12.7. Stretch Flexible Tracks"
* http://dev.w3.org/csswg/css-grid/#algo-flex-tracks
*/
void StretchFlexibleTracks(GridReflowInput& aState,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
nscoord aAvailableSize);
/**
* Implements "12.3. Track Sizing Algorithm"
* http://dev.w3.org/csswg/css-grid/#algo-track-sizing
*/
void CalculateSizes(GridReflowInput& aState,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
nscoord aContentBoxSize, LineRange GridArea::*aRange,
SizingConstraint aConstraint);
/**
* Apply 'align/justify-content', whichever is relevant for this axis.
* https://drafts.csswg.org/css-align-3/#propdef-align-content
*/
void AlignJustifyContent(const nsStylePosition* aStyle,
StyleContentDistribution aAligmentStyleValue,
WritingMode aWM, nscoord aContentBoxSize,
bool aIsSubgridded);
nscoord GridLineEdge(uint32_t aLine, GridLineSide aSide) const {
if (MOZ_UNLIKELY(mSizes.IsEmpty())) {
// https://drafts.csswg.org/css-grid/#grid-definition
// "... the explicit grid still contains one grid line in each axis."
MOZ_ASSERT(aLine == 0, "We should only resolve line 1 in an empty grid");
return nscoord(0);
}
MOZ_ASSERT(aLine <= mSizes.Length(), "mSizes is too small");
if (aSide == GridLineSide::BeforeGridGap) {
if (aLine == 0) {
return nscoord(0);
}
const TrackSize& sz = mSizes[aLine - 1];
return sz.mPosition + sz.mBase;
}
if (aLine == mSizes.Length()) {
return mContentBoxSize;
}
return mSizes[aLine].mPosition;
}
nscoord SumOfGridGaps() const {
auto len = mSizes.Length();
return MOZ_LIKELY(len > 1) ? (len - 1) * mGridGap : 0;
}
/**
* Break before aRow, i.e. set the eBreakBefore flag on aRow and set the grid
* gap before aRow to zero (and shift all rows after it by the removed gap).
*/
void BreakBeforeRow(uint32_t aRow) {
MOZ_ASSERT(mAxis == eLogicalAxisBlock,
"Should only be fragmenting in the block axis (between rows)");
nscoord prevRowEndPos = 0;
if (aRow != 0) {
auto& prevSz = mSizes[aRow - 1];
prevRowEndPos = prevSz.mPosition + prevSz.mBase;
}
auto& sz = mSizes[aRow];
const nscoord gap = sz.mPosition - prevRowEndPos;
sz.mState |= TrackSize::eBreakBefore;
if (gap != 0) {
for (uint32_t i = aRow, len = mSizes.Length(); i < len; ++i) {
mSizes[i].mPosition -= gap;
}
}
}
/**
* Set the size of aRow to aSize and adjust the position of all rows after it.
*/
void ResizeRow(uint32_t aRow, nscoord aNewSize) {
MOZ_ASSERT(mAxis == eLogicalAxisBlock,
"Should only be fragmenting in the block axis (between rows)");
MOZ_ASSERT(aNewSize >= 0);
auto& sz = mSizes[aRow];
nscoord delta = aNewSize - sz.mBase;
NS_WARNING_ASSERTION(delta != nscoord(0), "Useless call to ResizeRow");
sz.mBase = aNewSize;
const uint32_t numRows = mSizes.Length();
for (uint32_t r = aRow + 1; r < numRows; ++r) {
mSizes[r].mPosition += delta;
}
}
nscoord ResolveSize(const LineRange& aRange) const {
MOZ_ASSERT(mCanResolveLineRangeSize);
MOZ_ASSERT(aRange.Extent() > 0, "grid items cover at least one track");
nscoord pos, size;
aRange.ToPositionAndLength(mSizes, &pos, &size);
return size;
}
#ifdef DEBUG
void Dump() const;
#endif
CopyableAutoTArray<TrackSize, 32> mSizes;
nscoord mContentBoxSize;
nscoord mGridGap;
// The first(last)-baseline for the first(last) track in this axis.
PerBaseline<nscoord> mBaseline;
// The union of the track min/max-sizing state bits in this axis.
TrackSize::StateBits mStateUnion;
LogicalAxis mAxis;
// Used for aligning a baseline-aligned subtree of items. The only possible
// values are StyleAlignFlags::{START,END,CENTER,AUTO}. AUTO means there are
// no baseline-aligned items in any track in that axis.
// There is one alignment value for each BaselineSharingGroup.
PerBaseline<StyleAlignFlags> mBaselineSubtreeAlign;
// True if track positions and sizes are final in this axis.
bool mCanResolveLineRangeSize;
// True if this axis has masonry layout.
bool mIsMasonry;
};
#ifdef DEBUG
void nsGridContainerFrame::Tracks::Dump() const {
printf("%zu %s %s ", mSizes.Length(), mIsMasonry ? "masonry" : "grid",
mAxis == eLogicalAxisBlock ? "rows" : "columns");
TrackSize::DumpStateBits(mStateUnion);
printf("\n");
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
printf(" %d: ", i);
mSizes[i].Dump();
printf("\n");
}
double px = AppUnitsPerCSSPixel();
printf("Baselines: %.2fpx %2fpx\n",
mBaseline[BaselineSharingGroup::First] / px,
mBaseline[BaselineSharingGroup::Last] / px);
printf("Gap: %.2fpx\n", mGridGap / px);
printf("ContentBoxSize: %.2fpx\n", mContentBoxSize / px);
}
#endif
/**
* Grid data shared by all continuations, owned by the first-in-flow.
* The data is initialized from the first-in-flow's GridReflowInput at
* the end of its reflow. Fragmentation will modify mRows.mSizes -
* the mPosition to remove the row gap at the break boundary, the mState
* by setting the eBreakBefore flag, and mBase is modified when we decide
* to grow a row. mOriginalRowData is setup by the first-in-flow and
* not modified after that. It's used for undoing the changes to mRows.
* mCols, mGridItems, mAbsPosItems are used for initializing the grid
* reflow input for continuations, see GridReflowInput::Initialize below.
*/
struct nsGridContainerFrame::SharedGridData {
SharedGridData()
: mCols(eLogicalAxisInline),
mRows(eLogicalAxisBlock),
mGenerateComputedGridInfo(false) {}
Tracks mCols;
Tracks mRows;
struct RowData {
nscoord mBase; // the original track size
nscoord mGap; // the original gap before a track
};
nsTArray<RowData> mOriginalRowData;
nsTArray<GridItemInfo> mGridItems;
nsTArray<GridItemInfo> mAbsPosItems;
bool mGenerateComputedGridInfo;
/**
* Only set on the first-in-flow. Continuations will Initialize() their
* GridReflowInput from it.
*/
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedGridData)
};
struct MOZ_STACK_CLASS nsGridContainerFrame::GridReflowInput {
GridReflowInput(nsGridContainerFrame* aFrame, const ReflowInput& aRI)
: GridReflowInput(aFrame, *aRI.mRenderingContext, &aRI,
aRI.mStylePosition, aRI.GetWritingMode()) {}
GridReflowInput(nsGridContainerFrame* aFrame, gfxContext& aRC)
: GridReflowInput(aFrame, aRC, nullptr, aFrame->StylePosition(),
aFrame->GetWritingMode()) {}
/**
* Initialize our track sizes and grid item info using the shared
* state from aGridContainerFrame first-in-flow.
*/
void InitializeForContinuation(nsGridContainerFrame* aGridContainerFrame,
nscoord aConsumedBSize) {
MOZ_ASSERT(aGridContainerFrame->GetPrevInFlow(),
"don't call this on the first-in-flow");
MOZ_ASSERT(mGridItems.IsEmpty() && mAbsPosItems.IsEmpty(),
"shouldn't have any item data yet");
// Get the SharedGridData from the first-in-flow. Also calculate the number
// of fragments before this so that we can figure out our start row below.
uint32_t fragment = 0;
nsIFrame* firstInFlow = aGridContainerFrame;
for (auto pif = aGridContainerFrame->GetPrevInFlow(); pif;
pif = pif->GetPrevInFlow()) {
++fragment;
firstInFlow = pif;
}
mSharedGridData = firstInFlow->GetProperty(SharedGridData::Prop());
MOZ_ASSERT(mSharedGridData, "first-in-flow must have SharedGridData");
// Find the start row for this fragment and undo breaks after that row
// since the breaks might be different from the last reflow.
auto& rowSizes = mSharedGridData->mRows.mSizes;
const uint32_t numRows = rowSizes.Length();
mStartRow = numRows;
for (uint32_t row = 0, breakCount = 0; row < numRows; ++row) {
if (rowSizes[row].mState & TrackSize::eBreakBefore) {
if (fragment == ++breakCount) {
mStartRow = row;
mFragBStart = rowSizes[row].mPosition;
// Restore the original size for |row| and grid gaps / state after it.
const auto& origRowData = mSharedGridData->mOriginalRowData;
rowSizes[row].mBase = origRowData[row].mBase;
nscoord prevEndPos = rowSizes[row].mPosition + rowSizes[row].mBase;
while (++row < numRows) {
auto& sz = rowSizes[row];
const auto& orig = origRowData[row];
sz.mPosition = prevEndPos + orig.mGap;
sz.mBase = orig.mBase;
sz.mState &= ~TrackSize::eBreakBefore;
prevEndPos = sz.mPosition + sz.mBase;
}
break;
}
}
}
if (mStartRow == numRows ||
aGridContainerFrame->IsMasonry(eLogicalAxisBlock)) {
// All of the grid's rows fit inside of previous grid-container fragments,
// or it's a masonry axis.
mFragBStart = aConsumedBSize;
}
// Copy the shared track state.
// XXX consider temporarily swapping the array elements instead and swapping
// XXX them back after we're done reflowing, for better performance.
// XXX (bug 1252002)
mCols = mSharedGridData->mCols;
mRows = mSharedGridData->mRows;
if (firstInFlow->GetProperty(UsedTrackSizes::Prop())) {
auto* prop = aGridContainerFrame->GetProperty(UsedTrackSizes::Prop());
if (!prop) {
prop = new UsedTrackSizes();
aGridContainerFrame->SetProperty(UsedTrackSizes::Prop(), prop);
}
prop->mCanResolveLineRangeSize = {true, true};
prop->mSizes[eLogicalAxisInline].Assign(mCols.mSizes);
prop->mSizes[eLogicalAxisBlock].Assign(mRows.mSizes);
}
// Copy item data from each child's first-in-flow data in mSharedGridData.
// XXX NOTE: This is O(n^2) in the number of items. (bug 1252186)
mIter.Reset();
for (; !mIter.AtEnd(); mIter.Next()) {
nsIFrame* child = *mIter;
nsIFrame* childFirstInFlow = child->FirstInFlow();
DebugOnly<size_t> len = mGridItems.Length();
for (auto& itemInfo : mSharedGridData->mGridItems) {
if (itemInfo.mFrame == childFirstInFlow) {
auto item =
mGridItems.AppendElement(GridItemInfo(child, itemInfo.mArea));
// Copy the item's baseline data so that the item's last fragment can
// do 'last baseline' alignment if necessary.
item->mState[0] |= itemInfo.mState[0] & ItemState::eAllBaselineBits;
item->mState[1] |= itemInfo.mState[1] & ItemState::eAllBaselineBits;
item->mBaselineOffset[0] = itemInfo.mBaselineOffset[0];
item->mBaselineOffset[1] = itemInfo.mBaselineOffset[1];
item->mState[0] |= itemInfo.mState[0] & ItemState::eAutoPlacement;
item->mState[1] |= itemInfo.mState[1] & ItemState::eAutoPlacement;
break;
}
}
MOZ_ASSERT(mGridItems.Length() == len + 1, "can't find GridItemInfo");
}
// XXX NOTE: This is O(n^2) in the number of abs.pos. items. (bug 1252186)
nsFrameList absPosChildren(aGridContainerFrame->GetChildList(
aGridContainerFrame->GetAbsoluteListID()));
for (auto f : absPosChildren) {
nsIFrame* childFirstInFlow = f->FirstInFlow();
DebugOnly<size_t> len = mAbsPosItems.Length();
for (auto& itemInfo : mSharedGridData->mAbsPosItems) {
if (itemInfo.mFrame == childFirstInFlow) {
mAbsPosItems.AppendElement(GridItemInfo(f, itemInfo.mArea));
break;
}
}
MOZ_ASSERT(mAbsPosItems.Length() == len + 1, "can't find GridItemInfo");
}
// Copy in the computed grid info state bit
if (mSharedGridData->mGenerateComputedGridInfo) {
aGridContainerFrame->SetShouldGenerateComputedInfo(true);
}
}
/**
* Calculate our track sizes in the given axis.
*/
void CalculateTrackSizesForAxis(LogicalAxis aAxis, const Grid& aGrid,
nscoord aCBSize,
SizingConstraint aConstraint);
/**
* Calculate our track sizes.
*/
void CalculateTrackSizes(const Grid& aGrid, const LogicalSize& aContentBox,
SizingConstraint aConstraint);
/**
* Return the percentage basis for a grid item in its writing-mode.
* If aAxis is eLogicalAxisInline then we return NS_UNCONSTRAINEDSIZE in
* both axes since we know all track sizes are indefinite at this point
* (we calculate column sizes before row sizes). Otherwise, assert that
* column sizes are known and calculate the size for aGridItem.mArea.mCols
* and use NS_UNCONSTRAINEDSIZE in the other axis.
* @param aAxis the axis we're currently calculating track sizes for
*/
LogicalSize PercentageBasisFor(LogicalAxis aAxis,
const GridItemInfo& aGridItem) const;
/**
* Return the containing block for a grid item occupying aArea.
*/
LogicalRect ContainingBlockFor(const GridArea& aArea) const;
/**
* Return the containing block for an abs.pos. grid item occupying aArea.
* Any 'auto' lines in the grid area will be aligned with grid container
* containing block on that side.
* @param aGridOrigin the origin of the grid
* @param aGridCB the grid container containing block (its padding area)
*/
LogicalRect ContainingBlockForAbsPos(const GridArea& aArea,
const LogicalPoint& aGridOrigin,
const LogicalRect& aGridCB) const;
/**
* Apply `align/justify-content` alignment in our masonry axis.
* This aligns the "masonry box" within our content box size.
*/
void AlignJustifyContentInMasonryAxis(nscoord aMasonryBoxSize,
nscoord aContentBoxSize);
/**
* Apply `align/justify-tracks` alignment in our masonry axis.
*/
void AlignJustifyTracksInMasonryAxis(const LogicalSize& aContentSize,
const nsSize& aContainerSize);
// Helper for CollectSubgridItemsForAxis.
static void CollectSubgridForAxis(LogicalAxis aAxis, WritingMode aContainerWM,
const LineRange& aRangeInAxis,
const LineRange& aRangeInOppositeAxis,
const GridItemInfo& aItem,
const nsTArray<GridItemInfo>& aItems,
nsTArray<GridItemInfo>& aResult) {
const auto oppositeAxis = GetOrthogonalAxis(aAxis);
bool itemIsSubgridInOppositeAxis = aItem.IsSubgrid(oppositeAxis);
auto subgridWM = aItem.mFrame->GetWritingMode();
bool isOrthogonal = subgridWM.IsOrthogonalTo(aContainerWM);
bool isSameDirInAxis =
subgridWM.ParallelAxisStartsOnSameSide(aAxis, aContainerWM);
bool isSameDirInOppositeAxis =
subgridWM.ParallelAxisStartsOnSameSide(oppositeAxis, aContainerWM);
if (isOrthogonal) {
// We'll Transpose the area below so these needs to be transposed as well.
std::swap(isSameDirInAxis, isSameDirInOppositeAxis);
}
uint32_t offsetInAxis = aRangeInAxis.mStart;
uint32_t gridEndInAxis = aRangeInAxis.Extent();
uint32_t offsetInOppositeAxis = aRangeInOppositeAxis.mStart;
uint32_t gridEndInOppositeAxis = aRangeInOppositeAxis.Extent();
for (const auto& subgridItem : aItems) {
auto newItem = aResult.AppendElement(
isOrthogonal ? subgridItem.Transpose() : subgridItem);
if (MOZ_UNLIKELY(!isSameDirInAxis)) {
newItem->ReverseDirection(aAxis, gridEndInAxis);
}
newItem->mArea.LineRangeForAxis(aAxis).Translate(offsetInAxis);
if (itemIsSubgridInOppositeAxis) {
if (MOZ_UNLIKELY(!isSameDirInOppositeAxis)) {
newItem->ReverseDirection(oppositeAxis, gridEndInOppositeAxis);
}
LineRange& range = newItem->mArea.LineRangeForAxis(oppositeAxis);
range.Translate(offsetInOppositeAxis);
}
if (newItem->IsSubgrid(aAxis)) {
auto* subgrid =
subgridItem.SubgridFrame()->GetProperty(Subgrid::Prop());
CollectSubgridForAxis(aAxis, aContainerWM,
newItem->mArea.LineRangeForAxis(aAxis),
newItem->mArea.LineRangeForAxis(oppositeAxis),
*newItem, subgrid->mGridItems, aResult);
}
}
}
// Copy all descendant items from all our subgrid children that are subgridded
// in aAxis recursively into aResult. All item grid area's and state are
// translated to our coordinates.
void CollectSubgridItemsForAxis(LogicalAxis aAxis,
nsTArray<GridItemInfo>& aResult) const {
for (const auto& item : mGridItems) {
if (item.IsSubgrid(aAxis)) {
const auto oppositeAxis = GetOrthogonalAxis(aAxis);
auto* subgrid = item.SubgridFrame()->GetProperty(Subgrid::Prop());
CollectSubgridForAxis(aAxis, mWM, item.mArea.LineRangeForAxis(aAxis),
item.mArea.LineRangeForAxis(oppositeAxis), item,
subgrid->mGridItems, aResult);
}
}
}
Tracks& TracksFor(LogicalAxis aAxis) {
return aAxis == eLogicalAxisBlock ? mRows : mCols;
}
const Tracks& TracksFor(LogicalAxis aAxis) const {
return aAxis == eLogicalAxisBlock ? mRows : mCols;
}
CSSOrderAwareFrameIterator mIter;
const nsStylePosition* const mGridStyle;
Tracks mCols;
Tracks mRows;
TrackSizingFunctions mColFunctions;
TrackSizingFunctions mRowFunctions;
/**
* Info about each (normal flow) grid item.
*/
nsTArray<GridItemInfo> mGridItems;
/**
* Info about each grid-aligned abs.pos. child.
*/
nsTArray<GridItemInfo> mAbsPosItems;
/**
* @note mReflowInput may be null when using the 2nd ctor above. In this case
* we'll construct a dummy parent reflow input if we need it to calculate
* min/max-content contributions when sizing tracks.
*/
const ReflowInput* const mReflowInput;
gfxContext& mRenderingContext;
nsGridContainerFrame* const mFrame;
SharedGridData* mSharedGridData; // [weak] owned by mFrame's first-in-flow.
/** Computed border+padding with mSkipSides applied. */
LogicalMargin mBorderPadding;
/**
* BStart of this fragment in "grid space" (i.e. the concatenation of content
* areas of all fragments). Equal to mRows.mSizes[mStartRow].mPosition,
* or, if this fragment starts after the last row, the ConsumedBSize().
*/
nscoord mFragBStart;
/** The start row for this fragment. */
uint32_t mStartRow;
/**
* The start row for the next fragment, if any. If mNextFragmentStartRow ==
* mStartRow then there are no rows in this fragment.
*/
uint32_t mNextFragmentStartRow;
/** Our tentative ApplySkipSides bits. */
LogicalSides mSkipSides;
const WritingMode mWM;
/** Initialized lazily, when we find the fragmentainer. */
bool mInFragmentainer;
private:
GridReflowInput(nsGridContainerFrame* aFrame, gfxContext& aRenderingContext,
const ReflowInput* aReflowInput,
const nsStylePosition* aGridStyle, const WritingMode& aWM)
: mIter(aFrame, kPrincipalList),
mGridStyle(aGridStyle),
mCols(eLogicalAxisInline),
mRows(eLogicalAxisBlock),
mColFunctions(mGridStyle->mGridTemplateColumns,
mGridStyle->mGridAutoColumns,
aFrame->IsSubgrid(eLogicalAxisInline)),
mRowFunctions(mGridStyle->mGridTemplateRows, mGridStyle->mGridAutoRows,
aFrame->IsSubgrid(eLogicalAxisBlock)),
mReflowInput(aReflowInput),
mRenderingContext(aRenderingContext),
mFrame(aFrame),
mSharedGridData(nullptr),
mBorderPadding(aWM),
mFragBStart(0),
mStartRow(0),
mNextFragmentStartRow(0),
mSkipSides(aFrame->GetWritingMode()),
mWM(aWM),
mInFragmentainer(false) {
MOZ_ASSERT(!aReflowInput || aReflowInput->mFrame == mFrame);
if (aReflowInput) {
mBorderPadding = aReflowInput->ComputedLogicalBorderPadding(mWM);
mSkipSides = aFrame->PreReflowBlockLevelLogicalSkipSides();
mBorderPadding.ApplySkipSides(mSkipSides);
}
mCols.mIsMasonry = aFrame->IsMasonry(eLogicalAxisInline);
mRows.mIsMasonry = aFrame->IsMasonry(eLogicalAxisBlock);
MOZ_ASSERT(!(mCols.mIsMasonry && mRows.mIsMasonry),
"can't have masonry layout in both axes");
}
};
using GridReflowInput = nsGridContainerFrame::GridReflowInput;
/**
* The Grid implements grid item placement and the state of the grid -
* the size of the explicit/implicit grid, which cells are occupied etc.
*/
struct MOZ_STACK_CLASS nsGridContainerFrame::Grid {
explicit Grid(const Grid* aParentGrid = nullptr) : mParentGrid(aParentGrid) {}
/**
* Place all child frames into the grid and expand the (implicit) grid as
* needed. The allocated GridAreas are stored in the GridAreaProperty
* frame property on the child frame.
* @param aRepeatSizing the container's [min-|max-]*size - used to determine
* the number of repeat(auto-fill/fit) tracks.
*/
void PlaceGridItems(GridReflowInput& aState,
const RepeatTrackSizingInput& aRepeatSizing);
void SubgridPlaceGridItems(GridReflowInput& aParentState, Grid* aParentGrid,
const GridItemInfo& aGridItem);
/**
* As above but for an abs.pos. child. Any 'auto' lines will be represented
* by kAutoLine in the LineRange result.
* @param aGridStart the first line in the final, but untranslated grid
* @param aGridEnd the last line in the final, but untranslated grid
*/
LineRange ResolveAbsPosLineRange(const StyleGridLine& aStart,
const StyleGridLine& aEnd,
const LineNameMap& aNameMap,
LogicalAxis aAxis, uint32_t aExplicitGridEnd,
int32_t aGridStart, int32_t aGridEnd,
const nsStylePosition* aStyle);
/**
* Return a GridArea for abs.pos. item with non-auto lines placed at
* a definite line (1-based) with placement errors resolved. One or both
* positions may still be 'auto'.
* @param aChild the abs.pos. grid item to place
* @param aStyle the StylePosition() for the grid container
*/
GridArea PlaceAbsPos(nsIFrame* aChild, const LineNameMap& aColLineNameMap,
const LineNameMap& aRowLineNameMap,
const nsStylePosition* aStyle);
/**
* Find the first column in row aLockedRow starting at aStartCol where aArea
* could be placed without overlapping other items. The returned column may
* cause aArea to overflow the current implicit grid bounds if placed there.
*/
uint32_t FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
const GridArea* aArea) const;
/**
* Place aArea in the first column (in row aArea->mRows.mStart) starting at
* aStartCol without overlapping other items. The resulting aArea may
* overflow the current implicit grid bounds.
* @param aClampMaxColLine the maximum allowed column line number (zero-based)
* Pre-condition: aArea->mRows.IsDefinite() is true.
* Post-condition: aArea->IsDefinite() is true.
*/
void PlaceAutoCol(uint32_t aStartCol, GridArea* aArea,
uint32_t aClampMaxColLine) const;
/**
* Find the first row in column aLockedCol starting at aStartRow where aArea
* could be placed without overlapping other items. The returned row may
* cause aArea to overflow the current implicit grid bounds if placed there.
*/
uint32_t FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
const GridArea* aArea) const;
/**
* Place aArea in the first row (in column aArea->mCols.mStart) starting at
* aStartRow without overlapping other items. The resulting aArea may
* overflow the current implicit grid bounds.
* @param aClampMaxRowLine the maximum allowed row line number (zero-based)
* Pre-condition: aArea->mCols.IsDefinite() is true.
* Post-condition: aArea->IsDefinite() is true.
*/
void PlaceAutoRow(uint32_t aStartRow, GridArea* aArea,
uint32_t aClampMaxRowLine) const;
/**
* Place aArea in the first column starting at aStartCol,aStartRow without
* causing it to overlap other items or overflow mGridColEnd.
* If there's no such column in aStartRow, continue in position 1,aStartRow+1.
* @param aClampMaxColLine the maximum allowed column line number (zero-based)
* @param aClampMaxRowLine the maximum allowed row line number (zero-based)
* Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
* Post-condition: aArea->IsDefinite() is true.
*/
void PlaceAutoAutoInRowOrder(uint32_t aStartCol, uint32_t aStartRow,
GridArea* aArea, uint32_t aClampMaxColLine,
uint32_t aClampMaxRowLine) const;
/**
* Place aArea in the first row starting at aStartCol,aStartRow without
* causing it to overlap other items or overflow mGridRowEnd.
* If there's no such row in aStartCol, continue in position aStartCol+1,1.
* @param aClampMaxColLine the maximum allowed column line number (zero-based)
* @param aClampMaxRowLine the maximum allowed row line number (zero-based)
* Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
* Post-condition: aArea->IsDefinite() is true.
*/
void PlaceAutoAutoInColOrder(uint32_t aStartCol, uint32_t aStartRow,
GridArea* aArea, uint32_t aClampMaxColLine,
uint32_t aClampMaxRowLine) const;
/**
* Return aLine if it's inside the aMin..aMax range (inclusive),
* otherwise return kAutoLine.
*/
static int32_t AutoIfOutside(int32_t aLine, int32_t aMin, int32_t aMax) {
MOZ_ASSERT(aMin <= aMax);
if (aLine < aMin || aLine > aMax) {
return kAutoLine;
}
return aLine;
}
/**
* Inflate the implicit grid to include aArea.
* @param aArea may be definite or auto
*/
void InflateGridFor(const GridArea& aArea) {
mGridColEnd = std::max(mGridColEnd, aArea.mCols.HypotheticalEnd());
mGridRowEnd = std::max(mGridRowEnd, aArea.mRows.HypotheticalEnd());
MOZ_ASSERT(mGridColEnd <= kTranslatedMaxLine &&
mGridRowEnd <= kTranslatedMaxLine);
}
/**
* Calculates the empty tracks in a repeat(auto-fit).
* @param aOutNumEmptyLines Outputs the number of tracks which are empty.
* @param aSizingFunctions Sizing functions for the relevant axis.
* @param aNumGridLines Number of grid lines for the relevant axis.
* @param aIsEmptyFunc Functor to check if a cell is empty. This should be
* mCellMap.IsColEmpty or mCellMap.IsRowEmpty, depending on the axis.
*/
template <typename IsEmptyFuncT>
static Maybe<nsTArray<uint32_t>> CalculateAdjustForAutoFitElements(
uint32_t* aOutNumEmptyTracks, TrackSizingFunctions& aSizingFunctions,
uint32_t aNumGridLines, IsEmptyFuncT aIsEmptyFunc);
/**
* Return a line number for (non-auto) aLine, per:
* http://dev.w3.org/csswg/css-grid/#line-placement
* @param aLine style data for the line (must be non-auto)
* @param aNth a number of lines to find from aFromIndex, negative if the
* search should be in reverse order. In the case aLine has
* a specified line name, it's permitted to pass in zero which
* will be treated as one.
* @param aFromIndex the zero-based index to start counting from
* @param aLineNameList the explicit named lines
* @param aSide the axis+edge we're resolving names for (e.g. if we're
resolving a grid-row-start line, pass eLogicalSideBStart)
* @param aExplicitGridEnd the last line in the explicit grid
* @param aStyle the StylePosition() for the grid container
* @return a definite line (1-based), clamped to
* the mClampMinLine..mClampMaxLine range
*/
int32_t ResolveLine(const StyleGridLine& aLine, int32_t aNth,
uint32_t aFromIndex, const LineNameMap& aNameMap,
LogicalSide aSide, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle);
/**
* Helper method for ResolveLineRange.
* @see ResolveLineRange
* @return a pair (start,end) of lines
*/
typedef std::pair<int32_t, int32_t> LinePair;
LinePair ResolveLineRangeHelper(const StyleGridLine& aStart,
const StyleGridLine& aEnd,
const LineNameMap& aNameMap,
LogicalAxis aAxis, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle);
/**
* Return a LineRange based on the given style data. Non-auto lines
* are resolved to a definite line number (1-based) per:
* http://dev.w3.org/csswg/css-grid/#line-placement
* with placement errors corrected per:
* http://dev.w3.org/csswg/css-grid/#grid-placement-errors
* @param aStyle the StylePosition() for the grid container
* @param aStart style data for the start line
* @param aEnd style data for the end line
* @param aLineNameList the explicit named lines
* @param aAxis the axis we're resolving names in
* @param aExplicitGridEnd the last line in the explicit grid
* @param aStyle the StylePosition() for the grid container
*/
LineRange ResolveLineRange(const StyleGridLine& aStart,
const StyleGridLine& aEnd,
const LineNameMap& aNameMap, LogicalAxis aAxis,
uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle);
/**
* Return a GridArea with non-auto lines placed at a definite line (1-based)
* with placement errors resolved. One or both positions may still
* be 'auto'.
* @param aChild the grid item
* @param aStyle the StylePosition() for the grid container
*/
GridArea PlaceDefinite(nsIFrame* aChild, const LineNameMap& aColLineNameMap,
const LineNameMap& aRowLineNameMap,
const nsStylePosition* aStyle);
bool HasImplicitNamedArea(nsAtom* aName) const {
return mAreas && mAreas->has(aName);
}
// Return true if aString ends in aSuffix and has at least one character
// before the suffix. Assign aIndex to where the suffix starts.
static bool IsNameWithSuffix(nsAtom* aString, const nsString& aSuffix,
uint32_t* aIndex) {
if (StringEndsWith(nsDependentAtomString(aString), aSuffix)) {
*aIndex = aString->GetLength() - aSuffix.Length();
return *aIndex != 0;
}
return false;
}
static bool IsNameWithEndSuffix(nsAtom* aString, uint32_t* aIndex) {
return IsNameWithSuffix(aString, u"-end"_ns, aIndex);
}
static bool IsNameWithStartSuffix(nsAtom* aString, uint32_t* aIndex) {
return IsNameWithSuffix(aString, u"-start"_ns, aIndex);
}
// Return the relevant parent LineNameMap for the given subgrid axis aAxis.
const LineNameMap* ParentLineMapForAxis(bool aIsOrthogonal,
LogicalAxis aAxis) const {
if (!mParentGrid) {
return nullptr;
}
bool isRows = aIsOrthogonal == (aAxis == eLogicalAxisInline);
return isRows ? mParentGrid->mRowNameMap : mParentGrid->mColNameMap;
}
void SetLineMaps(const LineNameMap* aColNameMap,
const LineNameMap* aRowNameMap) {
mColNameMap = aColNameMap;
mRowNameMap = aRowNameMap;
}
/**
* A CellMap holds state for each cell in the grid.
* It's row major. It's sparse in the sense that it only has enough rows to
* cover the last row that has a grid item. Each row only has enough entries
* to cover columns that are occupied *on that row*, i.e. it's not a full
* matrix covering the entire implicit grid. An absent Cell means that it's
* unoccupied by any grid item.
*/
struct CellMap {
struct Cell {
constexpr Cell() : mIsOccupied(false) {}
bool mIsOccupied : 1;
};
void Fill(const GridArea& aGridArea) {
MOZ_ASSERT(aGridArea.IsDefinite());
MOZ_ASSERT(aGridArea.mRows.mStart < aGridArea.mRows.mEnd);
MOZ_ASSERT(aGridArea.mCols.mStart < aGridArea.mCols.mEnd);
const auto numRows = aGridArea.mRows.mEnd;
const auto numCols = aGridArea.mCols.mEnd;
mCells.EnsureLengthAtLeast(numRows);
for (auto i = aGridArea.mRows.mStart; i < numRows; ++i) {
nsTArray<Cell>& cellsInRow = mCells[i];
cellsInRow.EnsureLengthAtLeast(numCols);
for (auto j = aGridArea.mCols.mStart; j < numCols; ++j) {
cellsInRow[j].mIsOccupied = true;
}
}
}
uint32_t IsEmptyCol(uint32_t aCol) const {
for (auto& row : mCells) {
if (aCol < row.Length() && row[aCol].mIsOccupied) {
return false;
}
}
return true;
}
uint32_t IsEmptyRow(uint32_t aRow) const {
if (aRow >= mCells.Length()) {
return true;
}
for (const Cell& cell : mCells[aRow]) {
if (cell.mIsOccupied) {
return false;
}
}
return true;
}
#ifdef DEBUG
void Dump() const {
const size_t numRows = mCells.Length();
for (size_t i = 0; i < numRows; ++i) {
const nsTArray<Cell>& cellsInRow = mCells[i];
const size_t numCols = cellsInRow.Length();
printf("%lu:\t", (unsigned long)i + 1);
for (size_t j = 0; j < numCols; ++j) {
printf(cellsInRow[j].mIsOccupied ? "X " : ". ");
}
printf("\n");
}
}
#endif
nsTArray<nsTArray<Cell>> mCells;
};
/**
* State for each cell in the grid.
*/
CellMap mCellMap;
/**
* @see HasImplicitNamedArea.
*/
ImplicitNamedAreas* mAreas;
/**
* The last column grid line (1-based) in the explicit grid.
* (i.e. the number of explicit columns + 1)
*/
uint32_t mExplicitGridColEnd;
/**
* The last row grid line (1-based) in the explicit grid.
* (i.e. the number of explicit rows + 1)
*/
uint32_t mExplicitGridRowEnd;
// Same for the implicit grid, except these become zero-based after
// resolving definite lines.
uint32_t mGridColEnd;
uint32_t mGridRowEnd;
/**
* Offsets from the start of the implicit grid to the start of the translated
* explicit grid. They are zero if there are no implicit lines before 1,1.
* e.g. "grid-column: span 3 / 1" makes mExplicitGridOffsetCol = 3 and the
* corresponding GridArea::mCols will be 0 / 3 in the zero-based translated
* grid.
*/
uint32_t mExplicitGridOffsetCol;
uint32_t mExplicitGridOffsetRow;
/**
* Our parent grid if any.
*/
const Grid* mParentGrid;
/**
* Our LineNameMaps.
*/
const LineNameMap* mColNameMap;
const LineNameMap* mRowNameMap;
};
/**
* Compute margin+border+padding for aGridItem.mFrame (a subgrid) and store it
* on its Subgrid property (and return that property).
* aPercentageBasis is in the grid item's writing-mode.
*/
static Subgrid* SubgridComputeMarginBorderPadding(
const GridItemInfo& aGridItem, const LogicalSize& aPercentageBasis) {
auto* subgridFrame = aGridItem.SubgridFrame();
auto cbWM = aGridItem.mFrame->GetParent()->GetWritingMode();
nsMargin physicalMBP;
{
auto wm = subgridFrame->GetWritingMode();
auto pmPercentageBasis = cbWM.IsOrthogonalTo(wm)
? aPercentageBasis.BSize(wm)
: aPercentageBasis.ISize(wm);
SizeComputationInput sz(subgridFrame, nullptr, cbWM, pmPercentageBasis);
physicalMBP =
sz.ComputedPhysicalMargin() + sz.ComputedPhysicalBorderPadding();
}
auto* subgrid = subgridFrame->GetProperty(Subgrid::Prop());
subgrid->mMarginBorderPadding = LogicalMargin(cbWM, physicalMBP);
if (aGridItem.mFrame != subgridFrame) {
nsIScrollableFrame* scrollFrame = aGridItem.mFrame->GetScrollTargetFrame();
if (scrollFrame) {
nsMargin ssz = scrollFrame->GetActualScrollbarSizes();
subgrid->mMarginBorderPadding += LogicalMargin(cbWM, ssz);
}
if (aGridItem.mFrame->IsFieldSetFrame()) {
const auto* f = static_cast<nsFieldSetFrame*>(aGridItem.mFrame);
const auto* inner = f->GetInner();
auto wm = inner->GetWritingMode();
LogicalPoint pos = inner->GetLogicalPosition(aGridItem.mFrame->GetSize());
// The legend is always on the BStart side and it inflates the fieldset's
// "border area" size. The inner frame's b-start pos equals that size.
LogicalMargin offsets(wm, pos.B(wm), 0, 0, 0);
subgrid->mMarginBorderPadding += offsets.ConvertTo(cbWM, wm);
}
}
return subgrid;
}
static void CopyUsedTrackSizes(nsTArray<TrackSize>& aResult,
const nsGridContainerFrame* aUsedTrackSizesFrame,
const UsedTrackSizes* aUsedTrackSizes,
const nsGridContainerFrame* aSubgridFrame,
const Subgrid* aSubgrid,
LogicalAxis aSubgridAxis) {
MOZ_ASSERT(aSubgridFrame->ParentGridContainerForSubgrid() ==
aUsedTrackSizesFrame);
aResult.SetLength(aSubgridAxis == eLogicalAxisInline ? aSubgrid->mGridColEnd
: aSubgrid->mGridRowEnd);
auto parentAxis =
aSubgrid->mIsOrthogonal ? GetOrthogonalAxis(aSubgridAxis) : aSubgridAxis;
const auto& parentSizes = aUsedTrackSizes->mSizes[parentAxis];
MOZ_ASSERT(aUsedTrackSizes->mCanResolveLineRangeSize[parentAxis]);
if (parentSizes.IsEmpty()) {
return;
}
const auto& range = aSubgrid->mArea.LineRangeForAxis(parentAxis);
const auto cbwm = aUsedTrackSizesFrame->GetWritingMode();
const auto wm = aSubgridFrame->GetWritingMode();
// Recompute the MBP to resolve percentages against the resolved track sizes.
if (parentAxis == eLogicalAxisInline) {
// Find the subgrid's grid item frame in its parent grid container. This
// is usually the same as aSubgridFrame but it may also have a ScrollFrame,
// FieldSetFrame etc. We just loop until we see the first ancestor
// GridContainerFrame and pick the last frame we saw before that.
// Note that all subgrids are inside a parent (sub)grid container.
const nsIFrame* outerGridItemFrame = aSubgridFrame;
for (nsIFrame* parent = aSubgridFrame->GetParent();
parent != aUsedTrackSizesFrame; parent = parent->GetParent()) {
MOZ_ASSERT(!parent->IsGridContainerFrame());
outerGridItemFrame = parent;
}
auto sizeInAxis = range.ToLength(aUsedTrackSizes->mSizes[parentAxis]);
LogicalSize pmPercentageBasis =
aSubgrid->mIsOrthogonal ? LogicalSize(wm, nscoord(0), sizeInAxis)
: LogicalSize(wm, sizeInAxis, nscoord(0));
GridItemInfo info(const_cast<nsIFrame*>(outerGridItemFrame),
aSubgrid->mArea);
SubgridComputeMarginBorderPadding(info, pmPercentageBasis);
}
const LogicalMargin& mbp = aSubgrid->mMarginBorderPadding;
nscoord startMBP;
nscoord endMBP;
if (MOZ_LIKELY(cbwm.ParallelAxisStartsOnSameSide(parentAxis, wm))) {
startMBP = mbp.Start(parentAxis, cbwm);
endMBP = mbp.End(parentAxis, cbwm);
uint32_t i = range.mStart;
nscoord startPos = parentSizes[i].mPosition + startMBP;
for (auto& sz : aResult) {
sz = parentSizes[i++];
sz.mPosition -= startPos;
}
} else {
startMBP = mbp.End(parentAxis, cbwm);
endMBP = mbp.Start(parentAxis, cbwm);
uint32_t i = range.mEnd - 1;
const auto& parentEnd = parentSizes[i];
nscoord parentEndPos = parentEnd.mPosition + parentEnd.mBase - startMBP;
for (auto& sz : aResult) {
sz = parentSizes[i--];
sz.mPosition = parentEndPos - (sz.mPosition + sz.mBase);
}
}
auto& startTrack = aResult[0];
startTrack.mPosition = 0;
startTrack.mBase -= startMBP;
if (MOZ_UNLIKELY(startTrack.mBase < nscoord(0))) {
// Our MBP doesn't fit in the start track. Adjust the track position
// to maintain track alignment with our parent.
startTrack.mPosition = startTrack.mBase;
startTrack.mBase = nscoord(0);
}
auto& endTrack = aResult.LastElement();
endTrack.mBase -= endMBP;
if (MOZ_UNLIKELY(endTrack.mBase < nscoord(0))) {
endTrack.mBase = nscoord(0);
}
}
void nsGridContainerFrame::UsedTrackSizes::ResolveTrackSizesForAxis(
nsGridContainerFrame* aFrame, LogicalAxis aAxis, gfxContext& aRC) {
if (mCanResolveLineRangeSize[aAxis]) {
return;
}
if (!aFrame->IsSubgrid()) {
// We can't resolve sizes in this axis at this point. aFrame is the top grid
// container, which will store its final track sizes later once they're
// resolved in this axis (in GridReflowInput::CalculateTrackSizesForAxis).
// The single caller of this method only needs track sizes for
// calculating a CB size and it will treat it as indefinite when
// this happens.
return;
}
auto* parent = aFrame->ParentGridContainerForSubgrid();
auto* parentSizes = parent->GetUsedTrackSizes();
if (!parentSizes) {
parentSizes = new UsedTrackSizes();
parent->SetProperty(UsedTrackSizes::Prop(), parentSizes);
}
auto* subgrid = aFrame->GetProperty(Subgrid::Prop());
const auto parentAxis =
subgrid->mIsOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
parentSizes->ResolveTrackSizesForAxis(parent, parentAxis, aRC);
if (!parentSizes->mCanResolveLineRangeSize[parentAxis]) {
if (aFrame->IsSubgrid(aAxis)) {
ResolveSubgridTrackSizesForAxis(aFrame, aAxis, subgrid, aRC,
NS_UNCONSTRAINEDSIZE);
}
return;
}
if (aFrame->IsSubgrid(aAxis)) {
CopyUsedTrackSizes(mSizes[aAxis], parent, parentSizes, aFrame, subgrid,
aAxis);
mCanResolveLineRangeSize[aAxis] = true;
} else {
const auto& range = subgrid->mArea.LineRangeForAxis(parentAxis);
nscoord contentBoxSize = range.ToLength(parentSizes->mSizes[parentAxis]);
auto parentWM = aFrame->GetParent()->GetWritingMode();
contentBoxSize -=
subgrid->mMarginBorderPadding.StartEnd(parentAxis, parentWM);
contentBoxSize = std::max(nscoord(0), contentBoxSize);
ResolveSubgridTrackSizesForAxis(aFrame, aAxis, subgrid, aRC,
contentBoxSize);
}
}
void nsGridContainerFrame::UsedTrackSizes::ResolveSubgridTrackSizesForAxis(
nsGridContainerFrame* aFrame, LogicalAxis aAxis, Subgrid* aSubgrid,
gfxContext& aRC, nscoord aContentBoxSize) {
GridReflowInput state(aFrame, aRC);
state.mGridItems = aSubgrid->mGridItems.Clone();
Grid grid;
grid.mGridColEnd = aSubgrid->mGridColEnd;
grid.mGridRowEnd = aSubgrid->mGridRowEnd;
state.CalculateTrackSizesForAxis(aAxis, grid, aContentBoxSize,
SizingConstraint::NoConstraint);
const auto& tracks = aAxis == eLogicalAxisInline ? state.mCols : state.mRows;
mSizes[aAxis].Assign(tracks.mSizes);
mCanResolveLineRangeSize[aAxis] = tracks.mCanResolveLineRangeSize;
MOZ_ASSERT(mCanResolveLineRangeSize[aAxis]);
}
void nsGridContainerFrame::GridReflowInput::CalculateTrackSizesForAxis(
LogicalAxis aAxis, const Grid& aGrid, nscoord aContentBoxSize,
SizingConstraint aConstraint) {
auto& tracks = aAxis == eLogicalAxisInline ? mCols : mRows;
const auto& sizingFunctions =
aAxis == eLogicalAxisInline ? mColFunctions : mRowFunctions;
const auto& gapStyle = aAxis == eLogicalAxisInline ? mGridStyle->mColumnGap
: mGridStyle->mRowGap;
if (tracks.mIsMasonry) {
// See comment on nsGridContainerFrame::MasonryLayout().
tracks.Initialize(sizingFunctions, gapStyle, 2, aContentBoxSize);
tracks.mCanResolveLineRangeSize = true;
return;
}
uint32_t gridEnd =
aAxis == eLogicalAxisInline ? aGrid.mGridColEnd : aGrid.mGridRowEnd;
Maybe<TrackSizingFunctions> fallbackTrackSizing;
bool useParentGaps = false;
const bool isSubgriddedAxis = mFrame->IsSubgrid(aAxis);
if (MOZ_LIKELY(!isSubgriddedAxis)) {
tracks.Initialize(sizingFunctions, gapStyle, gridEnd, aContentBoxSize);
} else {
tracks.mGridGap =
nsLayoutUtils::ResolveGapToLength(gapStyle, aContentBoxSize);
tracks.mContentBoxSize = aContentBoxSize;
const auto* subgrid = mFrame->GetProperty(Subgrid::Prop());
tracks.mSizes.SetLength(gridEnd);
auto* parent = mFrame->ParentGridContainerForSubgrid();
auto parentAxis = subgrid->mIsOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
const auto* parentSizes = parent->GetUsedTrackSizes();
if (parentSizes && parentSizes->mCanResolveLineRangeSize[parentAxis]) {
CopyUsedTrackSizes(tracks.mSizes, parent, parentSizes, mFrame, subgrid,
aAxis);
useParentGaps = gapStyle.IsNormal();
} else {
fallbackTrackSizing.emplace(TrackSizingFunctions::ForSubgridFallback(
mFrame, subgrid, parent, parentAxis));
tracks.Initialize(*fallbackTrackSizing, gapStyle, gridEnd,
aContentBoxSize);
}
}
// We run the Track Sizing Algorithm in non-subgridded axes, and in some
// cases in a subgridded axis when our parent track sizes aren't resolved yet.
if (MOZ_LIKELY(!isSubgriddedAxis) || fallbackTrackSizing.isSome()) {
const size_t origGridItemCount = mGridItems.Length();
if (mFrame->HasSubgridItems(aAxis)) {
CollectSubgridItemsForAxis(aAxis, mGridItems);
}
tracks.CalculateSizes(
*this, mGridItems,
fallbackTrackSizing ? *fallbackTrackSizing : sizingFunctions,
aContentBoxSize,
aAxis == eLogicalAxisInline ? &GridArea::mCols : &GridArea::mRows,
aConstraint);
// XXXmats we're losing the baseline state of subgrid descendants that
// CollectSubgridItemsForAxis added here. We need to propagate that
// state into the subgrid's Reflow somehow...
mGridItems.TruncateLength(origGridItemCount);
}
if (aContentBoxSize != NS_UNCONSTRAINEDSIZE) {
auto alignment = mGridStyle->UsedContentAlignment(tracks.mAxis);
tracks.AlignJustifyContent(mGridStyle, alignment, mWM, aContentBoxSize,
isSubgriddedAxis);
} else if (!useParentGaps) {
const nscoord gridGap = tracks.mGridGap;
nscoord pos = 0;
for (TrackSize& sz : tracks.mSizes) {
sz.mPosition = pos;
pos += sz.mBase + gridGap;
}
}
if (aConstraint == SizingConstraint::NoConstraint &&
(mFrame->HasSubgridItems() || mFrame->IsSubgrid())) {
mFrame->StoreUsedTrackSizes(aAxis, tracks.mSizes);
}
// positions and sizes are now final
tracks.mCanResolveLineRangeSize = true;
}
void nsGridContainerFrame::GridReflowInput::CalculateTrackSizes(
const Grid& aGrid, const LogicalSize& aContentBox,
SizingConstraint aConstraint) {
CalculateTrackSizesForAxis(eLogicalAxisInline, aGrid, aContentBox.ISize(mWM),
aConstraint);
CalculateTrackSizesForAxis(eLogicalAxisBlock, aGrid, aContentBox.BSize(mWM),
aConstraint);
}
// Align an item's margin box in its aAxis inside aCBSize.
static void AlignJustifySelf(StyleAlignFlags aAlignment, LogicalAxis aAxis,
AlignJustifyFlags aFlags, nscoord aBaselineAdjust,
nscoord aCBSize, const ReflowInput& aRI,
const LogicalSize& aChildSize,
LogicalPoint* aPos) {
MOZ_ASSERT(aAlignment != StyleAlignFlags::AUTO,
"unexpected 'auto' "
"computed value for normal flow grid item");
// NOTE: this is the resulting frame offset (border box).
nscoord offset = CSSAlignUtils::AlignJustifySelf(
aAlignment, aAxis, aFlags, aBaselineAdjust, aCBSize, aRI, aChildSize);
// Set the position (aPos) for the requested alignment.
if (offset != 0) {
WritingMode wm = aRI.GetWritingMode();
nscoord& pos = aAxis == eLogicalAxisBlock ? aPos->B(wm) : aPos->I(wm);
pos += MOZ_LIKELY(aFlags & AlignJustifyFlags::SameSide) ? offset : -offset;
}
}
static void AlignSelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
StyleAlignFlags aAlignSelf, nscoord aCBSize,
const WritingMode aCBWM, const ReflowInput& aRI,
const LogicalSize& aSize, AlignJustifyFlags aFlags,
LogicalPoint* aPos) {
AlignJustifyFlags flags = aFlags;
if (aAlignSelf & StyleAlignFlags::SAFE) {
flags |= AlignJustifyFlags::OverflowSafe;
}
aAlignSelf &= ~StyleAlignFlags::FLAG_BITS;
WritingMode childWM = aRI.GetWritingMode();
if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisBlock, childWM)) {
flags |= AlignJustifyFlags::SameSide;
}
// Grid's 'align-self' axis is never parallel to the container's inline axis.
if (aAlignSelf == StyleAlignFlags::LEFT ||
aAlignSelf == StyleAlignFlags::RIGHT) {
aAlignSelf = StyleAlignFlags::START;
}
if (MOZ_LIKELY(aAlignSelf == StyleAlignFlags::NORMAL)) {
aAlignSelf = StyleAlignFlags::STRETCH;
}
nscoord baselineAdjust = 0;
if (aAlignSelf == StyleAlignFlags::BASELINE ||
aAlignSelf == StyleAlignFlags::LAST_BASELINE) {
aAlignSelf = aGridItem.GetSelfBaseline(aAlignSelf, eLogicalAxisBlock,
&baselineAdjust);
// Adjust the baseline alignment value if the baseline affects the opposite
// side of what AlignJustifySelf expects.
auto state = aGridItem.mState[eLogicalAxisBlock];
if (aAlignSelf == StyleAlignFlags::LAST_BASELINE &&
!GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
aAlignSelf = StyleAlignFlags::BASELINE;
} else if (aAlignSelf == StyleAlignFlags::BASELINE &&
GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
aAlignSelf = StyleAlignFlags::LAST_BASELINE;
}
}
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
LogicalAxis axis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock;
AlignJustifySelf(aAlignSelf, axis, flags, baselineAdjust, aCBSize, aRI, aSize,
aPos);
}
static void JustifySelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
StyleAlignFlags aJustifySelf, nscoord aCBSize,
const WritingMode aCBWM, const ReflowInput& aRI,
const LogicalSize& aSize, AlignJustifyFlags aFlags,
LogicalPoint* aPos) {
AlignJustifyFlags flags = aFlags;
if (aJustifySelf & StyleAlignFlags::SAFE) {
flags |= AlignJustifyFlags::OverflowSafe;
}
aJustifySelf &= ~StyleAlignFlags::FLAG_BITS;
WritingMode childWM = aRI.GetWritingMode();
if (aCBWM.ParallelAxisStartsOnSameSide(eLogicalAxisInline, childWM)) {
flags |= AlignJustifyFlags::SameSide;
}
if (MOZ_LIKELY(aJustifySelf == StyleAlignFlags::NORMAL)) {
aJustifySelf = StyleAlignFlags::STRETCH;
}
nscoord baselineAdjust = 0;
// Grid's 'justify-self' axis is always parallel to the container's inline
// axis, so justify-self:left|right always applies.
if (aJustifySelf == StyleAlignFlags::LEFT) {
aJustifySelf =
aCBWM.IsBidiLTR() ? StyleAlignFlags::START : StyleAlignFlags::END;
} else if (aJustifySelf == StyleAlignFlags::RIGHT) {
aJustifySelf =
aCBWM.IsBidiLTR() ? StyleAlignFlags::END : StyleAlignFlags::START;
} else if (aJustifySelf == StyleAlignFlags::BASELINE ||
aJustifySelf == StyleAlignFlags::LAST_BASELINE) {
aJustifySelf = aGridItem.GetSelfBaseline(aJustifySelf, eLogicalAxisInline,
&baselineAdjust);
// Adjust the baseline alignment value if the baseline affects the opposite
// side of what AlignJustifySelf expects.
auto state = aGridItem.mState[eLogicalAxisInline];
if (aJustifySelf == StyleAlignFlags::LAST_BASELINE &&
!GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
aJustifySelf = StyleAlignFlags::BASELINE;
} else if (aJustifySelf == StyleAlignFlags::BASELINE &&
GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
aJustifySelf = StyleAlignFlags::LAST_BASELINE;
}
}
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
LogicalAxis axis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
AlignJustifySelf(aJustifySelf, axis, flags, baselineAdjust, aCBSize, aRI,
aSize, aPos);
}
static StyleAlignFlags GetAlignJustifyValue(StyleAlignFlags aAlignment,
const WritingMode aWM,
const bool aIsAlign,
bool* aOverflowSafe) {
*aOverflowSafe = bool(aAlignment & StyleAlignFlags::SAFE);
aAlignment &= ~StyleAlignFlags::FLAG_BITS;
// Map some alignment values to 'start' / 'end'.
if (aAlignment == StyleAlignFlags::LEFT ||
aAlignment == StyleAlignFlags::RIGHT) {
if (aIsAlign) {
// Grid's 'align-content' axis is never parallel to the inline axis.
return StyleAlignFlags::START;
}
bool isStart = aWM.IsBidiLTR() == (aAlignment == StyleAlignFlags::LEFT);
return isStart ? StyleAlignFlags::START : StyleAlignFlags::END;
}
if (aAlignment == StyleAlignFlags::FLEX_START) {
return StyleAlignFlags::START; // same as 'start' for Grid
}
if (aAlignment == StyleAlignFlags::FLEX_END) {
return StyleAlignFlags::END; // same as 'end' for Grid
}
return aAlignment;
}
static Maybe<StyleAlignFlags> GetAlignJustifyFallbackIfAny(
const StyleContentDistribution& aDistribution, const WritingMode aWM,
const bool aIsAlign, bool* aOverflowSafe) {
// TODO: Eventually this should look at aDistribution's fallback alignment,
// see https://github.com/w3c/csswg-drafts/issues/1002.
if (aDistribution.primary == StyleAlignFlags::STRETCH ||
aDistribution.primary == StyleAlignFlags::SPACE_BETWEEN) {
return Some(StyleAlignFlags::START);
}
if (aDistribution.primary == StyleAlignFlags::SPACE_AROUND ||
aDistribution.primary == StyleAlignFlags::SPACE_EVENLY) {
return Some(StyleAlignFlags::CENTER);
}
return Nothing();
}
//----------------------------------------------------------------------
// Frame class boilerplate
// =======================
NS_QUERYFRAME_HEAD(nsGridContainerFrame)
NS_QUERYFRAME_ENTRY(nsGridContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
NS_IMPL_FRAMEARENA_HELPERS(nsGridContainerFrame)
nsContainerFrame* NS_NewGridContainerFrame(PresShell* aPresShell,
ComputedStyle* aStyle) {
return new (aPresShell)
nsGridContainerFrame(aStyle, aPresShell->GetPresContext());
}
//----------------------------------------------------------------------
// nsGridContainerFrame Method Implementations
// ===========================================
/*static*/ const nsRect& nsGridContainerFrame::GridItemCB(nsIFrame* aChild) {
MOZ_ASSERT(aChild->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
aChild->IsAbsolutelyPositioned());
nsRect* cb = aChild->GetProperty(GridItemContainingBlockRect());
MOZ_ASSERT(cb,
"this method must only be called on grid items, and the grid "
"container should've reflowed this item by now and set up cb");
return *cb;
}
void nsGridContainerFrame::AddImplicitNamedAreas(
Span<LineNameList> aLineNameLists) {
// http://dev.w3.org/csswg/css-grid/#implicit-named-areas
// Note: recording these names for fast lookup later is just an optimization.
const uint32_t len = std::min(aLineNameLists.Length(), size_t(kMaxLine));
nsTHashtable<nsStringHashKey> currentStarts;
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
for (uint32_t i = 0; i < len; ++i) {
for (const auto& nameIdent : aLineNameLists[i].AsSpan()) {
nsAtom* name = nameIdent.AsAtom();
uint32_t indexOfSuffix;
if (Grid::IsNameWithStartSuffix(name, &indexOfSuffix) ||
Grid::IsNameWithEndSuffix(name, &indexOfSuffix)) {
// Extract the name that was found earlier.
nsDependentSubstring areaName(nsDependentAtomString(name), 0,
indexOfSuffix);
// Lazily create the ImplicitNamedAreas.
if (!areas) {
areas = new ImplicitNamedAreas;
SetProperty(ImplicitNamedAreasProperty(), areas);
}
RefPtr<nsAtom> name = NS_Atomize(areaName);
auto addPtr = areas->lookupForAdd(name);
if (!addPtr) {
if (!areas->add(
addPtr, name,
NamedArea{StyleAtom(do_AddRef(name)), {0, 0}, {0, 0}})) {
MOZ_CRASH("OOM while adding grid name lists");
}
}
}
}
}
}
void nsGridContainerFrame::InitImplicitNamedAreas(
const nsStylePosition* aStyle) {
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
if (areas) {
// Clear it, but reuse the hashtable itself for now. We'll remove it
// below if it isn't needed anymore.
areas->clear();
}
auto Add = [&](const GridTemplate& aTemplate, bool aIsSubgrid) {
AddImplicitNamedAreas(aTemplate.LineNameLists(aIsSubgrid));
for (auto& value : aTemplate.TrackListValues()) {
if (value.IsTrackRepeat()) {
AddImplicitNamedAreas(value.AsTrackRepeat().line_names.AsSpan());
}
}
};
Add(aStyle->mGridTemplateColumns, IsSubgrid(eLogicalAxisInline));
Add(aStyle->mGridTemplateRows, IsSubgrid(eLogicalAxisBlock));
if (areas && areas->count() == 0) {
RemoveProperty(ImplicitNamedAreasProperty());
}
}
int32_t nsGridContainerFrame::Grid::ResolveLine(
const StyleGridLine& aLine, int32_t aNth, uint32_t aFromIndex,
const LineNameMap& aNameMap, LogicalSide aSide, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle) {
MOZ_ASSERT(!aLine.IsAuto());
int32_t line = 0;
if (aLine.LineName()->IsEmpty()) {
MOZ_ASSERT(aNth != 0, "css-grid 9.2: <integer> must not be zero.");
line = int32_t(aFromIndex) + aNth;
} else {
if (aNth == 0) {
// <integer> was omitted; treat it as 1.
aNth = 1;
}
bool isNameOnly = !aLine.is_span && aLine.line_num == 0;
if (isNameOnly) {
AutoTArray<uint32_t, 16> implicitLines;
aNameMap.FindNamedAreas(aLine.ident.AsAtom(), aSide, implicitLines);
if (!implicitLines.IsEmpty() ||
aNameMap.HasImplicitNamedArea(aLine.LineName())) {
// aName is a named area - look for explicit lines named
// <name>-start/-end depending on which side we're resolving.
// http://dev.w3.org/csswg/css-grid/#grid-placement-slot
nsAutoString lineName(nsDependentAtomString(aLine.LineName()));
if (IsStart(aSide)) {
lineName.AppendLiteral("-start");
} else {
lineName.AppendLiteral("-end");
}
RefPtr<nsAtom> name = NS_Atomize(lineName);
line = aNameMap.FindNamedLine(name, &aNth, aFromIndex, implicitLines);
}
}
if (line == 0) {
// If LineName() ends in -start/-end, try the prefix as a named area.
AutoTArray<uint32_t, 16> implicitLines;
uint32_t index;
bool useStart = IsNameWithStartSuffix(aLine.LineName(), &index);
if (useStart || IsNameWithEndSuffix(aLine.LineName(), &index)) {
auto side = MakeLogicalSide(
GetAxis(aSide), useStart ? eLogicalEdgeStart : eLogicalEdgeEnd);
RefPtr<nsAtom> name = NS_Atomize(nsDependentSubstring(
nsDependentAtomString(aLine.LineName()), 0, index));
aNameMap.FindNamedAreas(name, side, implicitLines);
}
line = aNameMap.FindNamedLine(aLine.LineName(), &aNth, aFromIndex,
implicitLines);
}
if (line == 0) {
MOZ_ASSERT(aNth != 0, "we found all N named lines but 'line' is zero!");
int32_t edgeLine;
if (aLine.is_span) {
// http://dev.w3.org/csswg/css-grid/#grid-placement-span-int
// 'span <custom-ident> N'
edgeLine = IsStart(aSide) ? 1 : aExplicitGridEnd;
} else {
// http://dev.w3.org/csswg/css-grid/#grid-placement-int
// '<custom-ident> N'
edgeLine = aNth < 0 ? 1 : aExplicitGridEnd;
}
// "If not enough lines with that name exist, all lines in the implicit
// grid are assumed to have that name..."
line = edgeLine + aNth;
}
}
return clamped(line, aNameMap.mClampMinLine, aNameMap.mClampMaxLine);
}
nsGridContainerFrame::Grid::LinePair
nsGridContainerFrame::Grid::ResolveLineRangeHelper(
const StyleGridLine& aStart, const StyleGridLine& aEnd,
const LineNameMap& aNameMap, LogicalAxis aAxis, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle) {
MOZ_ASSERT(int32_t(kAutoLine) > kMaxLine);
if (aStart.is_span) {
if (aEnd.is_span || aEnd.IsAuto()) {
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
if (aStart.LineName()->IsEmpty()) {
// span <integer> / span *
// span <integer> / auto
return LinePair(kAutoLine, aStart.line_num);
}
// span <custom-ident> / span *
// span <custom-ident> / auto
return LinePair(kAutoLine, 1); // XXX subgrid explicit size instead of 1?
}
uint32_t from = aEnd.line_num < 0 ? aExplicitGridEnd + 1 : 0;
auto end = ResolveLine(aEnd, aEnd.line_num, from, aNameMap,
MakeLogicalSide(aAxis, eLogicalEdgeEnd),
aExplicitGridEnd, aStyle);
int32_t span = aStart.line_num == 0 ? 1 : aStart.line_num;
if (end <= 1) {
// The end is at or before the first explicit line, thus all lines before
// it match <custom-ident> since they're implicit.
int32_t start = std::max(end - span, aNameMap.mClampMinLine);
return LinePair(start, end);
}
auto start = ResolveLine(aStart, -span, end, aNameMap,
MakeLogicalSide(aAxis, eLogicalEdgeStart),
aExplicitGridEnd, aStyle);
return LinePair(start, end);
}
int32_t start = kAutoLine;
if (aStart.IsAuto()) {
if (aEnd.IsAuto()) {
// auto / auto
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
}
if (aEnd.is_span) {
if (aEnd.LineName()->IsEmpty()) {
// auto / span <integer>
MOZ_ASSERT(aEnd.line_num != 0);
return LinePair(start, aEnd.line_num);
}
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
// auto / span <custom-ident>
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
}
} else {
uint32_t from = aStart.line_num < 0 ? aExplicitGridEnd + 1 : 0;
start = ResolveLine(aStart, aStart.line_num, from, aNameMap,
MakeLogicalSide(aAxis, eLogicalEdgeStart),
aExplicitGridEnd, aStyle);
if (aEnd.IsAuto()) {
// A "definite line / auto" should resolve the auto to 'span 1'.
// The error handling in ResolveLineRange will make that happen and also
// clamp the end line correctly if we return "start / start".
return LinePair(start, start);
}
}
uint32_t from;
int32_t nth = aEnd.line_num == 0 ? 1 : aEnd.line_num;
if (aEnd.is_span) {
if (MOZ_UNLIKELY(start < 0)) {
if (aEnd.LineName()->IsEmpty()) {
return LinePair(start, start + nth);
}
from = 0;
} else {
if (start >= int32_t(aExplicitGridEnd)) {
// The start is at or after the last explicit line, thus all lines
// after it match <custom-ident> since they're implicit.
return LinePair(start, std::min(start + nth, aNameMap.mClampMaxLine));
}
from = start;
}
} else {
from = aEnd.line_num < 0 ? aExplicitGridEnd + 1 : 0;
}
auto end = ResolveLine(aEnd, nth, from, aNameMap,
MakeLogicalSide(aAxis, eLogicalEdgeEnd),
aExplicitGridEnd, aStyle);
if (start == int32_t(kAutoLine)) {
// auto / definite line
start = std::max(aNameMap.mClampMinLine, end - 1);
}
return LinePair(start, end);
}
nsGridContainerFrame::LineRange nsGridContainerFrame::Grid::ResolveLineRange(
const StyleGridLine& aStart, const StyleGridLine& aEnd,
const LineNameMap& aNameMap, LogicalAxis aAxis, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle) {
LinePair r = ResolveLineRangeHelper(aStart, aEnd, aNameMap, aAxis,
aExplicitGridEnd, aStyle);
MOZ_ASSERT(r.second != int32_t(kAutoLine));
if (r.first == int32_t(kAutoLine)) {
// r.second is a span, clamp it to aNameMap.mClampMaxLine - 1 so that
// the returned range has a HypotheticalEnd <= aNameMap.mClampMaxLine.
// http://dev.w3.org/csswg/css-grid/#overlarge-grids
r.second = std::min(r.second, aNameMap.mClampMaxLine - 1);
} else {
// http://dev.w3.org/csswg/css-grid/#grid-placement-errors
if (r.first > r.second) {
std::swap(r.first, r.second);
} else if (r.first == r.second) {
if (MOZ_UNLIKELY(r.first == aNameMap.mClampMaxLine)) {
r.first = aNameMap.mClampMaxLine - 1;
}
r.second = r.first + 1; // XXX subgrid explicit size instead of 1?
}
}
return LineRange(r.first, r.second);
}
nsGridContainerFrame::GridArea nsGridContainerFrame::Grid::PlaceDefinite(
nsIFrame* aChild, const LineNameMap& aColLineNameMap,
const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle) {
const nsStylePosition* itemStyle = aChild->StylePosition();
return GridArea(
ResolveLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
aColLineNameMap, eLogicalAxisInline, mExplicitGridColEnd,
aStyle),
ResolveLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
aRowLineNameMap, eLogicalAxisBlock, mExplicitGridRowEnd,
aStyle));
}
nsGridContainerFrame::LineRange
nsGridContainerFrame::Grid::ResolveAbsPosLineRange(
const StyleGridLine& aStart, const StyleGridLine& aEnd,
const LineNameMap& aNameMap, LogicalAxis aAxis, uint32_t aExplicitGridEnd,
int32_t aGridStart, int32_t aGridEnd, const nsStylePosition* aStyle) {
if (aStart.IsAuto()) {
if (aEnd.IsAuto()) {
return LineRange(kAutoLine, kAutoLine);
}
uint32_t from = aEnd.line_num < 0 ? aExplicitGridEnd + 1 : 0;
int32_t end = ResolveLine(aEnd, aEnd.line_num, from, aNameMap,
MakeLogicalSide(aAxis, eLogicalEdgeEnd),
aExplicitGridEnd, aStyle);
if (aEnd.is_span) {
++end;
}
// A line outside the existing grid is treated as 'auto' for abs.pos (10.1).
end = AutoIfOutside(end, aGridStart, aGridEnd);
return LineRange(kAutoLine, end);
}
if (aEnd.IsAuto()) {
uint32_t from = aStart.line_num < 0 ? aExplicitGridEnd + 1 : 0;
int32_t start = ResolveLine(aStart, aStart.line_num, from, aNameMap,
MakeLogicalSide(aAxis, eLogicalEdgeStart),
aExplicitGridEnd, aStyle);
if (aStart.is_span) {
start = std::max(aGridEnd - start, aGridStart);
}
start = AutoIfOutside(start, aGridStart, aGridEnd);
return LineRange(start, kAutoLine);
}
LineRange r =
ResolveLineRange(aStart, aEnd, aNameMap, aAxis, aExplicitGridEnd, aStyle);
if (r.IsAuto()) {
MOZ_ASSERT(aStart.is_span && aEnd.is_span,
"span / span is the only case "
"leading to IsAuto here -- we dealt with the other cases above");
// The second span was ignored per 9.2.1. For abs.pos., 10.1 says that this
// case should result in "auto / auto" unlike normal flow grid items.
return LineRange(kAutoLine, kAutoLine);
}
return LineRange(AutoIfOutside(r.mUntranslatedStart, aGridStart, aGridEnd),
AutoIfOutside(r.mUntranslatedEnd, aGridStart, aGridEnd));
}
nsGridContainerFrame::GridArea nsGridContainerFrame::Grid::PlaceAbsPos(
nsIFrame* aChild, const LineNameMap& aColLineNameMap,
const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle) {
const nsStylePosition* itemStyle = aChild->StylePosition();
int32_t gridColStart = 1 - mExplicitGridOffsetCol;
int32_t gridRowStart = 1 - mExplicitGridOffsetRow;
return GridArea(ResolveAbsPosLineRange(
itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
aColLineNameMap, eLogicalAxisInline, mExplicitGridColEnd,
gridColStart, mGridColEnd, aStyle),
ResolveAbsPosLineRange(
itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
aRowLineNameMap, eLogicalAxisBlock, mExplicitGridRowEnd,
gridRowStart, mGridRowEnd, aStyle));
}
uint32_t nsGridContainerFrame::Grid::FindAutoCol(uint32_t aStartCol,
uint32_t aLockedRow,
const GridArea* aArea) const {
const uint32_t extent = aArea->mCols.Extent();
const uint32_t iStart = aLockedRow;
const uint32_t iEnd = iStart + aArea->mRows.Extent();
uint32_t candidate = aStartCol;
for (uint32_t i = iStart; i < iEnd;) {
if (i >= mCellMap.mCells.Length()) {
break;
}
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
const uint32_t len = cellsInRow.Length();
const uint32_t lastCandidate = candidate;
// Find the first gap in the current row that's at least 'extent' wide.
// ('gap' tracks how wide the current column gap is.)
for (uint32_t j = candidate, gap = 0; j < len && gap < extent; ++j) {
if (!cellsInRow[j].mIsOccupied) {
++gap;
continue;
}
candidate = j + 1;
gap = 0;
}
if (lastCandidate < candidate && i != iStart) {
// Couldn't fit 'extent' tracks at 'lastCandidate' here so we must
// restart from the beginning with the new 'candidate'.
i = iStart;
} else {
++i;
}
}
return candidate;
}
void nsGridContainerFrame::Grid::PlaceAutoCol(uint32_t aStartCol,
GridArea* aArea,
uint32_t aClampMaxColLine) const {
MOZ_ASSERT(aArea->mRows.IsDefinite() && aArea->mCols.IsAuto());
uint32_t col = FindAutoCol(aStartCol, aArea->mRows.mStart, aArea);
aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine);
MOZ_ASSERT(aArea->IsDefinite());
}
uint32_t nsGridContainerFrame::Grid::FindAutoRow(uint32_t aLockedCol,
uint32_t aStartRow,
const GridArea* aArea) const {
const uint32_t extent = aArea->mRows.Extent();
const uint32_t jStart = aLockedCol;
const uint32_t jEnd = jStart + aArea->mCols.Extent();
const uint32_t iEnd = mCellMap.mCells.Length();
uint32_t candidate = aStartRow;
// Find the first gap in the rows that's at least 'extent' tall.
// ('gap' tracks how tall the current row gap is.)
for (uint32_t i = candidate, gap = 0; i < iEnd && gap < extent; ++i) {
++gap; // tentative, but we may reset it below if a column is occupied
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
const uint32_t clampedJEnd = std::min<uint32_t>(jEnd, cellsInRow.Length());
// Check if the current row is unoccupied from jStart to jEnd.
for (uint32_t j = jStart; j < clampedJEnd; ++j) {
if (cellsInRow[j].mIsOccupied) {
// Couldn't fit 'extent' rows at 'candidate' here; we hit something
// at row 'i'. So, try the row after 'i' as our next candidate.
candidate = i + 1;
gap = 0;
break;
}
}
}
return candidate;
}
void nsGridContainerFrame::Grid::PlaceAutoRow(uint32_t aStartRow,
GridArea* aArea,
uint32_t aClampMaxRowLine) const {
MOZ_ASSERT(aArea->mCols.IsDefinite() && aArea->mRows.IsAuto());
uint32_t row = FindAutoRow(aArea->mCols.mStart, aStartRow, aArea);
aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine);
MOZ_ASSERT(aArea->IsDefinite());
}
void nsGridContainerFrame::Grid::PlaceAutoAutoInRowOrder(
uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea,
uint32_t aClampMaxColLine, uint32_t aClampMaxRowLine) const {
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
const uint32_t colExtent = aArea->mCols.Extent();
const uint32_t gridRowEnd = mGridRowEnd;
const uint32_t gridColEnd = mGridColEnd;
uint32_t col = aStartCol;
uint32_t row = aStartRow;
for (; row < gridRowEnd; ++row) {
col = FindAutoCol(col, row, aArea);
if (col + colExtent <= gridColEnd) {
break;
}
col = 0;
}
MOZ_ASSERT(row < gridRowEnd || col == 0,
"expected column 0 for placing in a new row");
aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine);
aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine);
MOZ_ASSERT(aArea->IsDefinite());
}
void nsGridContainerFrame::Grid::PlaceAutoAutoInColOrder(
uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea,
uint32_t aClampMaxColLine, uint32_t aClampMaxRowLine) const {
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
const uint32_t rowExtent = aArea->mRows.Extent();
const uint32_t gridRowEnd = mGridRowEnd;
const uint32_t gridColEnd = mGridColEnd;
uint32_t col = aStartCol;
uint32_t row = aStartRow;
for (; col < gridColEnd; ++col) {
row = FindAutoRow(col, row, aArea);
if (row + rowExtent <= gridRowEnd) {
break;
}
row = 0;
}
MOZ_ASSERT(col < gridColEnd || row == 0,
"expected row 0 for placing in a new column");
aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine);
aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine);
MOZ_ASSERT(aArea->IsDefinite());
}
template <typename IsEmptyFuncT>
Maybe<nsTArray<uint32_t>>
nsGridContainerFrame::Grid::CalculateAdjustForAutoFitElements(
uint32_t* const aOutNumEmptyLines, TrackSizingFunctions& aSizingFunctions,
uint32_t aNumGridLines, IsEmptyFuncT aIsEmptyFunc) {
Maybe<nsTArray<uint32_t>> trackAdjust;
uint32_t& numEmptyLines = *aOutNumEmptyLines;
numEmptyLines = 0;
if (aSizingFunctions.NumRepeatTracks() > 0) {
MOZ_ASSERT(aSizingFunctions.mHasRepeatAuto);
// Since this loop is concerned with just the repeat tracks, we
// iterate from 0..NumRepeatTracks() which is the natural range of
// mRemoveRepeatTracks. This means we have to add
// (mExplicitGridOffset + mRepeatAutoStart) to get a zero-based
// index for arrays like mCellMap/aIsEmptyFunc and trackAdjust. We'll then
// fill out the trackAdjust array for all the remaining lines.
const uint32_t repeatStart = (aSizingFunctions.mExplicitGridOffset +
aSizingFunctions.mRepeatAutoStart);
const uint32_t numRepeats = aSizingFunctions.NumRepeatTracks();
for (uint32_t i = 0; i < numRepeats; ++i) {
if (numEmptyLines) {
MOZ_ASSERT(trackAdjust.isSome());
(*trackAdjust)[repeatStart + i] = numEmptyLines;
}
if (aIsEmptyFunc(repeatStart + i)) {
++numEmptyLines;
if (trackAdjust.isNothing()) {
trackAdjust.emplace(aNumGridLines);
trackAdjust->SetLength(aNumGridLines);
PodZero(trackAdjust->Elements(), trackAdjust->Length());
}
aSizingFunctions.mRemovedRepeatTracks[i] = true;
}
}
// Fill out the trackAdjust array for all the tracks after the repeats.
if (numEmptyLines) {
for (uint32_t line = repeatStart + numRepeats; line < aNumGridLines;
++line) {
(*trackAdjust)[line] = numEmptyLines;
}
}
}
return trackAdjust;
}
void nsGridContainerFrame::Grid::SubgridPlaceGridItems(
GridReflowInput& aParentState, Grid* aParentGrid,
const GridItemInfo& aGridItem) {
MOZ_ASSERT(aGridItem.mArea.IsDefinite() ||
aGridItem.mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"the subgrid's lines should be resolved by now");
if (aGridItem.IsSubgrid(eLogicalAxisInline)) {
aParentState.mFrame->AddStateBits(NS_STATE_GRID_HAS_COL_SUBGRID_ITEM);
}
if (aGridItem.IsSubgrid(eLogicalAxisBlock)) {
aParentState.mFrame->AddStateBits(NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM);
}
auto* childGrid = aGridItem.SubgridFrame();
const auto* pos = childGrid->StylePosition();
childGrid->NormalizeChildLists();
GridReflowInput state(childGrid, aParentState.mRenderingContext);
childGrid->InitImplicitNamedAreas(pos);
const bool isOrthogonal = aParentState.mWM.IsOrthogonalTo(state.mWM);
// Record the subgrid's GridArea in a frame property.
auto* subgrid = childGrid->GetProperty(Subgrid::Prop());
if (!subgrid) {
subgrid = new Subgrid(aGridItem.mArea, isOrthogonal, aParentState.mWM);
childGrid->SetProperty(Subgrid::Prop(), subgrid);
} else {
subgrid->mArea = aGridItem.mArea;
subgrid->mIsOrthogonal = isOrthogonal;
subgrid->mGridItems.Clear();
subgrid->mAbsPosItems.Clear();
}
// Abs.pos. subgrids may have kAutoLine in their area. Map those to the edge
// line in the parent's grid (zero-based line numbers).
if (MOZ_UNLIKELY(subgrid->mArea.mCols.mStart == kAutoLine)) {
subgrid->mArea.mCols.mStart = 0;
}
if (MOZ_UNLIKELY(subgrid->mArea.mCols.mEnd == kAutoLine)) {
subgrid->mArea.mCols.mEnd = aParentGrid->mGridColEnd - 1;
}
if (MOZ_UNLIKELY(subgrid->mArea.mRows.mStart == kAutoLine)) {
subgrid->mArea.mRows.mStart = 0;
}
if (MOZ_UNLIKELY(subgrid->mArea.mRows.mEnd == kAutoLine)) {
subgrid->mArea.mRows.mEnd = aParentGrid->mGridRowEnd - 1;
}
MOZ_ASSERT((subgrid->mArea.mCols.Extent() > 0 &&
subgrid->mArea.mRows.Extent() > 0) ||
state.mGridItems.IsEmpty(),
"subgrid needs at least one track for its items");
// The min/sz/max sizes are the input to the "repeat-to-fill" algorithm:
// https://drafts.csswg.org/css-grid/#auto-repeat
// They're only used for auto-repeat in a non-subgridded axis so we skip
// computing them otherwise.
RepeatTrackSizingInput repeatSizing(state.mWM);
if (!childGrid->IsColSubgrid() && state.mColFunctions.mHasRepeatAuto) {
repeatSizing.InitFromStyle(eLogicalAxisInline, state.mWM,
state.mFrame->Style());
}
if (!childGrid->IsRowSubgrid() && state.mRowFunctions.mHasRepeatAuto) {
repeatSizing.InitFromStyle(eLogicalAxisBlock, state.mWM,
state.mFrame->Style());
}
PlaceGridItems(state, repeatSizing);
subgrid->mGridItems = std::move(state.mGridItems);
subgrid->mAbsPosItems = std::move(state.mAbsPosItems);
subgrid->mGridColEnd = mGridColEnd;
subgrid->mGridRowEnd = mGridRowEnd;
}
void nsGridContainerFrame::Grid::PlaceGridItems(
GridReflowInput& aState, const RepeatTrackSizingInput& aSizes) {
MOZ_ASSERT(mCellMap.mCells.IsEmpty(), "unexpected entries in cell map");
mAreas = aState.mFrame->GetImplicitNamedAreas();
if (aState.mFrame->HasSubgridItems() || aState.mFrame->IsSubgrid()) {
if (auto* uts = aState.mFrame->GetUsedTrackSizes()) {
uts->mCanResolveLineRangeSize = {false, false};
uts->mSizes[eLogicalAxisInline].ClearAndRetainStorage();
uts->mSizes[eLogicalAxisBlock].ClearAndRetainStorage();
}
}
// SubgridPlaceGridItems will set these if we find any subgrid items.
aState.mFrame->RemoveStateBits(NS_STATE_GRID_HAS_COL_SUBGRID_ITEM |
NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM);
// http://dev.w3.org/csswg/css-grid/#grid-definition
// Initialize the end lines of the Explicit Grid (mExplicitGridCol[Row]End).
// This is determined by the larger of the number of rows/columns defined
// by 'grid-template-areas' and the 'grid-template-rows'/'-columns', plus one.
// Also initialize the Implicit Grid (mGridCol[Row]End) to the same values.
// Note that this is for a grid with a 1,1 origin. We'll change that
// to a 0,0 based grid after placing definite lines.
const nsStylePosition* const gridStyle = aState.mGridStyle;
const auto* areas = gridStyle->mGridTemplateAreas.IsNone()
? nullptr
: &*gridStyle->mGridTemplateAreas.AsAreas();
const LineNameMap* parentLineNameMap = nullptr;
const LineRange* subgridRange = nullptr;
bool subgridAxisIsSameDirection = true;
if (!aState.mFrame->IsColSubgrid()) {
aState.mColFunctions.InitRepeatTracks(
gridStyle->mColumnGap, aSizes.mMin.ISize(aState.mWM),
aSizes.mSize.ISize(aState.mWM), aSizes.mMax.ISize(aState.mWM));
uint32_t areaCols = areas ? areas->width + 1 : 1;
mExplicitGridColEnd = aState.mColFunctions.ComputeExplicitGridEnd(areaCols);
} else {
const auto* subgrid = aState.mFrame->GetProperty(Subgrid::Prop());
subgridRange = &subgrid->SubgridCols();
uint32_t extent = subgridRange->Extent();
mExplicitGridColEnd = extent + 1; // the grid is 1-based at this point
parentLineNameMap =
ParentLineMapForAxis(subgrid->mIsOrthogonal, eLogicalAxisInline);
auto parentWM =
aState.mFrame->ParentGridContainerForSubgrid()->GetWritingMode();
subgridAxisIsSameDirection =
aState.mWM.ParallelAxisStartsOnSameSide(eLogicalAxisInline, parentWM);
}
mGridColEnd = mExplicitGridColEnd;
LineNameMap colLineNameMap(gridStyle, mAreas, aState.mColFunctions,
parentLineNameMap, subgridRange,
subgridAxisIsSameDirection);
if (!aState.mFrame->IsRowSubgrid()) {
aState.mRowFunctions.InitRepeatTracks(
gridStyle->mRowGap, aSizes.mMin.BSize(aState.mWM),
aSizes.mSize.BSize(aState.mWM), aSizes.mMax.BSize(aState.mWM));
uint32_t areaRows = areas ? areas->strings.Length() + 1 : 1;
mExplicitGridRowEnd = aState.mRowFunctions.ComputeExplicitGridEnd(areaRows);
parentLineNameMap = nullptr;
subgridRange = nullptr;
} else {
const auto* subgrid = aState.mFrame->GetProperty(Subgrid::Prop());
subgridRange = &subgrid->SubgridRows();
uint32_t extent = subgridRange->Extent();
mExplicitGridRowEnd = extent + 1; // the grid is 1-based at this point
parentLineNameMap =
ParentLineMapForAxis(subgrid->mIsOrthogonal, eLogicalAxisBlock);
auto parentWM =
aState.mFrame->ParentGridContainerForSubgrid()->GetWritingMode();
subgridAxisIsSameDirection =
aState.mWM.ParallelAxisStartsOnSameSide(eLogicalAxisBlock, parentWM);
}
mGridRowEnd = mExplicitGridRowEnd;
LineNameMap rowLineNameMap(gridStyle, mAreas, aState.mRowFunctions,
parentLineNameMap, subgridRange,
subgridAxisIsSameDirection);
const bool isSubgridOrItemInSubgrid =
aState.mFrame->IsSubgrid() || !!mParentGrid;
auto SetSubgridChildEdgeBits =
[this, isSubgridOrItemInSubgrid](GridItemInfo& aItem) -> void {
if (isSubgridOrItemInSubgrid) {
const auto& area = aItem.mArea;
if (area.mCols.mStart == 0) {
aItem.mState[eLogicalAxisInline] |= ItemState::eStartEdge;
}
if (area.mCols.mEnd == mGridColEnd) {
aItem.mState[eLogicalAxisInline] |= ItemState::eEndEdge;
}
if (area.mRows.mStart == 0) {
aItem.mState[eLogicalAxisBlock] |= ItemState::eStartEdge;
}
if (area.mRows.mEnd == mGridRowEnd) {
aItem.mState[eLogicalAxisBlock] |= ItemState::eEndEdge;
}
}
};
SetLineMaps(&colLineNameMap, &rowLineNameMap);
// http://dev.w3.org/csswg/css-grid/#line-placement
// Resolve definite positions per spec chap 9.2.
int32_t minCol = 1;
int32_t minRow = 1;
aState.mGridItems.ClearAndRetainStorage();
aState.mIter.Reset();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
nsIFrame* child = *aState.mIter;
GridItemInfo* info = aState.mGridItems.AppendElement(GridItemInfo(
child,
PlaceDefinite(child, colLineNameMap, rowLineNameMap, gridStyle)));
MOZ_ASSERT(aState.mIter.ItemIndex() == aState.mGridItems.Length() - 1,
"ItemIndex() is broken");
GridArea& area = info->mArea;
if (area.mCols.IsDefinite()) {
minCol = std::min(minCol, area.mCols.mUntranslatedStart);
}
if (area.mRows.IsDefinite()) {
minRow = std::min(minRow, area.mRows.mUntranslatedStart);
}
}
// Translate the whole grid so that the top-/left-most area is at 0,0.
mExplicitGridOffsetCol = 1 - minCol; // minCol/Row is always <= 1, see above
mExplicitGridOffsetRow = 1 - minRow;
aState.mColFunctions.mExplicitGridOffset = mExplicitGridOffsetCol;
aState.mRowFunctions.mExplicitGridOffset = mExplicitGridOffsetRow;
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
const bool isRowMasonry = aState.mFrame->IsMasonry(eLogicalAxisBlock);
const bool isColMasonry = aState.mFrame->IsMasonry(eLogicalAxisInline);
const bool isMasonry = isColMasonry || isRowMasonry;
mGridColEnd += offsetToColZero;
mGridRowEnd += offsetToRowZero;
const uint32_t gridAxisTrackCount = isRowMasonry ? mGridColEnd : mGridRowEnd;
aState.mIter.Reset();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
auto& item = aState.mGridItems[aState.mIter.ItemIndex()];
GridArea& area = item.mArea;
if (area.mCols.IsDefinite()) {
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
}
if (area.mRows.IsDefinite()) {
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
}
if (area.IsDefinite()) {
if (isMasonry) {
item.MaybeInhibitSubgridInMasonry(aState.mFrame, gridAxisTrackCount);
}
if (item.IsSubgrid()) {
Grid grid(this);
grid.SubgridPlaceGridItems(aState, this, item);
}
mCellMap.Fill(area);
InflateGridFor(area);
SetSubgridChildEdgeBits(item);
}
}
// http://dev.w3.org/csswg/css-grid/#auto-placement-algo
// Step 1, place 'auto' items that have one definite position -
// definite row (column) for grid-auto-flow:row (column).
auto flowStyle = gridStyle->mGridAutoFlow;
const bool isRowOrder =
isMasonry ? isRowMasonry : !!(flowStyle & StyleGridAutoFlow::ROW);
const bool isSparse = !(flowStyle & StyleGridAutoFlow::DENSE);
uint32_t clampMaxColLine = colLineNameMap.mClampMaxLine + offsetToColZero;
uint32_t clampMaxRowLine = rowLineNameMap.mClampMaxLine + offsetToRowZero;
// We need 1 cursor per row (or column) if placement is sparse.
{
Maybe<nsDataHashtable<nsUint32HashKey, uint32_t>> cursors;
if (isSparse) {
cursors.emplace();
}
auto placeAutoMinorFunc =
isRowOrder ? &Grid::PlaceAutoCol : &Grid::PlaceAutoRow;
uint32_t clampMaxLine = isRowOrder ? clampMaxColLine : clampMaxRowLine;
aState.mIter.Reset();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
auto& item = aState.mGridItems[aState.mIter.ItemIndex()];
GridArea& area = item.mArea;
LineRange& major = isRowOrder ? area.mRows : area.mCols;
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
if (major.IsDefinite() && minor.IsAuto()) {
// Items with 'auto' in the minor dimension only.
uint32_t cursor = 0;
if (isSparse) {
cursors->Get(major.mStart, &cursor);
}
(this->*placeAutoMinorFunc)(cursor, &area, clampMaxLine);
if (isMasonry) {
item.MaybeInhibitSubgridInMasonry(aState.mFrame, gridAxisTrackCount);
}
if (item.IsSubgrid()) {
Grid grid(this);
grid.SubgridPlaceGridItems(aState, this, item);
}
mCellMap.Fill(area);
SetSubgridChildEdgeBits(item);
if (isSparse) {
cursors->Put(major.mStart, minor.mEnd);
}
}
InflateGridFor(area); // Step 2, inflating for auto items too
}
}
// XXX NOTE possible spec issue.
// XXX It's unclear if the remaining major-dimension auto and
// XXX auto in both dimensions should use the same cursor or not,
// XXX https://www.w3.org/Bugs/Public/show_bug.cgi?id=16044
// XXX seems to indicate it shouldn't.
// XXX http://dev.w3.org/csswg/css-grid/#auto-placement-cursor
// XXX now says it should (but didn't in earlier versions)
// Step 3, place the remaining grid items
uint32_t cursorMajor = 0; // for 'dense' these two cursors will stay at 0,0
uint32_t cursorMinor = 0;
auto placeAutoMajorFunc =
isRowOrder ? &Grid::PlaceAutoRow : &Grid::PlaceAutoCol;
uint32_t clampMaxMajorLine = isRowOrder ? clampMaxRowLine : clampMaxColLine;
aState.mIter.Reset();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
auto& item = aState.mGridItems[aState.mIter.ItemIndex()];
GridArea& area = item.mArea;
MOZ_ASSERT(*aState.mIter == item.mFrame,
"iterator out of sync with aState.mGridItems");
LineRange& major = isRowOrder ? area.mRows : area.mCols;
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
if (major.IsAuto()) {
if (minor.IsDefinite()) {
// Items with 'auto' in the major dimension only.
if (isSparse) {
if (minor.mStart < cursorMinor) {
++cursorMajor;
}
cursorMinor = minor.mStart;
}
(this->*placeAutoMajorFunc)(cursorMajor, &area, clampMaxMajorLine);
if (isSparse) {
cursorMajor = major.mStart;
}
} else {
// Items with 'auto' in both dimensions.
if (isRowOrder) {
PlaceAutoAutoInRowOrder(cursorMinor, cursorMajor, &area,
clampMaxColLine, clampMaxRowLine);
} else {
PlaceAutoAutoInColOrder(cursorMajor, cursorMinor, &area,
clampMaxColLine, clampMaxRowLine);
}
if (isSparse) {
cursorMajor = major.mStart;
cursorMinor = minor.mEnd;
#ifdef DEBUG
uint32_t gridMajorEnd = isRowOrder ? mGridRowEnd : mGridColEnd;
uint32_t gridMinorEnd = isRowOrder ? mGridColEnd : mGridRowEnd;
MOZ_ASSERT(cursorMajor <= gridMajorEnd,
"we shouldn't need to place items further than 1 track "
"past the current end of the grid, in major dimension");
MOZ_ASSERT(cursorMinor <= gridMinorEnd,
"we shouldn't add implicit minor tracks for auto/auto");
#endif
}
}
if (isMasonry) {
item.MaybeInhibitSubgridInMasonry(aState.mFrame, gridAxisTrackCount);
}
if (item.IsSubgrid()) {
Grid grid(this);
grid.SubgridPlaceGridItems(aState, this, item);
}
mCellMap.Fill(area);
InflateGridFor(area);
SetSubgridChildEdgeBits(item);
// XXXmats it might be possible to optimize this a bit for masonry layout
// if this item was placed in the 2nd row && !isSparse, or the 1st row
// is full. Still gotta inflate the grid for all items though to make
// the grid large enough...
}
}
// Force all items into the 1st/2nd track and have span 1 in the masonry axis.
// (See comment on nsGridContainerFrame::MasonryLayout().)
if (isMasonry) {
auto masonryAxis = isRowMasonry ? eLogicalAxisBlock : eLogicalAxisInline;
aState.mIter.Reset();
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
auto& item = aState.mGridItems[aState.mIter.ItemIndex()];
auto& masonryRange = item.mArea.LineRangeForAxis(masonryAxis);
masonryRange.mStart = std::min(masonryRange.mStart, 1U);
masonryRange.mEnd = masonryRange.mStart + 1U;
}
}
if (aState.mFrame->IsAbsoluteContainer()) {
// 9.4 Absolutely-positioned Grid Items
// http://dev.w3.org/csswg/css-grid/#abspos-items
// We only resolve definite lines here; we'll align auto positions to the
// grid container later during reflow.
nsFrameList children(
aState.mFrame->GetChildList(aState.mFrame->GetAbsoluteListID()));
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
// Untranslate the grid again temporarily while resolving abs.pos. lines.
AutoRestore<uint32_t> zeroOffsetGridColEnd(mGridColEnd);
AutoRestore<uint32_t> zeroOffsetGridRowEnd(mGridRowEnd);
mGridColEnd -= offsetToColZero;
mGridRowEnd -= offsetToRowZero;
aState.mAbsPosItems.ClearAndRetainStorage();
size_t i = 0;
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
nsIFrame* child = e.get();
GridItemInfo* info = aState.mAbsPosItems.AppendElement(GridItemInfo(
child,
PlaceAbsPos(child, colLineNameMap, rowLineNameMap, gridStyle)));
GridArea& area = info->mArea;
if (area.mCols.mUntranslatedStart != int32_t(kAutoLine)) {
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
if (isColMasonry) {
// XXXmats clamp any non-auto line to 0 or 1. This is intended to
// allow authors to address the start/end of the masonry box.
// This is experimental at this point though and needs author feedback
// and spec work to sort out what is desired and how it should work.
// See https://github.com/w3c/csswg-drafts/issues/4650
area.mCols.mStart = std::min(area.mCols.mStart, 1U);
}
}
if (area.mCols.mUntranslatedEnd != int32_t(kAutoLine)) {
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
if (isColMasonry) {
// ditto
area.mCols.mEnd = std::min(area.mCols.mEnd, 1U);
}
}
if (area.mRows.mUntranslatedStart != int32_t(kAutoLine)) {
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
if (isRowMasonry) {
// ditto
area.mRows.mStart = std::min(area.mRows.mStart, 1U);
}
}
if (area.mRows.mUntranslatedEnd != int32_t(kAutoLine)) {
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
if (isRowMasonry) {
// ditto
area.mRows.mEnd = std::min(area.mRows.mEnd, 1U);
}
}
if (isMasonry) {
info->MaybeInhibitSubgridInMasonry(aState.mFrame, gridAxisTrackCount);
}
// An abs.pos. subgrid with placement auto/1 or -1/auto technically
// doesn't span any parent tracks. Inhibit subgridding in this case.
if (info->IsSubgrid(eLogicalAxisInline)) {
if (info->mArea.mCols.mStart == zeroOffsetGridColEnd.SavedValue() ||
info->mArea.mCols.mEnd == 0) {
info->InhibitSubgrid(aState.mFrame, eLogicalAxisInline);
}
}
if (info->IsSubgrid(eLogicalAxisBlock)) {
if (info->mArea.mRows.mStart == zeroOffsetGridRowEnd.SavedValue() ||
info->mArea.mRows.mEnd == 0) {
info->InhibitSubgrid(aState.mFrame, eLogicalAxisBlock);
}
}
if (info->IsSubgrid()) {
Grid grid(this);
grid.SubgridPlaceGridItems(aState, this, *info);
}
}
}
// Count empty 'auto-fit' tracks in the repeat() range.
// |colAdjust| will have a count for each line in the grid of how many
// tracks were empty between the start of the grid and that line.
Maybe<nsTArray<uint32_t>> colAdjust;
uint32_t numEmptyCols = 0;
if (aState.mColFunctions.mHasRepeatAuto &&
gridStyle->mGridTemplateColumns.GetRepeatAutoValue()->count.IsAutoFit()) {
const auto& cellMap = mCellMap;
colAdjust = CalculateAdjustForAutoFitElements(
&numEmptyCols, aState.mColFunctions, mGridColEnd + 1,
[&cellMap](uint32_t i) -> bool { return cellMap.IsEmptyCol(i); });
}
// Do similar work for the row tracks, with the same logic.
Maybe<nsTArray<uint32_t>> rowAdjust;
uint32_t numEmptyRows = 0;
if (aState.mRowFunctions.mHasRepeatAuto &&
gridStyle->mGridTemplateRows.GetRepeatAutoValue()->count.IsAutoFit()) {
const auto& cellMap = mCellMap;
rowAdjust = CalculateAdjustForAutoFitElements(
&numEmptyRows, aState.mRowFunctions, mGridRowEnd + 1,
[&cellMap](uint32_t i) -> bool { return cellMap.IsEmptyRow(i); });
}
MOZ_ASSERT((numEmptyCols > 0) == colAdjust.isSome());
MOZ_ASSERT((numEmptyRows > 0) == rowAdjust.isSome());
// Remove the empty 'auto-fit' tracks we found above, if any.
if (numEmptyCols || numEmptyRows) {
// Adjust the line numbers in the grid areas.
for (auto& item : aState.mGridItems) {
if (numEmptyCols) {
item.AdjustForRemovedTracks(eLogicalAxisInline, *colAdjust);
}
if (numEmptyRows) {
item.AdjustForRemovedTracks(eLogicalAxisBlock, *rowAdjust);
}
}
for (auto& item : aState.mAbsPosItems) {
if (numEmptyCols) {
item.AdjustForRemovedTracks(eLogicalAxisInline, *colAdjust);
}
if (numEmptyRows) {
item.AdjustForRemovedTracks(eLogicalAxisBlock, *rowAdjust);
}
}
// Adjust the grid size.
mGridColEnd -= numEmptyCols;
mExplicitGridColEnd -= numEmptyCols;
mGridRowEnd -= numEmptyRows;
mExplicitGridRowEnd -= numEmptyRows;
// Adjust the track mapping to unmap the removed tracks.
auto colRepeatCount = aState.mColFunctions.NumRepeatTracks();
aState.mColFunctions.SetNumRepeatTracks(colRepeatCount - numEmptyCols);
auto rowRepeatCount = aState.mRowFunctions.NumRepeatTracks();
aState.mRowFunctions.SetNumRepeatTracks(rowRepeatCount - numEmptyRows);
}
// Update the line boundaries of the implicit grid areas, if needed.
if (mAreas && aState.mFrame->ShouldGenerateComputedInfo()) {
for (auto iter = mAreas->iter(); !iter.done(); iter.next()) {
auto& areaInfo = iter.get().value();
// Resolve the lines for the area. We use the name of the area as the
// name of the lines, knowing that the line placement algorithm will
// add the -start and -end suffixes as appropriate for layout.
StyleGridLine lineStartAndEnd;
lineStartAndEnd.ident = areaInfo.name;
LineRange columnLines =
ResolveLineRange(lineStartAndEnd, lineStartAndEnd, colLineNameMap,
eLogicalAxisInline, mExplicitGridColEnd, gridStyle);
LineRange rowLines =
ResolveLineRange(lineStartAndEnd, lineStartAndEnd, rowLineNameMap,
eLogicalAxisBlock, mExplicitGridRowEnd, gridStyle);
// Put the resolved line indices back into the area structure.
areaInfo.columns.start = columnLines.mStart + mExplicitGridOffsetCol;
areaInfo.columns.end = columnLines.mEnd + mExplicitGridOffsetCol;
areaInfo.rows.start = rowLines.mStart + mExplicitGridOffsetRow;
areaInfo.rows.end = rowLines.mEnd + mExplicitGridOffsetRow;
}
}
}
void nsGridContainerFrame::Tracks::Initialize(
const TrackSizingFunctions& aFunctions,
const NonNegativeLengthPercentageOrNormal& aGridGap, uint32_t aNumTracks,
nscoord aContentBoxSize) {
mSizes.SetLength(aNumTracks);
PodZero(mSizes.Elements(), mSizes.Length());
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
auto& sz = mSizes[i];
mStateUnion |= sz.Initialize(aContentBoxSize, aFunctions.SizingFor(i));
if (mIsMasonry) {
sz.mBase = aContentBoxSize;
sz.mLimit = aContentBoxSize;
}
}
mGridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aContentBoxSize);
mContentBoxSize = aContentBoxSize;
}
/**
* Reflow aChild in the given aAvailableSize.
*/
static nscoord MeasuringReflow(nsIFrame* aChild,
const ReflowInput* aReflowInput, gfxContext* aRC,
const LogicalSize& aAvailableSize,
const LogicalSize& aCBSize,
nscoord aIMinSizeClamp = NS_MAXSIZE,
nscoord aBMinSizeClamp = NS_MAXSIZE) {
nsContainerFrame* parent = aChild->GetParent();
nsPresContext* pc = aChild->PresContext();
Maybe<ReflowInput> dummyParentState;
const ReflowInput* rs = aReflowInput;
if (!aReflowInput) {
MOZ_ASSERT(!parent->HasAnyStateBits(NS_FRAME_IN_REFLOW));
dummyParentState.emplace(
pc, parent, aRC,
LogicalSize(parent->GetWritingMode(), 0, NS_UNCONSTRAINEDSIZE),
ReflowInput::InitFlag::DummyParentReflowInput);
rs = dummyParentState.ptr();
}
#ifdef DEBUG
// This will suppress various ABSURD_SIZE warnings for this reflow.
parent->SetProperty(nsContainerFrame::DebugReflowingWithInfiniteISize(),
true);
#endif
auto wm = aChild->GetWritingMode();
ComputeSizeFlags csFlags = ComputeSizeFlag::UseAutoBSize;
if (aAvailableSize.ISize(wm) == INFINITE_ISIZE_COORD) {
csFlags += ComputeSizeFlag::ShrinkWrap;
}
if (aIMinSizeClamp != NS_MAXSIZE) {
csFlags += ComputeSizeFlag::IClampMarginBoxMinSize;
}
if (aBMinSizeClamp != NS_MAXSIZE) {
csFlags += ComputeSizeFlag::BClampMarginBoxMinSize;
aChild->SetProperty(nsIFrame::BClampMarginBoxMinSizeProperty(),
aBMinSizeClamp);
} else {
aChild->RemoveProperty(nsIFrame::BClampMarginBoxMinSizeProperty());
}
ReflowInput childRI(pc, *rs, aChild, aAvailableSize, Some(aCBSize), {},
csFlags);
// Because we pass ComputeSizeFlag::UseAutoBSize, and the
// previous reflow of the child might not have, set the child's
// block-resize flag to true.
// FIXME (perf): It would be faster to do this only if the previous
// reflow of the child was not a measuring reflow, and only if the
// child does some of the things that are affected by
// ComputeSizeFlag::UseAutoBSize.
childRI.SetBResize(true);
// Not 100% sure this is needed, but be conservative for now:
childRI.mFlags.mIsBResizeForPercentages = true;
ReflowOutput childSize(childRI);
nsReflowStatus childStatus;
const nsIFrame::ReflowChildFlags flags =
nsIFrame::ReflowChildFlags::NoMoveFrame |
nsIFrame::ReflowChildFlags::NoSizeView |
nsIFrame::ReflowChildFlags::NoDeleteNextInFlowChild;
parent->ReflowChild(aChild, pc, childSize, childRI, wm, LogicalPoint(wm),
nsSize(), flags, childStatus);
nsContainerFrame::FinishReflowChild(aChild, pc, childSize, &childRI, wm,
LogicalPoint(wm), nsSize(), flags);
#ifdef DEBUG
parent->RemoveProperty(nsContainerFrame::DebugReflowingWithInfiniteISize());
#endif
return childSize.BSize(wm);
}
/**
* Reflow aChild in the given aAvailableSize, using aNewContentBoxSize as its
* computed size in aChildAxis.
*/
static void PostReflowStretchChild(
nsIFrame* aChild, const ReflowInput& aReflowInput,
const LogicalSize& aAvailableSize, const LogicalSize& aCBSize,
LogicalAxis aChildAxis, const nscoord aNewContentBoxSize,
nscoord aIMinSizeClamp = NS_MAXSIZE, nscoord aBMinSizeClamp = NS_MAXSIZE) {
nsPresContext* pc = aChild->PresContext();
ComputeSizeFlags csFlags;
if (aIMinSizeClamp != NS_MAXSIZE) {
csFlags += ComputeSizeFlag::IClampMarginBoxMinSize;
}
if (aBMinSizeClamp != NS_MAXSIZE) {
csFlags += ComputeSizeFlag::BClampMarginBoxMinSize;
aChild->SetProperty(nsIFrame::BClampMarginBoxMinSizeProperty(),
aBMinSizeClamp);
} else {
aChild->RemoveProperty(nsIFrame::BClampMarginBoxMinSizeProperty());
}
ReflowInput ri(pc, aReflowInput, aChild, aAvailableSize, Some(aCBSize), {},
csFlags);
if (aChildAxis == eLogicalAxisBlock) {
ri.SetComputedBSize(ri.ApplyMinMaxBSize(aNewContentBoxSize));
} else {
ri.SetComputedISize(ri.ApplyMinMaxISize(aNewContentBoxSize));
}
ReflowOutput childSize(ri);
nsReflowStatus childStatus;
const nsIFrame::ReflowChildFlags flags =
nsIFrame::ReflowChildFlags::NoMoveFrame |
nsIFrame::ReflowChildFlags::NoDeleteNextInFlowChild;
auto wm = aChild->GetWritingMode();
nsContainerFrame* parent = aChild->GetParent();
parent->ReflowChild(aChild, pc, childSize, ri, wm, LogicalPoint(wm), nsSize(),
flags, childStatus);
nsContainerFrame::FinishReflowChild(aChild, pc, childSize, &ri, wm,
LogicalPoint(wm), nsSize(), flags);
}
/**
* Return the accumulated margin+border+padding in aAxis for aFrame (a subgrid)
* and its ancestor subgrids.
*/
static LogicalMargin SubgridAccumulatedMarginBorderPadding(
nsIFrame* aFrame, const Subgrid* aSubgrid, WritingMode aResultWM,
LogicalAxis aAxis) {
MOZ_ASSERT(aFrame->IsGridContainerFrame());
auto* subgridFrame = static_cast<nsGridContainerFrame*>(aFrame);
LogicalMargin result(aSubgrid->mMarginBorderPadding);
auto* parent = subgridFrame->ParentGridContainerForSubgrid();
auto subgridCBWM = parent->GetWritingMode();
auto childRange = aSubgrid->mArea.LineRangeForAxis(aAxis);
bool skipStartSide = false;
bool skipEndSide = false;
auto axis = aSubgrid->mIsOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
// If aFrame's parent is also a subgrid, then add its MBP on the edges that
// are adjacent (i.e. start or end in the same track), recursively.
// ("parent" refers to the grid-frame we're currently adding MBP for,
// and "grandParent" its parent, as we walk up the chain.)
while (parent->IsSubgrid(axis)) {
auto* parentSubgrid = parent->GetProperty(Subgrid::Prop());
auto* grandParent = parent->ParentGridContainerForSubgrid();
auto parentCBWM = grandParent->GetWritingMode();
if (parentCBWM.IsOrthogonalTo(subgridCBWM)) {
axis = GetOrthogonalAxis(axis);
}
const auto& parentRange = parentSubgrid->mArea.LineRangeForAxis(axis);
bool sameDir = parentCBWM.ParallelAxisStartsOnSameSide(axis, subgridCBWM);
if (sameDir) {
skipStartSide |= childRange.mStart != 0;
skipEndSide |= childRange.mEnd != parentRange.Extent();
} else {
skipEndSide |= childRange.mStart != 0;
skipStartSide |= childRange.mEnd != parentRange.Extent();
}
if (skipStartSide && skipEndSide) {
break;
}
auto mbp =
parentSubgrid->mMarginBorderPadding.ConvertTo(subgridCBWM, parentCBWM);
if (skipStartSide) {
mbp.Start(aAxis, subgridCBWM) = nscoord(0);
}
if (skipEndSide) {
mbp.End(aAxis, subgridCBWM) = nscoord(0);
}
result += mbp;
parent = grandParent;
childRange = parentRange;
}
return result.ConvertTo(aResultWM, subgridCBWM);
}
/**
* Return the [min|max]-content contribution of aChild to its parent (i.e.
* the child's margin-box) in aAxis.
*/
static nscoord ContentContribution(
const GridItemInfo& aGridItem, const GridReflowInput& aState,
gfxContext* aRC, WritingMode aCBWM, LogicalAxis aAxis,
const Maybe<LogicalSize>& aPercentageBasis, IntrinsicISizeType aConstraint,
nscoord aMinSizeClamp = NS_MAXSIZE, uint32_t aFlags = 0) {
nsIFrame* child = aGridItem.mFrame;
nscoord extraMargin = 0;
nsGridContainerFrame::Subgrid* subgrid = nullptr;
if (child->GetParent() != aState.mFrame) {
// |child| is a subgrid descendant, so it contributes its subgrids'
// margin+border+padding for any edge tracks that it spans.
auto* subgridFrame = child->GetParent();
subgrid = subgridFrame->GetProperty(Subgrid::Prop());
const auto itemEdgeBits = aGridItem.mState[aAxis] & ItemState::eEdgeBits;
if (itemEdgeBits) {
LogicalMargin mbp = SubgridAccumulatedMarginBorderPadding(
subgridFrame, subgrid, aCBWM, aAxis);
if (itemEdgeBits & ItemState::eStartEdge) {
extraMargin += mbp.Start(aAxis, aCBWM);
}
if (itemEdgeBits & ItemState::eEndEdge) {
extraMargin += mbp.End(aAxis, aCBWM);
}
}
// It also contributes (half of) the subgrid's gap on its edges (if any)
// subtracted by the non-subgrid ancestor grid container's gap.
// Note that this can also be negative since it's considered a margin.
if (itemEdgeBits != ItemState::eEdgeBits) {
auto subgridAxis = aCBWM.IsOrthogonalTo(subgridFrame->GetWritingMode())
? GetOrthogonalAxis(aAxis)
: aAxis;
auto& gapStyle = subgridAxis == eLogicalAxisBlock
? subgridFrame->StylePosition()->mRowGap
: subgridFrame->StylePosition()->mColumnGap;
if (!gapStyle.IsNormal()) {
auto subgridExtent = subgridAxis == eLogicalAxisBlock
? subgrid->mGridRowEnd
: subgrid->mGridColEnd;
if (subgridExtent > 1) {
nscoord subgridGap =
nsLayoutUtils::ResolveGapToLength(gapStyle, NS_UNCONSTRAINEDSIZE);
auto& tracks =
aAxis == eLogicalAxisBlock ? aState.mRows : aState.mCols;
auto gapDelta = subgridGap - tracks.mGridGap;
if (!itemEdgeBits) {
extraMargin += gapDelta;
} else {
extraMargin += gapDelta / 2;
}
}
}
}
}
PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
nscoord size = nsLayoutUtils::IntrinsicForAxis(
axis, aRC, child, aConstraint, aPercentageBasis,
aFlags | nsLayoutUtils::BAIL_IF_REFLOW_NEEDED, aMinSizeClamp);
auto childWM = child->GetWritingMode();
const bool isOrthogonal = childWM.IsOrthogonalTo(aCBWM);
auto childAxis = isOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
if (size == NS_INTRINSIC_ISIZE_UNKNOWN && childAxis == eLogicalAxisBlock) {
// We need to reflow the child to find its BSize contribution.
// XXX this will give mostly correct results for now (until bug 1174569).
nscoord availISize = INFINITE_ISIZE_COORD;
nscoord availBSize = NS_UNCONSTRAINEDSIZE;
// The next two variables are MinSizeClamp values in the child's axes.
nscoord iMinSizeClamp = NS_MAXSIZE;
nscoord bMinSizeClamp = NS_MAXSIZE;
LogicalSize cbSize(childWM, 0, NS_UNCONSTRAINEDSIZE);
// Below, we try to resolve the child's grid-area size in its inline-axis
// to use as the CB/Available size in the MeasuringReflow that follows.
if (child->GetParent() != aState.mFrame) {
// This item is a child of a subgrid descendant.
auto* subgridFrame =
static_cast<nsGridContainerFrame*>(child->GetParent());
MOZ_ASSERT(subgridFrame->IsGridContainerFrame());
auto* uts = subgridFrame->GetProperty(UsedTrackSizes::Prop());
if (!uts) {
uts = new UsedTrackSizes();
subgridFrame->SetProperty(UsedTrackSizes::Prop(), uts);
}
// The grid-item's inline-axis as expressed in the subgrid's WM.
auto subgridAxis = childWM.IsOrthogonalTo(subgridFrame->GetWritingMode())
? eLogicalAxisBlock
: eLogicalAxisInline;
uts->ResolveTrackSizesForAxis(subgridFrame, subgridAxis, *aRC);
if (uts->mCanResolveLineRangeSize[subgridAxis]) {
auto* subgrid =
subgridFrame->GetProperty(nsGridContainerFrame::Subgrid::Prop());
const GridItemInfo* originalItem = nullptr;
for (const auto& item : subgrid->mGridItems) {
if (item.mFrame == child) {
originalItem = &item;
break;
}
}
MOZ_ASSERT(originalItem, "huh?");
const auto& range = originalItem->mArea.LineRangeForAxis(subgridAxis);
nscoord pos, sz;
range.ToPositionAndLength(uts->mSizes[subgridAxis], &pos, &sz);
if (childWM.IsOrthogonalTo(subgridFrame->GetWritingMode())) {
availBSize = sz;
cbSize.BSize(childWM) = sz;
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
bMinSizeClamp = sz;
}
} else {
availISize = sz;
cbSize.ISize(childWM) = sz;
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
iMinSizeClamp = sz;
}
}
}
} else if (aState.mCols.mCanResolveLineRangeSize) {
nscoord sz = aState.mCols.ResolveSize(aGridItem.mArea.mCols);
if (isOrthogonal) {
availBSize = sz;
cbSize.BSize(childWM) = sz;
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
bMinSizeClamp = sz;
}
} else {
availISize = sz;
cbSize.ISize(childWM) = sz;
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
iMinSizeClamp = sz;
}
}
}
if (isOrthogonal == (aAxis == eLogicalAxisInline)) {
bMinSizeClamp = aMinSizeClamp;
} else {
iMinSizeClamp = aMinSizeClamp;
}
LogicalSize availableSize(childWM, availISize, availBSize);
if (MOZ_UNLIKELY(child->IsXULBoxFrame())) {
auto* pc = child->PresContext();
// For XUL-in-CSS-Grid (e.g. in our frontend code), we defer to XUL's
// GetPrefSize() function (which reports an answer in both axes), instead
// of actually reflowing. It's important to avoid the "measuring + final"
// two-pass reflow for XUL, because some XUL layout code may incorrectly
// optimize away the second reflow in cases where it's really needed.
// XXXdholbert We'll remove this special case in bug 1600542.
ReflowInput childRI(pc, *aState.mReflowInput, child, availableSize,
Some(cbSize));
nsBoxLayoutState state(pc, &aState.mRenderingContext, &childRI,
childRI.mReflowDepth);
nsSize physicalPrefSize = child->GetXULPrefSize(state);
auto prefSize = LogicalSize(childWM, physicalPrefSize);
size = prefSize.BSize(childWM);
// XXXdholbert This won't have percentage margins resolved.
// Hopefully we can just avoid those for XUL-content-in-css-grid?
size += childRI.ComputedLogicalMargin(childWM).BStartEnd(childWM);
} else {
size = ::MeasuringReflow(child, aState.mReflowInput, aRC, availableSize,
cbSize, iMinSizeClamp, bMinSizeClamp);
size += child->GetLogicalUsedMargin(childWM).BStartEnd(childWM);
}
nscoord overflow = size - aMinSizeClamp;
if (MOZ_UNLIKELY(overflow > 0)) {
nscoord contentSize = child->ContentSize(childWM).BSize(childWM);
nscoord newContentSize = std::max(nscoord(0), contentSize - overflow);
// XXXmats deal with percentages better, see bug 1300369 comment 27.
size -= contentSize - newContentSize;
}
}
MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
"baseline offset should be non-negative at this point");
MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
aGridItem.mBaselineOffset[aAxis] == nscoord(0),
"baseline offset should be zero when not baseline-aligned");
size += aGridItem.mBaselineOffset[aAxis];
size += extraMargin;
return std::max(size, 0);
}
struct CachedIntrinsicSizes {
Maybe<nscoord> mMinSize;
Maybe<nscoord> mMinContentContribution;
Maybe<nscoord> mMaxContentContribution;
// The item's percentage basis for intrinsic sizing purposes.
Maybe<LogicalSize> mPercentageBasis;
// "if the grid item spans only grid tracks that have a fixed max track
// sizing function, its automatic minimum size in that dimension is
// further clamped to less than or equal to the size necessary to fit its
// margin box within the resulting grid area (flooring at zero)"
// https://drafts.csswg.org/css-grid/#min-size-auto
// This is the clamp value to use for that:
nscoord mMinSizeClamp = NS_MAXSIZE;
};
static nscoord MinContentContribution(const GridItemInfo& aGridItem,
const GridReflowInput& aState,
gfxContext* aRC, WritingMode aCBWM,
LogicalAxis aAxis,
CachedIntrinsicSizes* aCache) {
if (aCache->mMinContentContribution.isSome()) {
return aCache->mMinContentContribution.value();
}
if (aCache->mPercentageBasis.isNothing()) {
aCache->mPercentageBasis.emplace(
aState.PercentageBasisFor(aAxis, aGridItem));
}
nscoord s = ContentContribution(
aGridItem, aState, aRC, aCBWM, aAxis, aCache->mPercentageBasis,
IntrinsicISizeType::MinISize, aCache->mMinSizeClamp);
aCache->mMinContentContribution.emplace(s);
return s;
}
static nscoord MaxContentContribution(const GridItemInfo& aGridItem,
const GridReflowInput& aState,
gfxContext* aRC, WritingMode aCBWM,
LogicalAxis aAxis,
CachedIntrinsicSizes* aCache) {
if (aCache->mMaxContentContribution.isSome()) {
return aCache->mMaxContentContribution.value();
}
if (aCache->mPercentageBasis.isNothing()) {
aCache->mPercentageBasis.emplace(
aState.PercentageBasisFor(aAxis, aGridItem));
}
nscoord s = ContentContribution(
aGridItem, aState, aRC, aCBWM, aAxis, aCache->mPercentageBasis,
IntrinsicISizeType::PrefISize, aCache->mMinSizeClamp);
aCache->mMaxContentContribution.emplace(s);
return s;
}
// Computes the min-size contribution for a grid item, as defined at
// https://drafts.csswg.org/css-grid/#min-size-contribution
static nscoord MinSize(const GridItemInfo& aGridItem,
const GridReflowInput& aState, gfxContext* aRC,
WritingMode aCBWM, LogicalAxis aAxis,
CachedIntrinsicSizes* aCache) {
if (aCache->mMinSize.isSome()) {
return aCache->mMinSize.value();
}
nsIFrame* child = aGridItem.mFrame;
PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis));
const nsStylePosition* stylePos = child->StylePosition();
StyleSize sizeStyle =
axis == eAxisHorizontal ? stylePos->mWidth : stylePos->mHeight;
auto ourInlineAxis = child->GetWritingMode().PhysicalAxis(eLogicalAxisInline);
// max-content and min-content should behave as initial value in block axis.
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
// for block size dimension on sizing properties (e.g. height), so we
// treat it as `auto`.
if (axis != ourInlineAxis && sizeStyle.IsExtremumLength()) {
sizeStyle = StyleSize::Auto();
}
if (!sizeStyle.IsAuto() && !sizeStyle.HasPercent()) {
nscoord s =
MinContentContribution(aGridItem, aState, aRC, aCBWM, aAxis, aCache);
aCache->mMinSize.emplace(s);
return s;
}
if (aCache->mPercentageBasis.isNothing()) {
aCache->mPercentageBasis.emplace(
aState.PercentageBasisFor(aAxis, aGridItem));
}
// https://drafts.csswg.org/css-grid/#min-size-auto
// This calculates the min-content contribution from either a definite
// min-width (or min-height depending on aAxis), or the "specified /
// transferred size" for min-width:auto if overflow == visible (as min-width:0
// otherwise), or NS_UNCONSTRAINEDSIZE for other min-width intrinsic values
// (which results in always taking the "content size" part below).
MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
"baseline offset should be non-negative at this point");
MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
aGridItem.mBaselineOffset[aAxis] == nscoord(0),
"baseline offset should be zero when not baseline-aligned");
nscoord sz = aGridItem.mBaselineOffset[aAxis] +
nsLayoutUtils::MinSizeContributionForAxis(
axis, aRC, child, IntrinsicISizeType::MinISize,
*aCache->mPercentageBasis);
const StyleSize& style =
axis == eAxisHorizontal ? stylePos->mMinWidth : stylePos->mMinHeight;
// max-content and min-content should behave as initial value in block axis.
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
// for block size dimension on sizing properties (e.g. height), so we
// treat it as `auto`.
const bool inInlineAxis = axis == ourInlineAxis;
const bool isAuto =
style.IsAuto() || (!inInlineAxis && style.IsExtremumLength());
if ((inInlineAxis && style.IsExtremumLength()) ||
(isAuto && child->StyleDisplay()->mOverflowX == StyleOverflow::Visible)) {
// Now calculate the "content size" part and return whichever is smaller.
MOZ_ASSERT(isAuto || sz == NS_UNCONSTRAINEDSIZE);
sz = std::min(sz, ContentContribution(aGridItem, aState, aRC, aCBWM, aAxis,
aCache->mPercentageBasis,
IntrinsicISizeType::MinISize,
aCache->mMinSizeClamp,
nsLayoutUtils::MIN_INTRINSIC_ISIZE));
}
aCache->mMinSize.emplace(sz);
return sz;
}
void nsGridContainerFrame::Tracks::CalculateSizes(
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions, nscoord aContentBoxSize,
LineRange GridArea::*aRange, SizingConstraint aConstraint) {
nscoord percentageBasis = aContentBoxSize;
if (percentageBasis == NS_UNCONSTRAINEDSIZE) {
percentageBasis = 0;
}
InitializeItemBaselines(aState, aGridItems);
ResolveIntrinsicSize(aState, aGridItems, aFunctions, aRange, percentageBasis,
aConstraint);
if (aConstraint != SizingConstraint::MinContent) {
nscoord freeSpace = aContentBoxSize;
if (freeSpace != NS_UNCONSTRAINEDSIZE) {
freeSpace -= SumOfGridGaps();
}
DistributeFreeSpace(freeSpace);
StretchFlexibleTracks(aState, aGridItems, aFunctions, freeSpace);
}
}
TrackSize::StateBits nsGridContainerFrame::Tracks::StateBitsForRange(
const LineRange& aRange) const {
MOZ_ASSERT(!aRange.IsAuto(), "must have a definite range");
TrackSize::StateBits state = TrackSize::StateBits(0);
for (auto i : aRange.Range()) {
state |= mSizes[i].mState;
}
return state;
}
static void AddSubgridContribution(TrackSize& aSize,
nscoord aMarginBorderPadding) {
if (aSize.mState & TrackSize::eIntrinsicMinSizing) {
aSize.mBase = std::max(aSize.mBase, aMarginBorderPadding);
aSize.mLimit = std::max(aSize.mLimit, aSize.mBase);
}
// XXX maybe eFlexMaxSizing too?
// (once we implement https://github.com/w3c/csswg-drafts/issues/2177)
if (aSize.mState &
(TrackSize::eIntrinsicMaxSizing | TrackSize::eFitContent)) {
aSize.mLimit = std::max(aSize.mLimit, aMarginBorderPadding);
}
}
bool nsGridContainerFrame::Tracks::ResolveIntrinsicSizeStep1(
GridReflowInput& aState, const TrackSizingFunctions& aFunctions,
nscoord aPercentageBasis, SizingConstraint aConstraint,
const LineRange& aRange, const GridItemInfo& aGridItem) {
CachedIntrinsicSizes cache;
TrackSize& sz = mSizes[aRange.mStart];
WritingMode wm = aState.mWM;
// min sizing
gfxContext* rc = &aState.mRenderingContext;
if (sz.mState & TrackSize::eAutoMinSizing) {
nscoord s;
// Check if we need to apply "Automatic Minimum Size" and cache it.
if (aGridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) {
aGridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize;
// Clamp it if it's spanning a definite track max-sizing function.
if (TrackSize::IsDefiniteMaxSizing(sz.mState)) {
cache.mMinSizeClamp = aFunctions.MaxSizingFor(aRange.mStart)
.AsBreadth()
.Resolve(aPercentageBasis);
aGridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
}
if (aConstraint != SizingConstraint::MaxContent) {
s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
} else {
s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
}
} else {
s = MinSize(aGridItem, aState, rc, wm, mAxis, &cache);
}
sz.mBase = std::max(sz.mBase, s);
} else if (sz.mState & TrackSize::eMinContentMinSizing) {
auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
sz.mBase = std::max(sz.mBase, s);
} else if (sz.mState & TrackSize::eMaxContentMinSizing) {
auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
sz.mBase = std::max(sz.mBase, s);
}
// max sizing
if (sz.mState & TrackSize::eMinContentMaxSizing) {
auto s = MinContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
sz.mLimit = s;
} else {
sz.mLimit = std::max(sz.mLimit, s);
}
} else if (sz.mState &
(TrackSize::eAutoMaxSizing | TrackSize::eMaxContentMaxSizing)) {
auto s = MaxContentContribution(aGridItem, aState, rc, wm, mAxis, &cache);
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
sz.mLimit = s;
} else {
sz.mLimit = std::max(sz.mLimit, s);
}
if (MOZ_UNLIKELY(sz.mState & TrackSize::eFitContent)) {
// Clamp mLimit to the fit-content() size, for §12.5.1.
nscoord fitContentClamp = aFunctions.SizingFor(aRange.mStart)
.AsFitContent()
.AsBreadth()
.Resolve(aPercentageBasis);
sz.mLimit = std::min(sz.mLimit, fitContentClamp);
}
}
if (sz.mLimit < sz.mBase) {
sz.mLimit = sz.mBase;
}
return sz.mState & TrackSize::eFlexMaxSizing;
}
void nsGridContainerFrame::Tracks::CalculateItemBaselines(
nsTArray<ItemBaselineData>& aBaselineItems,
BaselineSharingGroup aBaselineGroup) {
if (aBaselineItems.IsEmpty()) {
return;
}
// Sort the collected items on their baseline track.
std::sort(aBaselineItems.begin(), aBaselineItems.end(),
ItemBaselineData::IsBaselineTrackLessThan);
MOZ_ASSERT(mSizes.Length() > 0, "having an item implies at least one track");
const uint32_t lastTrack = mSizes.Length() - 1;
nscoord maxBaseline = 0;
nscoord maxDescent = 0;
uint32_t currentTrack = kAutoLine; // guaranteed to not match any item
uint32_t trackStartIndex = 0;
for (uint32_t i = 0, len = aBaselineItems.Length(); true; ++i) {
// Find the maximum baseline and descent in the current track.
if (i != len) {
const ItemBaselineData& item = aBaselineItems[i];
if (currentTrack == item.mBaselineTrack) {
maxBaseline = std::max(maxBaseline, item.mBaseline);
maxDescent = std::max(maxDescent, item.mSize - item.mBaseline);
continue;
}
}
// Iterate the current track again and update the baseline offsets making
// all items baseline-aligned within this group in this track.
for (uint32_t j = trackStartIndex; j < i; ++j) {
const ItemBaselineData& item = aBaselineItems[j];
item.mGridItem->mBaselineOffset[mAxis] = maxBaseline - item.mBaseline;
MOZ_ASSERT(item.mGridItem->mBaselineOffset[mAxis] >= 0);
}
if (i != 0) {
// Store the size of this baseline-aligned subtree.
mSizes[currentTrack].mBaselineSubtreeSize[aBaselineGroup] =
maxBaseline + maxDescent;
// Record the first(last) baseline for the first(last) track.
if (currentTrack == 0 && aBaselineGroup == BaselineSharingGroup::First) {
mBaseline[aBaselineGroup] = maxBaseline;
}
if (currentTrack == lastTrack &&
aBaselineGroup == BaselineSharingGroup::Last) {
mBaseline[aBaselineGroup] = maxBaseline;
}
}
if (i == len) {
break;
}
// Initialize data for the next track with baseline-aligned items.
const ItemBaselineData& item = aBaselineItems[i];
currentTrack = item.mBaselineTrack;
trackStartIndex = i;
maxBaseline = item.mBaseline;
maxDescent = item.mSize - item.mBaseline;
}
}
void nsGridContainerFrame::Tracks::InitializeItemBaselines(
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems) {
MOZ_ASSERT(!mIsMasonry);
if (aState.mFrame->IsSubgrid(mAxis)) {
// A grid container's subgridded axis doesn't have a baseline.
return;
}
nsTArray<ItemBaselineData> firstBaselineItems;
nsTArray<ItemBaselineData> lastBaselineItems;
WritingMode wm = aState.mWM;
ComputedStyle* containerSC = aState.mFrame->Style();
for (GridItemInfo& gridItem : aGridItems) {
if (gridItem.IsSubgrid(mAxis)) {
// A subgrid itself is never baseline-aligned.
continue;
}
nsIFrame* child = gridItem.mFrame;
uint32_t baselineTrack = kAutoLine;
auto state = ItemState(0);
auto childWM = child->GetWritingMode();
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
const bool isInlineAxis = mAxis == eLogicalAxisInline; // i.e. columns
// XXX update the line below to include orthogonal grid/table boxes
// XXX since they have baselines in both dimensions. And flexbox with
// XXX reversed main/cross axis?
const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal;
if (itemHasBaselineParallelToTrack) {
// [align|justify]-self:[last ]baseline.
auto selfAlignment =
isOrthogonal ? child->StylePosition()->UsedJustifySelf(containerSC)._0
: child->StylePosition()->UsedAlignSelf(containerSC)._0;
selfAlignment &= ~StyleAlignFlags::FLAG_BITS;
if (selfAlignment == StyleAlignFlags::BASELINE) {
state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline;
const GridArea& area = gridItem.mArea;
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
} else if (selfAlignment == StyleAlignFlags::LAST_BASELINE) {
state |= ItemState::eLastBaseline | ItemState::eSelfBaseline;
const GridArea& area = gridItem.mArea;
baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
}
// [align|justify]-content:[last ]baseline.
// https://drafts.csswg.org/css-align-3/#baseline-align-content
// "[...] and its computed 'align-self' or 'justify-self' (whichever
// affects its block axis) is 'stretch' or 'self-start' ('self-end').
// For this purpose, the 'start', 'end', 'flex-start', and 'flex-end'
// values of 'align-self' are treated as either 'self-start' or
// 'self-end', whichever they end up equivalent to.
auto alignContent = child->StylePosition()->mAlignContent.primary;
alignContent &= ~StyleAlignFlags::FLAG_BITS;
if (alignContent == StyleAlignFlags::BASELINE ||
alignContent == StyleAlignFlags::LAST_BASELINE) {
const auto selfAlignEdge = alignContent == StyleAlignFlags::BASELINE
? StyleAlignFlags::SELF_START
: StyleAlignFlags::SELF_END;
bool validCombo = selfAlignment == StyleAlignFlags::NORMAL ||
selfAlignment == StyleAlignFlags::STRETCH ||
selfAlignment == selfAlignEdge;
if (!validCombo) {
// We're doing alignment in the axis that's orthogonal to mAxis here.
LogicalAxis alignAxis = GetOrthogonalAxis(mAxis);
// |sameSide| is true if the container's start side in this axis is
// the same as the child's start side, in the child's parallel axis.
bool sameSide = wm.ParallelAxisStartsOnSameSide(alignAxis, childWM);
if (selfAlignment == StyleAlignFlags::LEFT) {
selfAlignment = !isInlineAxis || wm.IsBidiLTR()
? StyleAlignFlags::START
: StyleAlignFlags::END;
} else if (selfAlignment == StyleAlignFlags::RIGHT) {
selfAlignment = isInlineAxis && wm.IsBidiLTR()
? StyleAlignFlags::END
: StyleAlignFlags::START;
}
if (selfAlignment == StyleAlignFlags::START ||
selfAlignment == StyleAlignFlags::FLEX_START) {
validCombo =
sameSide == (alignContent == StyleAlignFlags::BASELINE);
} else if (selfAlignment == StyleAlignFlags::END ||
selfAlignment == StyleAlignFlags::FLEX_END) {
validCombo =
sameSide == (alignContent == StyleAlignFlags::LAST_BASELINE);
}
}
if (validCombo) {
const GridArea& area = gridItem.mArea;
if (alignContent == StyleAlignFlags::BASELINE) {
state |= ItemState::eFirstBaseline | ItemState::eContentBaseline;
baselineTrack =
isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
} else if (alignContent == StyleAlignFlags::LAST_BASELINE) {
state |= ItemState::eLastBaseline | ItemState::eContentBaseline;
baselineTrack =
(isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
}
}
}
}
if (state & ItemState::eIsBaselineAligned) {
// XXXmats if |child| is a descendant of a subgrid then the metrics
// below needs to account for the accumulated MPB somehow...
// XXX available size issue
LogicalSize avail(childWM, INFINITE_ISIZE_COORD, NS_UNCONSTRAINEDSIZE);
auto* rc = &aState.mRenderingContext;
// XXX figure out if we can avoid/merge this reflow with the main reflow.
// XXX (after bug 1174569 is sorted out)
//
// XXX How should we handle percentage padding here? (bug 1330866)
// XXX (see ::ContentContribution and how it deals with percentages)
// XXX What if the true baseline after line-breaking differs from this
// XXX hypothetical baseline based on an infinite inline size?
// XXX Maybe we should just call ::ContentContribution here instead?
// XXX For now we just pass a zero-sized CB:
LogicalSize cbSize(childWM, 0, 0);
::MeasuringReflow(child, aState.mReflowInput, rc, avail, cbSize);
nscoord baseline;
nsGridContainerFrame* grid = do_QueryFrame(child);
if (state & ItemState::eFirstBaseline) {
if (grid) {
if (isOrthogonal == isInlineAxis) {
grid->GetBBaseline(BaselineSharingGroup::First, &baseline);
} else {
grid->GetIBaseline(BaselineSharingGroup::First, &baseline);
}
}
if (grid || nsLayoutUtils::GetFirstLineBaseline(wm, child, &baseline)) {
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
"about to use an unknown baseline");
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
auto m = child->GetLogicalUsedMargin(wm);
baseline += isInlineAxis ? m.IStart(wm) : m.BStart(wm);
auto alignSize =
frameSize + (isInlineAxis ? m.IStartEnd(wm) : m.BStartEnd(wm));
firstBaselineItems.AppendElement(ItemBaselineData(
{baselineTrack, baseline, alignSize, &gridItem}));
} else {
state &= ~ItemState::eAllBaselineBits;
}
} else {
if (grid) {
if (isOrthogonal == isInlineAxis) {
grid->GetBBaseline(BaselineSharingGroup::Last, &baseline);
} else {
grid->GetIBaseline(BaselineSharingGroup::Last, &baseline);
}
}
if (grid || nsLayoutUtils::GetLastLineBaseline(wm, child, &baseline)) {
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
"about to use an unknown baseline");
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
auto m = child->GetLogicalUsedMargin(wm);
if (!grid) {
// Convert to distance from border-box end.
baseline = frameSize - baseline;
}
auto descent = baseline + (isInlineAxis ? m.IEnd(wm) : m.BEnd(wm));
auto alignSize =
frameSize + (isInlineAxis ? m.IStartEnd(wm) : m.BStartEnd(wm));
lastBaselineItems.AppendElement(
ItemBaselineData({baselineTrack, descent, alignSize, &gridItem}));
state |= ItemState::eEndSideBaseline;
} else {
state &= ~ItemState::eAllBaselineBits;
}
}
}
MOZ_ASSERT(
(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) !=
(ItemState::eFirstBaseline | ItemState::eLastBaseline),
"first/last baseline bits are mutually exclusive");
MOZ_ASSERT(
(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)) !=
(ItemState::eSelfBaseline | ItemState::eContentBaseline),
"*-self and *-content baseline bits are mutually exclusive");
MOZ_ASSERT(
!(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) ==
!(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)),
"first/last bit requires self/content bit and vice versa");
gridItem.mState[mAxis] |= state;
gridItem.mBaselineOffset[mAxis] = nscoord(0);
}
if (firstBaselineItems.IsEmpty() && lastBaselineItems.IsEmpty()) {
return;
}
// TODO: CSS Align spec issue - how to align a baseline subtree in a track?
// https://lists.w3.org/Archives/Public/www-style/2016May/0141.html
mBaselineSubtreeAlign[BaselineSharingGroup::First] = StyleAlignFlags::START;
mBaselineSubtreeAlign[BaselineSharingGroup::Last] = StyleAlignFlags::END;
CalculateItemBaselines(firstBaselineItems, BaselineSharingGroup::First);
CalculateItemBaselines(lastBaselineItems, BaselineSharingGroup::Last);
}
// TODO: we store the wrong baseline group offset in some cases (bug 1632200)
void nsGridContainerFrame::Tracks::InitializeItemBaselinesInMasonryAxis(
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
BaselineAlignmentSet aSet, const nsSize& aContainerSize,
nsTArray<nscoord>& aTrackSizes,
nsTArray<ItemBaselineData>& aFirstBaselineItems,
nsTArray<ItemBaselineData>& aLastBaselineItems) {
MOZ_ASSERT(mIsMasonry);
WritingMode wm = aState.mWM;
ComputedStyle* containerSC = aState.mFrame->Style();
for (GridItemInfo& gridItem : aGridItems) {
if (gridItem.IsSubgrid(mAxis)) {
// A subgrid itself is never baseline-aligned.
continue;
}
const auto& area = gridItem.mArea;
if (aSet.mItemSet == BaselineAlignmentSet::LastItems) {
// NOTE: eIsLastItemInMasonryTrack is set also if the item is the ONLY
// item in its track; the eIsBaselineAligned check excludes it though
// since it participates in the start baseline groups in that case.
//
// XXX what if it's the only item in THAT baseline group?
// XXX should it participate in the last-item group instead then
// if there are more baseline-aligned items there?
if (!(gridItem.mState[mAxis] & ItemState::eIsLastItemInMasonryTrack) ||
(gridItem.mState[mAxis] & ItemState::eIsBaselineAligned)) {
continue;
}
} else {
if (area.LineRangeForAxis(mAxis).mStart > 0 ||
(gridItem.mState[mAxis] & ItemState::eIsBaselineAligned)) {
continue;
}
}
auto trackAlign =
aState.mGridStyle
->UsedTracksAlignment(
mAxis, area.LineRangeForAxis(GetOrthogonalAxis(mAxis)).mStart)
.primary;
if (!aSet.MatchTrackAlignment(trackAlign)) {
continue;
}
nsIFrame* child = gridItem.mFrame;
uint32_t baselineTrack = kAutoLine;
auto state = ItemState(0);
auto childWM = child->GetWritingMode();
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
const bool isInlineAxis = mAxis == eLogicalAxisInline; // i.e. columns
// XXX update the line below to include orthogonal grid/table boxes
// XXX since they have baselines in both dimensions. And flexbox with
// XXX reversed main/cross axis?
const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal;
if (itemHasBaselineParallelToTrack) {
const auto* pos = child->StylePosition();
// [align|justify]-self:[last ]baseline.
auto selfAlignment = pos->UsedSelfAlignment(mAxis, containerSC);
selfAlignment &= ~StyleAlignFlags::FLAG_BITS;
if (selfAlignment == StyleAlignFlags::BASELINE) {
state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline;
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
} else if (selfAlignment == StyleAlignFlags::LAST_BASELINE) {
state |= ItemState::eLastBaseline | ItemState::eSelfBaseline;
baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
} else {
// [align|justify]-content:[last ]baseline.
auto childAxis = isOrthogonal ? GetOrthogonalAxis(mAxis) : mAxis;
auto alignContent = pos->UsedContentAlignment(childAxis).primary;
alignContent &= ~StyleAlignFlags::FLAG_BITS;
if (alignContent == StyleAlignFlags::BASELINE) {
state |= ItemState::eFirstBaseline | ItemState::eContentBaseline;
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
} else if (alignContent == StyleAlignFlags::LAST_BASELINE) {
state |= ItemState::eLastBaseline | ItemState::eContentBaseline;
baselineTrack =
(isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
}
}
}
if (state & ItemState::eIsBaselineAligned) {
// XXXmats if |child| is a descendant of a subgrid then the metrics
// below needs to account for the accumulated MPB somehow...
nscoord baseline;
nsGridContainerFrame* grid = do_QueryFrame(child);
if (state & ItemState::eFirstBaseline) {
if (grid) {
if (isOrthogonal == isInlineAxis) {
grid->GetBBaseline(BaselineSharingGroup::First, &baseline);
} else {
grid->GetIBaseline(BaselineSharingGroup::First, &baseline);
}
}
if (grid || nsLayoutUtils::GetFirstLineBaseline(wm, child, &baseline)) {
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
"about to use an unknown baseline");
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
nscoord alignSize;
LogicalPoint pos =
child->GetLogicalNormalPosition(wm, aContainerSize);
baseline += pos.Pos(mAxis, wm);
if (aSet.mTrackAlignmentSet == BaselineAlignmentSet::EndStretch) {
state |= ItemState::eEndSideBaseline;
// Convert to distance from the track end.
baseline =
aTrackSizes[gridItem.mArea
.LineRangeForAxis(GetOrthogonalAxis(mAxis))
.mStart] -
baseline;
}
alignSize = frameSize;
aFirstBaselineItems.AppendElement(ItemBaselineData(
{baselineTrack, baseline, alignSize, &gridItem}));
} else {
state &= ~ItemState::eAllBaselineBits;
}
} else {
if (grid) {
if (isOrthogonal == isInlineAxis) {
grid->GetBBaseline(BaselineSharingGroup::Last, &baseline);
} else {
grid->GetIBaseline(BaselineSharingGroup::Last, &baseline);
}
}
if (grid || nsLayoutUtils::GetLastLineBaseline(wm, child, &baseline)) {
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
"about to use an unknown baseline");
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
auto m = child->GetLogicalUsedMargin(wm);
if (!grid &&
aSet.mTrackAlignmentSet == BaselineAlignmentSet::EndStretch) {
// Convert to distance from border-box end.
state |= ItemState::eEndSideBaseline;
LogicalPoint pos =
child->GetLogicalNormalPosition(wm, aContainerSize);
baseline += pos.Pos(mAxis, wm);
baseline =
aTrackSizes[gridItem.mArea
.LineRangeForAxis(GetOrthogonalAxis(mAxis))
.mStart] -
baseline;
} else if (grid && aSet.mTrackAlignmentSet ==
BaselineAlignmentSet::StartStretch) {
// Convert to distance from border-box start.
baseline = frameSize - baseline;
}
if (aSet.mItemSet == BaselineAlignmentSet::LastItems &&
aSet.mTrackAlignmentSet == BaselineAlignmentSet::StartStretch) {
LogicalPoint pos =
child->GetLogicalNormalPosition(wm, aContainerSize);
baseline += pos.B(wm);
}
if (aSet.mTrackAlignmentSet == BaselineAlignmentSet::EndStretch) {
state |= ItemState::eEndSideBaseline;
}
auto descent =
baseline + ((state & ItemState::eEndSideBaseline)
? (isInlineAxis ? m.IEnd(wm) : m.BEnd(wm))
: (isInlineAxis ? m.IStart(wm) : m.BStart(wm)));
auto alignSize =
frameSize + (isInlineAxis ? m.IStartEnd(wm) : m.BStartEnd(wm));
aLastBaselineItems.AppendElement(
ItemBaselineData({baselineTrack, descent, alignSize, &gridItem}));
} else {
state &= ~ItemState::eAllBaselineBits;
}
}
}
MOZ_ASSERT(
(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) !=
(ItemState::eFirstBaseline | ItemState::eLastBaseline),
"first/last baseline bits are mutually exclusive");
MOZ_ASSERT(
(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)) !=
(ItemState::eSelfBaseline | ItemState::eContentBaseline),
"*-self and *-content baseline bits are mutually exclusive");
MOZ_ASSERT(
!(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) ==
!(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)),
"first/last bit requires self/content bit and vice versa");
gridItem.mState[mAxis] |= state;
gridItem.mBaselineOffset[mAxis] = nscoord(0);
}
CalculateItemBaselines(aFirstBaselineItems, BaselineSharingGroup::First);
CalculateItemBaselines(aLastBaselineItems, BaselineSharingGroup::Last);
// TODO: make sure the mBaselines (i.e. the baselines we export from
// the grid container) are offset from the correct container edge.
// Also, which of the baselines do we pick to export exactly?
MOZ_ASSERT(aFirstBaselineItems.Length() != 1 ||
aFirstBaselineItems[0].mGridItem->mBaselineOffset[mAxis] == 0,
"a baseline group that contains only one item should not "
"produce a non-zero item baseline offset");
MOZ_ASSERT(aLastBaselineItems.Length() != 1 ||
aLastBaselineItems[0].mGridItem->mBaselineOffset[mAxis] == 0,
"a baseline group that contains only one item should not "
"produce a non-zero item baseline offset");
}
void nsGridContainerFrame::Tracks::AlignBaselineSubtree(
const GridItemInfo& aGridItem) const {
if (mIsMasonry) {
return;
}
auto state = aGridItem.mState[mAxis];
if (!(state & ItemState::eIsBaselineAligned)) {
return;
}
const GridArea& area = aGridItem.mArea;
int32_t baselineTrack;
const bool isFirstBaseline = state & ItemState::eFirstBaseline;
if (isFirstBaseline) {
baselineTrack =
mAxis == eLogicalAxisBlock ? area.mRows.mStart : area.mCols.mStart;
} else {
baselineTrack =
(mAxis == eLogicalAxisBlock ? area.mRows.mEnd : area.mCols.mEnd) - 1;
}
const TrackSize& sz = mSizes[baselineTrack];
auto baselineGroup = isFirstBaseline ? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
nscoord delta = sz.mBase - sz.mBaselineSubtreeSize[baselineGroup];
const auto subtreeAlign = mBaselineSubtreeAlign[baselineGroup];
if (subtreeAlign == StyleAlignFlags::START) {
if (state & ItemState::eLastBaseline) {
aGridItem.mBaselineOffset[mAxis] += delta;
}
} else if (subtreeAlign == StyleAlignFlags::END) {
if (isFirstBaseline) {
aGridItem.mBaselineOffset[mAxis] += delta;
}
} else if (subtreeAlign == StyleAlignFlags::CENTER) {
aGridItem.mBaselineOffset[mAxis] += delta / 2;
} else {
MOZ_ASSERT_UNREACHABLE("unexpected baseline subtree alignment");
}
}
template <nsGridContainerFrame::Tracks::TrackSizingPhase phase>
bool nsGridContainerFrame::Tracks::GrowSizeForSpanningItems(
nsTArray<Step2ItemData>::iterator aIter,
const nsTArray<Step2ItemData>::iterator aIterEnd,
nsTArray<uint32_t>& aTracks, nsTArray<TrackSize>& aPlan,
nsTArray<TrackSize>& aItemPlan, TrackSize::StateBits aSelector,
const FitContentClamper& aFitContentClamper,
bool aNeedInfinitelyGrowableFlag) {
constexpr bool isMaxSizingPhase =
phase == TrackSizingPhase::IntrinsicMaximums ||
phase == TrackSizingPhase::MaxContentMaximums;
bool needToUpdateSizes = false;
InitializePlan<phase>(aPlan);
for (; aIter != aIterEnd; ++aIter) {
const Step2ItemData& item = *aIter;
if (!(item.mState & aSelector)) {
continue;
}
if (isMaxSizingPhase) {
for (auto i : item.mLineRange.Range()) {
aPlan[i].mState |= TrackSize::eModified;
}
}
nscoord space = item.SizeContributionForPhase<phase>();
if (space <= 0) {
continue;
}
aTracks.ClearAndRetainStorage();
space = CollectGrowable<phase>(space, item.mLineRange, aSelector, aTracks);
if (space > 0) {
DistributeToTrackSizes<phase>(space, aPlan, aItemPlan, aTracks, aSelector,
aFitContentClamper);
needToUpdateSizes = true;
}
}
if (isMaxSizingPhase) {
needToUpdateSizes = true;
}
if (needToUpdateSizes) {
CopyPlanToSize<phase>(aPlan, aNeedInfinitelyGrowableFlag);
}
return needToUpdateSizes;
}
void nsGridContainerFrame::Tracks::ResolveIntrinsicSize(
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions, LineRange GridArea::*aRange,
nscoord aPercentageBasis, SizingConstraint aConstraint) {
// Resolve Intrinsic Track Sizes
// http://dev.w3.org/csswg/css-grid/#algo-content
// We're also setting eIsFlexing on the item state here to speed up
// FindUsedFlexFraction later.
struct PerSpanData {
PerSpanData()
: mItemCountWithSameSpan(0), mStateBits(TrackSize::StateBits(0)) {}
uint32_t mItemCountWithSameSpan;
TrackSize::StateBits mStateBits;
};
AutoTArray<PerSpanData, 16> perSpanData;
nsTArray<Step2ItemData> step2Items;
gfxContext* rc = &aState.mRenderingContext;
WritingMode wm = aState.mWM;
uint32_t maxSpan = 0; // max span of the step2Items items
// Setup track selector for step 2.2:
const auto contentBasedMinSelector =
aConstraint == SizingConstraint::MinContent
? TrackSize::eIntrinsicMinSizing
: TrackSize::eMinOrMaxContentMinSizing;
// Setup track selector for step 2.3:
const auto maxContentMinSelector =
aConstraint == SizingConstraint::MaxContent
? (TrackSize::eMaxContentMinSizing | TrackSize::eAutoMinSizing)
: TrackSize::eMaxContentMinSizing;
const auto orthogonalAxis = GetOrthogonalAxis(mAxis);
const bool isMasonryInOtherAxis = aState.mFrame->IsMasonry(orthogonalAxis);
for (auto& gridItem : aGridItems) {
MOZ_ASSERT(!(gridItem.mState[mAxis] &
(ItemState::eApplyAutoMinSize | ItemState::eIsFlexing |
ItemState::eClampMarginBoxMinSize)),
"Why are any of these bits set already?");
const GridArea& area = gridItem.mArea;
const LineRange& lineRange = area.*aRange;
// If we have masonry layout in the other axis then skip this item unless
// it's in the first masonry track, or has definite placement in this axis,
// or spans all tracks in this axis (since that implies it will be placed
// at line 1 regardless of layout results of other items).
if (isMasonryInOtherAxis &&
gridItem.mArea.LineRangeForAxis(orthogonalAxis).mStart != 0 &&
(gridItem.mState[mAxis] & ItemState::eAutoPlacement) &&
gridItem.mArea.LineRangeForAxis(mAxis).Extent() != mSizes.Length()) {
continue;
}
uint32_t span = lineRange.Extent();
if (MOZ_UNLIKELY(gridItem.mState[mAxis] & ItemState::eIsSubgrid)) {
auto itemWM = gridItem.mFrame->GetWritingMode();
auto percentageBasis = aState.PercentageBasisFor(mAxis, gridItem);
if (percentageBasis.ISize(itemWM) == NS_UNCONSTRAINEDSIZE) {
percentageBasis.ISize(itemWM) = nscoord(0);
}
if (percentageBasis.BSize(itemWM) == NS_UNCONSTRAINEDSIZE) {
percentageBasis.BSize(itemWM) = nscoord(0);
}
auto* subgrid =
SubgridComputeMarginBorderPadding(gridItem, percentageBasis);
LogicalMargin mbp = SubgridAccumulatedMarginBorderPadding(
gridItem.SubgridFrame(), subgrid, wm, mAxis);
if (span == 1) {
AddSubgridContribution(mSizes[lineRange.mStart],
mbp.StartEnd(mAxis, wm));
} else {
AddSubgridContribution(mSizes[lineRange.mStart], mbp.Start(mAxis, wm));
AddSubgridContribution(mSizes[lineRange.mEnd - 1], mbp.End(mAxis, wm));
}
continue;
}
if (span == 1) {
// Step 1. Size tracks to fit non-spanning items.
if (ResolveIntrinsicSizeStep1(aState, aFunctions, aPercentageBasis,
aConstraint, lineRange, gridItem)) {
gridItem.mState[mAxis] |= ItemState::eIsFlexing;
}
} else {
TrackSize::StateBits state = StateBitsForRange(lineRange);
// Check if we need to apply "Automatic Minimum Size" and cache it.
if ((state & TrackSize::eAutoMinSizing) &&
gridItem.ShouldApplyAutoMinSize(wm, mAxis, aPercentageBasis)) {
gridItem.mState[mAxis] |= ItemState::eApplyAutoMinSize;
}
if (state & TrackSize::eFlexMaxSizing) {
gridItem.mState[mAxis] |= ItemState::eIsFlexing;
} else if (state & (TrackSize::eIntrinsicMinSizing |
TrackSize::eIntrinsicMaxSizing)) {
// Collect data for Step 2.
maxSpan = std::max(maxSpan, span);
if (span >= perSpanData.Length()) {
perSpanData.SetLength(2 * span);
}
perSpanData[span].mItemCountWithSameSpan++;
perSpanData[span].mStateBits |= state;
CachedIntrinsicSizes cache;
// Calculate data for "Automatic Minimum Size" clamping, if needed.
if (TrackSize::IsDefiniteMaxSizing(state) &&
(gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize)) {
nscoord minSizeClamp = 0;
for (auto i : lineRange.Range()) {
minSizeClamp += aFunctions.MaxSizingFor(i).AsBreadth().Resolve(
aPercentageBasis);
}
minSizeClamp += mGridGap * (span - 1);
cache.mMinSizeClamp = minSizeClamp;
gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
}
// Collect the various grid item size contributions we need.
nscoord minSize = 0;
if (state & TrackSize::eIntrinsicMinSizing) { // for 2.1
minSize = MinSize(gridItem, aState, rc, wm, mAxis, &cache);
}
nscoord minContent = 0;
if (state & (contentBasedMinSelector | // for 2.2
TrackSize::eIntrinsicMaxSizing)) { // for 2.5
minContent =
MinContentContribution(gridItem, aState, rc, wm, mAxis, &cache);
}
nscoord maxContent = 0;
if (state & (maxContentMinSelector | // for 2.3
TrackSize::eAutoOrMaxContentMaxSizing)) { // for 2.6
maxContent =
MaxContentContribution(gridItem, aState, rc, wm, mAxis, &cache);
}
step2Items.AppendElement(
Step2ItemData({span, state, lineRange, minSize, minContent,
maxContent, gridItem.mFrame}));
}
}
MOZ_ASSERT(!(gridItem.mState[mAxis] & ItemState::eClampMarginBoxMinSize) ||
(gridItem.mState[mAxis] & ItemState::eApplyAutoMinSize),
"clamping only applies to Automatic Minimum Size");
}
// Step 2.
if (maxSpan) {
auto fitContentClamper = [&aFunctions, aPercentageBasis](uint32_t aTrack,
nscoord aMinSize,
nscoord* aSize) {
nscoord fitContentLimit = ::ResolveToDefiniteSize(
aFunctions.MaxSizingFor(aTrack), aPercentageBasis);
if (*aSize > fitContentLimit) {
*aSize = std::max(aMinSize, fitContentLimit);
return true;
}
return false;
};
// Sort the collected items on span length, shortest first. There's no need
// for a stable sort here since the sizing isn't order dependent within
// a group of items with the same span length.
std::sort(step2Items.begin(), step2Items.end(),
Step2ItemData::IsSpanLessThan);
nsTArray<uint32_t> tracks(maxSpan);
nsTArray<TrackSize> plan(mSizes.Length());
plan.SetLength(mSizes.Length());
nsTArray<TrackSize> itemPlan(mSizes.Length());
itemPlan.SetLength(mSizes.Length());
// Start / end iterator for items of the same span length:
auto spanGroupStart = step2Items.begin();
auto spanGroupEnd = spanGroupStart;
const auto end = step2Items.end();
for (; spanGroupStart != end; spanGroupStart = spanGroupEnd) {
const uint32_t span = spanGroupStart->mSpan;
spanGroupEnd = spanGroupStart + perSpanData[span].mItemCountWithSameSpan;
TrackSize::StateBits stateBitsForSpan = perSpanData[span].mStateBits;
bool updatedBase = false; // Did we update any mBase in step 2.1 - 2.3?
TrackSize::StateBits selector(TrackSize::eIntrinsicMinSizing);
if (stateBitsForSpan & selector) {
// Step 2.1 MinSize to intrinsic min-sizing.
updatedBase =
GrowSizeForSpanningItems<TrackSizingPhase::IntrinsicMinimums>(
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
}
selector = contentBasedMinSelector;
if (stateBitsForSpan & selector) {
// Step 2.2 MinContentContribution to min-/max-content (and 'auto' when
// sizing under a min-content constraint) min-sizing.
updatedBase |=
GrowSizeForSpanningItems<TrackSizingPhase::ContentBasedMinimums>(
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
}
selector = maxContentMinSelector;
if (stateBitsForSpan & selector) {
// Step 2.3 MaxContentContribution to max-content (and 'auto' when
// sizing under a max-content constraint) min-sizing.
updatedBase |=
GrowSizeForSpanningItems<TrackSizingPhase::MaxContentMinimums>(
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector);
}
if (updatedBase) {
// Step 2.4
for (TrackSize& sz : mSizes) {
if (sz.mBase > sz.mLimit) {
sz.mLimit = sz.mBase;
}
}
}
selector = TrackSize::eIntrinsicMaxSizing;
if (stateBitsForSpan & selector) {
const bool willRunStep2_6 =
stateBitsForSpan & TrackSize::eAutoOrMaxContentMaxSizing;
// Step 2.5 MinContentContribution to intrinsic max-sizing.
GrowSizeForSpanningItems<TrackSizingPhase::IntrinsicMaximums>(
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector,
fitContentClamper, willRunStep2_6);
if (willRunStep2_6) {
// Step 2.6 MaxContentContribution to max-content max-sizing.
selector = TrackSize::eAutoOrMaxContentMaxSizing;
GrowSizeForSpanningItems<TrackSizingPhase::MaxContentMaximums>(
spanGroupStart, spanGroupEnd, tracks, plan, itemPlan, selector,
fitContentClamper);
}
}
}
}
// Step 3.
for (TrackSize& sz : mSizes) {
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
sz.mLimit = sz.mBase;
}
}
}
float nsGridContainerFrame::Tracks::FindFrUnitSize(
const LineRange& aRange, const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions, nscoord aSpaceToFill) const {
MOZ_ASSERT(aSpaceToFill > 0 && !aFlexTracks.IsEmpty());
float flexFactorSum = 0.0f;
nscoord leftOverSpace = aSpaceToFill;
for (auto i : aRange.Range()) {
const TrackSize& sz = mSizes[i];
if (sz.mState & TrackSize::eFlexMaxSizing) {
flexFactorSum += aFunctions.MaxSizingFor(i).AsFr();
} else {
leftOverSpace -= sz.mBase;
if (leftOverSpace <= 0) {
return 0.0f;
}
}
}
bool restart;
float hypotheticalFrSize;
nsTArray<uint32_t> flexTracks(aFlexTracks.Clone());
uint32_t numFlexTracks = flexTracks.Length();
do {
restart = false;
hypotheticalFrSize = leftOverSpace / std::max(flexFactorSum, 1.0f);
for (uint32_t i = 0, len = flexTracks.Length(); i < len; ++i) {
uint32_t track = flexTracks[i];
if (track == kAutoLine) {
continue; // Track marked as inflexible in a prev. iter of this loop.
}
float flexFactor = aFunctions.MaxSizingFor(track).AsFr();
const nscoord base = mSizes[track].mBase;
if (flexFactor * hypotheticalFrSize < base) {
// 12.7.1.4: Treat this track as inflexible.
flexTracks[i] = kAutoLine;
flexFactorSum -= flexFactor;
leftOverSpace -= base;
--numFlexTracks;
if (numFlexTracks == 0 || leftOverSpace <= 0) {
return 0.0f;
}
restart = true;
// break; XXX (bug 1176621 comment 16) measure which is more common
}
}
} while (restart);
return hypotheticalFrSize;
}
float nsGridContainerFrame::Tracks::FindUsedFlexFraction(
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions, nscoord aAvailableSize) const {
if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
// Use all of the grid tracks and a 'space to fill' of the available space.
const TranslatedLineRange range(0, mSizes.Length());
return FindFrUnitSize(range, aFlexTracks, aFunctions, aAvailableSize);
}
// The used flex fraction is the maximum of:
// ... each flexible track's base size divided by its flex factor (which is
// floored at 1).
float fr = 0.0f;
for (uint32_t track : aFlexTracks) {
float flexFactor = aFunctions.MaxSizingFor(track).AsFr();
float possiblyDividedBaseSize = (flexFactor > 1.0f)
? mSizes[track].mBase / flexFactor
: mSizes[track].mBase;
fr = std::max(fr, possiblyDividedBaseSize);
}
WritingMode wm = aState.mWM;
gfxContext* rc = &aState.mRenderingContext;
// ... the result of 'finding the size of an fr' for each item that spans
// a flex track with its max-content contribution as 'space to fill'
for (const GridItemInfo& item : aGridItems) {
if (item.mState[mAxis] & ItemState::eIsFlexing) {
// XXX optimize: bug 1194446
auto pb = Some(aState.PercentageBasisFor(mAxis, item));
nscoord spaceToFill = ContentContribution(item, aState, rc, wm, mAxis, pb,
IntrinsicISizeType::PrefISize);
const LineRange& range =
mAxis == eLogicalAxisInline ? item.mArea.mCols : item.mArea.mRows;
MOZ_ASSERT(range.Extent() >= 1);
const auto spannedGaps = range.Extent() - 1;
if (spannedGaps > 0) {
spaceToFill -= mGridGap * spannedGaps;
}
if (spaceToFill <= 0) {
continue;
}
// ... and all its spanned tracks as input.
nsTArray<uint32_t> itemFlexTracks;
for (auto i : range.Range()) {
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
itemFlexTracks.AppendElement(i);
}
}
float itemFr =
FindFrUnitSize(range, itemFlexTracks, aFunctions, spaceToFill);
fr = std::max(fr, itemFr);
}
}
return fr;
}
void nsGridContainerFrame::Tracks::StretchFlexibleTracks(
GridReflowInput& aState, nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions, nscoord aAvailableSize) {
if (aAvailableSize <= 0) {
return;
}
nsTArray<uint32_t> flexTracks(mSizes.Length());
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
flexTracks.AppendElement(i);
}
}
if (flexTracks.IsEmpty()) {
return;
}
nscoord minSize = 0;
nscoord maxSize = NS_UNCONSTRAINEDSIZE;
if (aState.mReflowInput) {
auto* ri = aState.mReflowInput;
minSize = mAxis == eLogicalAxisBlock ? ri->ComputedMinBSize()
: ri->ComputedMinISize();
maxSize = mAxis == eLogicalAxisBlock ? ri->ComputedMaxBSize()
: ri->ComputedMaxISize();
}
Maybe<CopyableAutoTArray<TrackSize, 32>> origSizes;
bool applyMinMax = (minSize != 0 || maxSize != NS_UNCONSTRAINEDSIZE) &&
aAvailableSize == NS_UNCONSTRAINEDSIZE;
// We iterate twice at most. The 2nd time if the grid size changed after
// applying a min/max-size (can only occur if aAvailableSize is indefinite).
while (true) {
float fr = FindUsedFlexFraction(aState, aGridItems, flexTracks, aFunctions,
aAvailableSize);
if (fr != 0.0f) {
for (uint32_t i : flexTracks) {
float flexFactor = aFunctions.MaxSizingFor(i).AsFr();
nscoord flexLength = NSToCoordRound(flexFactor * fr);
nscoord& base = mSizes[i].mBase;
if (flexLength > base) {
if (applyMinMax && origSizes.isNothing()) {
origSizes.emplace(mSizes);
}
base = flexLength;
}
}
}
if (applyMinMax) {
applyMinMax = false;
// https://drafts.csswg.org/css-grid/#algo-flex-tracks
// "If using this flex fraction would cause the grid to be smaller than
// the grid containers min-width/height (or larger than the grid
// containers max-width/height), then redo this step, treating the free
// space as definite [...]"
nscoord newSize = 0;
for (auto& sz : mSizes) {
newSize += sz.mBase;
}
const auto sumOfGridGaps = SumOfGridGaps();
newSize += sumOfGridGaps;
if (newSize > maxSize) {
aAvailableSize = maxSize;
} else if (newSize < minSize) {
aAvailableSize = minSize;
}
if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
aAvailableSize = std::max(0, aAvailableSize - sumOfGridGaps);
// Restart with the original track sizes and definite aAvailableSize.
if (origSizes.isSome()) {
mSizes = std::move(*origSizes);
origSizes.reset();
} // else, no mSizes[].mBase were changed above so it's still correct
if (aAvailableSize == 0) {
break; // zero available size wouldn't change any sizes though...
}
continue;
}
}
break;
}
}
void nsGridContainerFrame::Tracks::AlignJustifyContent(
const nsStylePosition* aStyle, StyleContentDistribution aAligmentStyleValue,
WritingMode aWM, nscoord aContentBoxSize, bool aIsSubgriddedAxis) {
const bool isAlign = mAxis == eLogicalAxisBlock;
// Align-/justify-content doesn't apply in a subgridded axis.
// Gap properties do apply though so we need to stretch/position the tracks
// to center-align the gaps with the parent's gaps.
if (MOZ_UNLIKELY(aIsSubgriddedAxis)) {
auto& gap = isAlign ? aStyle->mRowGap : aStyle->mColumnGap;
if (gap.IsNormal()) {
return;
}
auto len = mSizes.Length();
if (len <= 1) {
return;
}
// This stores the gap deltas between the subgrid gap and the gaps in
// the used track sizes (as encoded in its tracks' mPosition):
nsTArray<nscoord> gapDeltas;
const size_t numGaps = len - 1;
gapDeltas.SetLength(numGaps);
for (size_t i = 0; i < numGaps; ++i) {
TrackSize& sz1 = mSizes[i];
TrackSize& sz2 = mSizes[i + 1];
nscoord currentGap = sz2.mPosition - (sz1.mPosition + sz1.mBase);
gapDeltas[i] = mGridGap - currentGap;
}
// Recompute the tracks' size/position so that they end up with
// a subgrid-gap centered on the original track gap.
nscoord currentPos = mSizes[0].mPosition;
nscoord lastHalfDelta(0);
for (size_t i = 0; i < numGaps; ++i) {
TrackSize& sz = mSizes[i];
nscoord delta = gapDeltas[i];
nscoord halfDelta;
nscoord roundingError = NSCoordDivRem(delta, 2, &halfDelta);
auto newSize = sz.mBase - (halfDelta + roundingError) - lastHalfDelta;
lastHalfDelta = halfDelta;
if (newSize >= 0) {
sz.mBase = newSize;
sz.mPosition = currentPos;
currentPos += newSize + mGridGap;
} else {
sz.mBase = nscoord(0);
sz.mPosition = currentPos + newSize;
currentPos = sz.mPosition + mGridGap;
}
}
auto& lastTrack = mSizes.LastElement();
auto newSize = lastTrack.mBase - lastHalfDelta;
if (newSize >= 0) {
lastTrack.mBase = newSize;
lastTrack.mPosition = currentPos;
} else {
lastTrack.mBase = nscoord(0);
lastTrack.mPosition = currentPos + newSize;
}
return;
}
if (mSizes.IsEmpty()) {
return;
}
bool overflowSafe;
auto alignment = ::GetAlignJustifyValue(aAligmentStyleValue.primary, aWM,
isAlign, &overflowSafe);
if (alignment == StyleAlignFlags::NORMAL) {
alignment = StyleAlignFlags::STRETCH;
// we may need a fallback for 'stretch' below
aAligmentStyleValue = {alignment};
}
// Compute the free space and count auto-sized tracks.
size_t numAutoTracks = 0;
nscoord space;
if (alignment != StyleAlignFlags::START) {
nscoord trackSizeSum = 0;
if (aIsSubgriddedAxis) {
numAutoTracks = mSizes.Length();
} else {
for (const TrackSize& sz : mSizes) {
trackSizeSum += sz.mBase;
if (sz.mState & TrackSize::eAutoMaxSizing) {
++numAutoTracks;
}
}
}
space = aContentBoxSize - trackSizeSum - SumOfGridGaps();
// Use the fallback value instead when applicable.
if (space < 0 ||
(alignment == StyleAlignFlags::SPACE_BETWEEN && mSizes.Length() == 1)) {
auto fallback = ::GetAlignJustifyFallbackIfAny(aAligmentStyleValue, aWM,
isAlign, &overflowSafe);
if (fallback) {
alignment = *fallback;
}
}
if (space == 0 || (space < 0 && overflowSafe)) {
// XXX check that this makes sense also for [last ]baseline (bug 1151204).
alignment = StyleAlignFlags::START;
}
}
// Optimize the cases where we just need to set each track's position.
nscoord pos = 0;
bool distribute = true;
if (alignment == StyleAlignFlags::BASELINE ||
alignment == StyleAlignFlags::LAST_BASELINE) {
NS_WARNING("NYI: 'first/last baseline' (bug 1151204)"); // XXX
alignment = StyleAlignFlags::START;
}
if (alignment == StyleAlignFlags::START) {
distribute = false;
} else if (alignment == StyleAlignFlags::END) {
pos = space;
distribute = false;
} else if (alignment == StyleAlignFlags::CENTER) {
pos = space / 2;
distribute = false;
} else if (alignment == StyleAlignFlags::STRETCH) {
distribute = numAutoTracks != 0;
}
if (!distribute) {
for (TrackSize& sz : mSizes) {
sz.mPosition = pos;
pos += sz.mBase + mGridGap;
}
return;
}
// Distribute free space to/between tracks and set their position.
MOZ_ASSERT(space > 0, "should've handled that on the fallback path above");
nscoord between, roundingError;
if (alignment == StyleAlignFlags::STRETCH) {
MOZ_ASSERT(numAutoTracks > 0, "we handled numAutoTracks == 0 above");
// The outer loop typically only runs once - it repeats only in a masonry
// axis when some stretchable items reach their `max-size`.
// It's O(n^2) worst case; if all items are stretchable with a `max-size`
// and exactly one item reaches its `max-size` each round.
while (space) {
pos = 0;
nscoord spacePerTrack;
roundingError = NSCoordDivRem(space, numAutoTracks, &spacePerTrack);
space = 0;
for (TrackSize& sz : mSizes) {
sz.mPosition = pos;
if (!(sz.mState & TrackSize::eAutoMaxSizing)) {
pos += sz.mBase + mGridGap;
continue;
}
nscoord stretch = spacePerTrack;
if (roundingError) {
roundingError -= 1;
stretch += 1;
}
nscoord newBase = sz.mBase + stretch;
if (mIsMasonry && (sz.mState & TrackSize::eClampToLimit)) {
auto clampedSize = std::min(newBase, sz.mLimit);
auto sizeOverLimit = newBase - clampedSize;
if (sizeOverLimit > 0) {
newBase = clampedSize;
sz.mState &= ~(sz.mState & TrackSize::eAutoMaxSizing);
// This repeats the outer loop to distribute the superfluous space:
space += sizeOverLimit;
if (--numAutoTracks == 0) {
// ... except if we don't have any stretchable items left.
space = 0;
}
}
}
sz.mBase = newBase;
pos += newBase + mGridGap;
}
}
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
return;
}
if (alignment == StyleAlignFlags::SPACE_BETWEEN) {
MOZ_ASSERT(mSizes.Length() > 1, "should've used a fallback above");
roundingError = NSCoordDivRem(space, mSizes.Length() - 1, &between);
} else if (alignment == StyleAlignFlags::SPACE_AROUND) {
roundingError = NSCoordDivRem(space, mSizes.Length(), &between);
pos = between / 2;
} else if (alignment == StyleAlignFlags::SPACE_EVENLY) {
roundingError = NSCoordDivRem(space, mSizes.Length() + 1, &between);
pos = between;
} else {
MOZ_ASSERT_UNREACHABLE("unknown align-/justify-content value");
between = 0; // just to avoid a compiler warning
roundingError = 0; // just to avoid a compiler warning
}
between += mGridGap;
for (TrackSize& sz : mSizes) {
sz.mPosition = pos;
nscoord spacing = between;
if (roundingError) {
roundingError -= 1;
spacing += 1;
}
pos += sz.mBase + spacing;
}
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
}
void nsGridContainerFrame::LineRange::ToPositionAndLength(
const nsTArray<TrackSize>& aTrackSizes, nscoord* aPos,
nscoord* aLength) const {
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
"expected a definite LineRange");
MOZ_ASSERT(mStart < mEnd);
nscoord startPos = aTrackSizes[mStart].mPosition;
const TrackSize& sz = aTrackSizes[mEnd - 1];
*aPos = startPos;
*aLength = (sz.mPosition + sz.mBase) - startPos;
}
nscoord nsGridContainerFrame::LineRange::ToLength(
const nsTArray<TrackSize>& aTrackSizes) const {
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
"expected a definite LineRange");
MOZ_ASSERT(mStart < mEnd);
nscoord startPos = aTrackSizes[mStart].mPosition;
const TrackSize& sz = aTrackSizes[mEnd - 1];
return (sz.mPosition + sz.mBase) - startPos;
}
void nsGridContainerFrame::LineRange::ToPositionAndLengthForAbsPos(
const Tracks& aTracks, nscoord aGridOrigin, nscoord* aPos,
nscoord* aLength) const {
// kAutoLine for abspos children contributes the corresponding edge
// of the grid container's padding-box.
if (mEnd == kAutoLine) {
if (mStart == kAutoLine) {
// done
} else {
const nscoord endPos = *aPos + *aLength;
auto side = mStart == aTracks.mSizes.Length()
? GridLineSide::BeforeGridGap
: GridLineSide::AfterGridGap;
nscoord startPos = aTracks.GridLineEdge(mStart, side);
*aPos = aGridOrigin + startPos;
*aLength = std::max(endPos - *aPos, 0);
}
} else {
if (mStart == kAutoLine) {
auto side =
mEnd == 0 ? GridLineSide::AfterGridGap : GridLineSide::BeforeGridGap;
nscoord endPos = aTracks.GridLineEdge(mEnd, side);
*aLength = std::max(aGridOrigin + endPos, 0);
} else if (MOZ_LIKELY(mStart != mEnd)) {
nscoord pos;
ToPositionAndLength(aTracks.mSizes, &pos, aLength);
*aPos = aGridOrigin + pos;
} else {
// The grid area only covers removed 'auto-fit' tracks.
nscoord pos = aTracks.GridLineEdge(mStart, GridLineSide::BeforeGridGap);
*aPos = aGridOrigin + pos;
*aLength = nscoord(0);
}
}
}
LogicalSize nsGridContainerFrame::GridReflowInput::PercentageBasisFor(
LogicalAxis aAxis, const GridItemInfo& aGridItem) const {
auto wm = aGridItem.mFrame->GetWritingMode();
const auto* itemParent = aGridItem.mFrame->GetParent();
if (MOZ_UNLIKELY(itemParent != mFrame)) {
// The item comes from a descendant subgrid. Use the subgrid's
// used track sizes to resolve the grid area size, if present.
MOZ_ASSERT(itemParent->IsGridContainerFrame());
auto* subgridFrame = static_cast<const nsGridContainerFrame*>(itemParent);
MOZ_ASSERT(subgridFrame->IsSubgrid());
if (auto* uts = subgridFrame->GetUsedTrackSizes()) {
auto subgridWM = subgridFrame->GetWritingMode();
LogicalSize cbSize(subgridWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
if (!subgridFrame->IsSubgrid(eLogicalAxisInline) &&
uts->mCanResolveLineRangeSize[eLogicalAxisInline]) {
// NOTE: At this point aGridItem.mArea is in this->mFrame coordinates
// and thus may have been transposed. The range values in a non-
// subgridded axis still has its original values in subgridFrame's
// coordinates though.
auto rangeAxis = subgridWM.IsOrthogonalTo(mWM) ? eLogicalAxisBlock
: eLogicalAxisInline;
const auto& range = aGridItem.mArea.LineRangeForAxis(rangeAxis);
cbSize.ISize(subgridWM) =
range.ToLength(uts->mSizes[eLogicalAxisInline]);
}
if (!subgridFrame->IsSubgrid(eLogicalAxisBlock) &&
uts->mCanResolveLineRangeSize[eLogicalAxisBlock]) {
auto rangeAxis = subgridWM.IsOrthogonalTo(mWM) ? eLogicalAxisInline
: eLogicalAxisBlock;
const auto& range = aGridItem.mArea.LineRangeForAxis(rangeAxis);
cbSize.BSize(subgridWM) =
range.ToLength(uts->mSizes[eLogicalAxisBlock]);
}
return cbSize.ConvertTo(wm, subgridWM);
}
return LogicalSize(wm, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
if (aAxis == eLogicalAxisInline || !mCols.mCanResolveLineRangeSize) {
return LogicalSize(wm, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
// Note: for now, we only resolve transferred percentages to row sizing.
// We may need to adjust these assertions once we implement bug 1300366.
MOZ_ASSERT(!mRows.mCanResolveLineRangeSize);
nscoord colSize = aGridItem.mArea.mCols.ToLength(mCols.mSizes);
nscoord rowSize = NS_UNCONSTRAINEDSIZE;
return !wm.IsOrthogonalTo(mWM) ? LogicalSize(wm, colSize, rowSize)
: LogicalSize(wm, rowSize, colSize);
}
LogicalRect nsGridContainerFrame::GridReflowInput::ContainingBlockFor(
const GridArea& aArea) const {
nscoord i, b, iSize, bSize;
MOZ_ASSERT(aArea.mCols.Extent() > 0, "grid items cover at least one track");
MOZ_ASSERT(aArea.mRows.Extent() > 0, "grid items cover at least one track");
aArea.mCols.ToPositionAndLength(mCols.mSizes, &i, &iSize);
aArea.mRows.ToPositionAndLength(mRows.mSizes, &b, &bSize);
return LogicalRect(mWM, i, b, iSize, bSize);
}
LogicalRect nsGridContainerFrame::GridReflowInput::ContainingBlockForAbsPos(
const GridArea& aArea, const LogicalPoint& aGridOrigin,
const LogicalRect& aGridCB) const {
nscoord i = aGridCB.IStart(mWM);
nscoord b = aGridCB.BStart(mWM);
nscoord iSize = aGridCB.ISize(mWM);
nscoord bSize = aGridCB.BSize(mWM);
aArea.mCols.ToPositionAndLengthForAbsPos(mCols, aGridOrigin.I(mWM), &i,
&iSize);
aArea.mRows.ToPositionAndLengthForAbsPos(mRows, aGridOrigin.B(mWM), &b,
&bSize);
return LogicalRect(mWM, i, b, iSize, bSize);
}
void nsGridContainerFrame::GridReflowInput::AlignJustifyContentInMasonryAxis(
nscoord aMasonryBoxSize, nscoord aContentBoxSize) {
if (aContentBoxSize == NS_UNCONSTRAINEDSIZE) {
aContentBoxSize = aMasonryBoxSize;
}
auto& masonryAxisTracks = mRows.mIsMasonry ? mRows : mCols;
MOZ_ASSERT(masonryAxisTracks.mSizes.Length() == 2,
"unexpected masonry axis tracks");
const auto masonryAxis = masonryAxisTracks.mAxis;
const auto contentAlignment = mGridStyle->UsedContentAlignment(masonryAxis);
if (contentAlignment.primary == StyleAlignFlags::NORMAL ||
contentAlignment.primary == StyleAlignFlags::STRETCH) {
// Stretch the "masonry box" to the full content box if it's smaller.
nscoord cbSize = std::max(aMasonryBoxSize, aContentBoxSize);
for (auto& sz : masonryAxisTracks.mSizes) {
sz.mBase = cbSize;
}
return;
}
// Save our current track sizes; replace them with one track sized to
// the masonry box and align that within our content box.
auto savedTrackSizes(std::move(masonryAxisTracks.mSizes));
masonryAxisTracks.mSizes.AppendElement(savedTrackSizes[0]);
masonryAxisTracks.mSizes[0].mBase = aMasonryBoxSize;
masonryAxisTracks.AlignJustifyContent(mGridStyle, contentAlignment, mWM,
aContentBoxSize, false);
nscoord masonryBoxOffset = masonryAxisTracks.mSizes[0].mPosition;
// Restore the original track sizes...
masonryAxisTracks.mSizes = std::move(savedTrackSizes);
// ...then reposition and resize all of them to the aligned result.
for (auto& sz : masonryAxisTracks.mSizes) {
sz.mPosition = masonryBoxOffset;
sz.mBase = aMasonryBoxSize;
}
}
// Note: this is called after all items have been positioned/reflowed.
// The masonry-axis tracks have the size of the "masonry box" at this point
// and are positioned according to 'align/justify-content'.
void nsGridContainerFrame::GridReflowInput::AlignJustifyTracksInMasonryAxis(
const LogicalSize& aContentSize, const nsSize& aContainerSize) {
auto& masonryAxisTracks = mRows.mIsMasonry ? mRows : mCols;
MOZ_ASSERT(masonryAxisTracks.mSizes.Length() == 2,
"unexpected masonry axis tracks");
const auto masonryAxis = masonryAxisTracks.mAxis;
auto gridAxis = GetOrthogonalAxis(masonryAxis);
auto& gridAxisTracks = TracksFor(gridAxis);
AutoTArray<TrackSize, 32> savedSizes;
savedSizes.AppendElements(masonryAxisTracks.mSizes);
auto wm = mWM;
nscoord contentAreaStart = mBorderPadding.Start(masonryAxis, wm);
// The offset to the "masonry box" from our content-box start edge.
nscoord masonryBoxOffset = masonryAxisTracks.mSizes[0].mPosition;
nscoord alignmentContainerSize = masonryAxisTracks.mSizes[0].mBase;
for (auto i : IntegerRange(gridAxisTracks.mSizes.Length())) {
auto tracksAlignment = mGridStyle->UsedTracksAlignment(masonryAxis, i);
if (tracksAlignment.primary != StyleAlignFlags::START) {
masonryAxisTracks.mSizes.ClearAndRetainStorage();
for (const auto& item : mGridItems) {
if (item.mArea.LineRangeForAxis(gridAxis).mStart == i) {
const auto* child = item.mFrame;
LogicalRect rect = child->GetLogicalRect(wm, aContainerSize);
TrackSize sz = {0, 0, 0, {0, 0}, TrackSize::StateBits(0)};
const auto& margin = child->GetLogicalUsedMargin(wm);
sz.mPosition = rect.Start(masonryAxis, wm) -
margin.Start(masonryAxis, wm) - contentAreaStart;
sz.mBase =
rect.Size(masonryAxis, wm) + margin.StartEnd(masonryAxis, wm);
// Account for a align-self baseline offset on the end side.
// XXXmats hmm, it seems it would be a lot simpler to just store
// these baseline adjustments into the UsedMarginProperty instead
auto state = item.mState[masonryAxis];
if ((state & ItemState::eSelfBaseline) &&
(state & ItemState::eEndSideBaseline)) {
sz.mBase += item.mBaselineOffset[masonryAxis];
}
if (tracksAlignment.primary == StyleAlignFlags::STRETCH) {
const auto* pos = child->StylePosition();
auto itemAlignment =
pos->UsedSelfAlignment(masonryAxis, mFrame->Style());
if (child->StyleMargin()->HasAuto(masonryAxis, wm)) {
sz.mState |= TrackSize::eAutoMaxSizing;
sz.mState |= TrackSize::eItemHasAutoMargin;
} else if (pos->Size(masonryAxis, wm).IsAuto() &&
(itemAlignment == StyleAlignFlags::NORMAL ||
itemAlignment == StyleAlignFlags::STRETCH)) {
sz.mState |= TrackSize::eAutoMaxSizing;
sz.mState |= TrackSize::eItemStretchSize;
const auto& max = pos->MaxSize(masonryAxis, wm);
if (max.ConvertsToLength()) { // XXX deal with percentages
// XXX add in baselineOffset ? use actual frame size - content
// size?
nscoord boxSizingAdjust =
child->GetLogicalUsedBorderAndPadding(wm).StartEnd(
masonryAxis, wm);
if (pos->mBoxSizing == StyleBoxSizing::Border) {
boxSizingAdjust = 0;
}
sz.mLimit = nsLayoutUtils::ComputeBSizeValue(
aContentSize.Size(masonryAxis, wm), boxSizingAdjust,
max.AsLengthPercentage());
sz.mLimit += margin.StartEnd(masonryAxis, wm);
sz.mState |= TrackSize::eClampToLimit;
}
}
}
masonryAxisTracks.mSizes.AppendElement(std::move(sz));
}
}
masonryAxisTracks.AlignJustifyContent(mGridStyle, tracksAlignment, wm,
alignmentContainerSize, false);
auto iter = mGridItems.begin();
auto end = mGridItems.end();
// We limit the loop to the number of items we found in the current
// grid-axis axis track (in the outer loop) as an optimization.
for (auto r : IntegerRange(masonryAxisTracks.mSizes.Length())) {
GridItemInfo* item = nullptr;
auto& sz = masonryAxisTracks.mSizes[r];
// Find the next item in the current grid-axis axis track.
for (; iter != end; ++iter) {
if (iter->mArea.LineRangeForAxis(gridAxis).mStart == i) {
item = &*iter;
++iter;
break;
}
}
nsIFrame* child = item->mFrame;
const auto childWM = child->GetWritingMode();
auto masonryChildAxis =
childWM.IsOrthogonalTo(wm) ? gridAxis : masonryAxis;
LogicalMargin margin = child->GetLogicalUsedMargin(childWM);
bool forceReposition = false;
if (sz.mState & TrackSize::eItemStretchSize) {
auto size = child->GetLogicalSize().Size(masonryChildAxis, childWM);
auto newSize = sz.mBase - margin.StartEnd(masonryChildAxis, childWM);
if (size != newSize) {
// XXX need to pass aIMinSizeClamp aBMinSizeClamp ?
LogicalSize cb =
ContainingBlockFor(item->mArea).Size(wm).ConvertTo(childWM, wm);
LogicalSize availableSize = cb;
cb.Size(masonryChildAxis, childWM) = alignmentContainerSize;
availableSize.Size(eLogicalAxisBlock, childWM) =
NS_UNCONSTRAINEDSIZE;
const auto& bp = child->GetLogicalUsedBorderAndPadding(childWM);
newSize -= bp.StartEnd(masonryChildAxis, childWM);
::PostReflowStretchChild(child, *mReflowInput, availableSize, cb,
masonryChildAxis, newSize);
if (childWM.IsPhysicalRTL()) {
// The NormalPosition of this child is frame-size dependent so we
// need to reset its stored position below.
forceReposition = true;
}
}
} else if (sz.mState & TrackSize::eItemHasAutoMargin) {
// Re-compute the auto-margin(s) in the masonry axis.
auto size = child->GetLogicalSize().Size(masonryChildAxis, childWM);
auto spaceToFill = sz.mBase - size;
if (spaceToFill > nscoord(0)) {
const auto& marginStyle = child->StyleMargin();
if (marginStyle->mMargin.Start(masonryChildAxis, childWM)
.IsAuto()) {
if (marginStyle->mMargin.End(masonryChildAxis, childWM)
.IsAuto()) {
nscoord half;
nscoord roundingError = NSCoordDivRem(spaceToFill, 2, &half);
margin.Start(masonryChildAxis, childWM) = half;
margin.End(masonryChildAxis, childWM) = half + roundingError;
} else {
margin.Start(masonryChildAxis, childWM) = spaceToFill;
}
} else {
MOZ_ASSERT(
marginStyle->mMargin.End(masonryChildAxis, childWM).IsAuto());
margin.End(masonryChildAxis, childWM) = spaceToFill;
}
nsMargin* propValue =
child->GetProperty(nsIFrame::UsedMarginProperty());
if (propValue) {
*propValue = margin.GetPhysicalMargin(childWM);
} else {
child->AddProperty(
nsIFrame::UsedMarginProperty(),
new nsMargin(margin.GetPhysicalMargin(childWM)));
}
}
}
nscoord newPos = contentAreaStart + masonryBoxOffset + sz.mPosition +
margin.Start(masonryChildAxis, childWM);
LogicalPoint pos = child->GetLogicalNormalPosition(wm, aContainerSize);
auto delta = newPos - pos.Pos(masonryAxis, wm);
if (delta != 0 || forceReposition) {
LogicalPoint logicalDelta(wm);
logicalDelta.Pos(masonryAxis, wm) = delta;
child->MovePositionBy(wm, logicalDelta);
}
}
} else if (masonryBoxOffset != nscoord(0)) {
// TODO move placeholders too
auto delta = masonryBoxOffset;
LogicalPoint logicalDelta(wm);
logicalDelta.Pos(masonryAxis, wm) = delta;
for (const auto& item : mGridItems) {
if (item.mArea.LineRangeForAxis(gridAxis).mStart != i) {
continue;
}
item.mFrame->MovePositionBy(wm, logicalDelta);
}
}
}
masonryAxisTracks.mSizes = std::move(savedSizes);
}
/**
* Return a Fragmentainer object if we have a fragmentainer frame in our
* ancestor chain of containing block (CB) reflow inputs. We'll only
* continue traversing the ancestor chain as long as the CBs have
* the same writing-mode and have overflow:visible.
*/
Maybe<nsGridContainerFrame::Fragmentainer>
nsGridContainerFrame::GetNearestFragmentainer(
const GridReflowInput& aState) const {
Maybe<nsGridContainerFrame::Fragmentainer> data;
const ReflowInput* gridRI = aState.mReflowInput;
if (gridRI->AvailableBSize() == NS_UNCONSTRAINEDSIZE && !GetPrevInFlow()) {
return data;
}
WritingMode wm = aState.mWM;
const ReflowInput* cbRI = gridRI->mCBReflowInput;
for (; cbRI; cbRI = cbRI->mCBReflowInput) {
nsIScrollableFrame* sf = do_QueryFrame(cbRI->mFrame);
if (sf) {
break;
}
if (wm.IsOrthogonalTo(cbRI->GetWritingMode())) {
break;
}
LayoutFrameType frameType = cbRI->mFrame->Type();
if ((frameType == LayoutFrameType::Canvas &&
PresContext()->IsPaginated()) ||
frameType == LayoutFrameType::ColumnSet) {
data.emplace();
data->mIsTopOfPage = gridRI->mFlags.mIsTopOfPage;
if (gridRI->AvailableBSize() != NS_UNCONSTRAINEDSIZE) {
data->mToFragmentainerEnd = aState.mFragBStart +
gridRI->AvailableBSize() -
aState.mBorderPadding.BStart(wm);
} else {
// This occurs when nsColumnSetFrame reflows its last column in
// unconstrained available block-size.
data->mToFragmentainerEnd = NS_UNCONSTRAINEDSIZE;
}
const auto numRows = aState.mRows.mSizes.Length();
data->mCanBreakAtStart =
numRows > 0 && aState.mRows.mSizes[0].mPosition > 0;
nscoord bSize = gridRI->ComputedBSize();
data->mIsAutoBSize = bSize == NS_UNCONSTRAINEDSIZE;
if (data->mIsAutoBSize) {
bSize = gridRI->ComputedMinBSize();
} else {
bSize = NS_CSS_MINMAX(bSize, gridRI->ComputedMinBSize(),
gridRI->ComputedMaxBSize());
}
nscoord gridEnd =
aState.mRows.GridLineEdge(numRows, GridLineSide::BeforeGridGap);
data->mCanBreakAtEnd = bSize > gridEnd && bSize > aState.mFragBStart;
break;
}
}
return data;
}
void nsGridContainerFrame::ReflowInFlowChild(
nsIFrame* aChild, const GridItemInfo* aGridItemInfo, nsSize aContainerSize,
const Maybe<nscoord>& aStretchBSize, const Fragmentainer* aFragmentainer,
const GridReflowInput& aState, const LogicalRect& aContentArea,
ReflowOutput& aDesiredSize, nsReflowStatus& aStatus) {
nsPresContext* pc = PresContext();
ComputedStyle* containerSC = Style();
WritingMode wm = aState.mReflowInput->GetWritingMode();
const bool isGridItem = !!aGridItemInfo;
MOZ_ASSERT(isGridItem == !aChild->IsPlaceholderFrame());
LogicalRect cb(wm);
WritingMode childWM = aChild->GetWritingMode();
bool isConstrainedBSize = false;
nscoord toFragmentainerEnd;
// The part of the child's grid area that's in previous container fragments.
nscoord consumedGridAreaBSize = 0;
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
if (MOZ_LIKELY(isGridItem)) {
MOZ_ASSERT(aGridItemInfo->mFrame == aChild);
const GridArea& area = aGridItemInfo->mArea;
MOZ_ASSERT(area.IsDefinite());
cb = aState.ContainingBlockFor(area);
if (aFragmentainer && !wm.IsOrthogonalTo(childWM)) {
// |gridAreaBOffset| is the offset of the child's grid area in this
// container fragment (if negative, that distance is the child CB size
// consumed in previous container fragments). Note that cb.BStart
// (initially) and aState.mFragBStart are in "global" grid coordinates
// (like all track positions).
nscoord gridAreaBOffset = cb.BStart(wm) - aState.mFragBStart;
consumedGridAreaBSize = std::max(0, -gridAreaBOffset);
cb.BStart(wm) = std::max(0, gridAreaBOffset);
if (aFragmentainer->mToFragmentainerEnd != NS_UNCONSTRAINEDSIZE) {
toFragmentainerEnd = aFragmentainer->mToFragmentainerEnd -
aState.mFragBStart - cb.BStart(wm);
toFragmentainerEnd = std::max(toFragmentainerEnd, 0);
isConstrainedBSize = true;
}
}
cb += aContentArea.Origin(wm);
aState.mRows.AlignBaselineSubtree(*aGridItemInfo);
aState.mCols.AlignBaselineSubtree(*aGridItemInfo);
// Setup [align|justify]-content:[last ]baseline related frame properties.
// These are added to the padding in SizeComputationInput::InitOffsets.
// (a negative value signals the value is for 'last baseline' and should be
// added to the (logical) end padding)
typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
auto SetProp = [aGridItemInfo, aChild](LogicalAxis aGridAxis, Prop aProp) {
auto state = aGridItemInfo->mState[aGridAxis];
auto baselineAdjust = (state & ItemState::eContentBaseline)
? aGridItemInfo->mBaselineOffset[aGridAxis]
: nscoord(0);
if (baselineAdjust < nscoord(0)) {
// This happens when the subtree overflows its track.
// XXX spec issue? it's unclear how to handle this.
baselineAdjust = nscoord(0);
} else if (GridItemInfo::BaselineAlignmentAffectsEndSide(state)) {
baselineAdjust = -baselineAdjust;
}
if (baselineAdjust != nscoord(0)) {
aChild->SetProperty(aProp, baselineAdjust);
} else {
aChild->RemoveProperty(aProp);
}
};
SetProp(eLogicalAxisBlock,
isOrthogonal ? IBaselinePadProperty() : BBaselinePadProperty());
SetProp(eLogicalAxisInline,
isOrthogonal ? BBaselinePadProperty() : IBaselinePadProperty());
} else {
// By convention, for frames that perform CSS Box Alignment, we position
// placeholder children at the start corner of their alignment container,
// and in this case that's usually the grid's content-box.
// ("Usually" - the exception is when the grid *also* forms the
// abs.pos. containing block. In that case, the alignment container isn't
// the content-box -- it's some grid area instead. But that case doesn't
// require any special handling here, because we handle it later using a
// special flag (ReflowInput::InitFlag::StaticPosIsCBOrigin) which will make
// us ignore the placeholder's position entirely.)
cb = aContentArea;
aChild->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
}
LogicalSize reflowSize(cb.Size(wm));
if (isConstrainedBSize) {
reflowSize.BSize(wm) = toFragmentainerEnd;
}
LogicalSize childCBSize = reflowSize.ConvertTo(childWM, wm);
// Setup the ClampMarginBoxMinSize reflow flags and property, if needed.
ComputeSizeFlags csFlags;
if (aGridItemInfo) {
// AlignJustifyTracksInMasonryAxis stretches items in a masonry-axis so we
// don't do that here.
auto* pos = aChild->StylePosition();
auto j = IsMasonry(eLogicalAxisInline) ? StyleAlignFlags::START
: pos->UsedJustifySelf(Style())._0;
auto a = IsMasonry(eLogicalAxisBlock) ? StyleAlignFlags::START
: pos->UsedAlignSelf(Style())._0;
bool stretch[2];
stretch[eLogicalAxisInline] =
j == StyleAlignFlags::NORMAL || j == StyleAlignFlags::STRETCH;
stretch[eLogicalAxisBlock] =
a == StyleAlignFlags::NORMAL || a == StyleAlignFlags::STRETCH;
auto childIAxis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
// Clamp during reflow if we're stretching in that axis.
if (stretch[childIAxis]) {
if (aGridItemInfo->mState[childIAxis] &
ItemState::eClampMarginBoxMinSize) {
csFlags += ComputeSizeFlag::IClampMarginBoxMinSize;
}
} else {
csFlags += ComputeSizeFlag::ShrinkWrap;
}
auto childBAxis = GetOrthogonalAxis(childIAxis);
if (stretch[childBAxis] &&
aGridItemInfo->mState[childBAxis] & ItemState::eClampMarginBoxMinSize) {
csFlags += ComputeSizeFlag::BClampMarginBoxMinSize;
aChild->SetProperty(BClampMarginBoxMinSizeProperty(),
childCBSize.BSize(childWM));
} else {
aChild->RemoveProperty(BClampMarginBoxMinSizeProperty());
}
if ((aGridItemInfo->mState[childIAxis] & ItemState::eApplyAutoMinSize)) {
csFlags += ComputeSizeFlag::IApplyAutoMinSize;
}
}
if (!isConstrainedBSize) {
childCBSize.BSize(childWM) = NS_UNCONSTRAINEDSIZE;
}
LogicalSize percentBasis(cb.Size(wm).ConvertTo(childWM, wm));
ReflowInput childRI(pc, *aState.mReflowInput, aChild, childCBSize,
Some(percentBasis), {}, csFlags);
childRI.mFlags.mIsTopOfPage =
aFragmentainer ? aFragmentainer->mIsTopOfPage : false;
// Because we pass ComputeSizeFlag::UseAutoBSize, and the
// previous reflow of the child might not have, set the child's
// block-resize flag to true.
// FIXME (perf): It would be faster to do this only if the previous
// reflow of the child was a measuring reflow, and only if the child
// does some of the things that are affected by
// ComputeSizeFlag::UseAutoBSize.
childRI.SetBResize(true);
childRI.mFlags.mIsBResizeForPercentages = true;
// A table-wrapper needs to propagate the CB size we give it to its
// inner table frame later. @see nsTableWrapperFrame::InitChildReflowInput.
if (aChild->IsTableWrapperFrame()) {
LogicalSize* cb =
aChild->GetProperty(nsTableWrapperFrame::GridItemCBSizeProperty());
if (!cb) {
cb = new LogicalSize(childWM);
aChild->SetProperty(nsTableWrapperFrame::GridItemCBSizeProperty(), cb);
}
*cb = percentBasis;
}
// If the child is stretching in its block axis, and we might be fragmenting
// it in that axis, then setup a frame property to tell
// nsBlockFrame::ComputeFinalSize the size.
if (isConstrainedBSize && !wm.IsOrthogonalTo(childWM)) {
bool stretch = false;
if (!childRI.mStyleMargin->HasBlockAxisAuto(childWM) &&
childRI.mStylePosition->BSize(childWM).IsAuto()) {
auto blockAxisAlignment = childRI.mStylePosition->UsedAlignSelf(Style());
if (!IsMasonry(eLogicalAxisBlock) &&
(blockAxisAlignment._0 == StyleAlignFlags::NORMAL ||
blockAxisAlignment._0 == StyleAlignFlags::STRETCH)) {
stretch = true;
}
}
if (stretch) {
aChild->SetProperty(FragStretchBSizeProperty(), *aStretchBSize);
} else {
aChild->RemoveProperty(FragStretchBSizeProperty());
}
}
// We need the width of the child before we can correctly convert
// the writing-mode of its origin, so we reflow at (0, 0) using a dummy
// aContainerSize, and then pass the correct position to FinishReflowChild.
ReflowOutput childSize(childRI);
const nsSize dummyContainerSize;
// XXXdholbert The childPos that we use for ReflowChild shouldn't matter,
// since we finalize it in FinishReflowChild. However, it does matter if the
// child happens to be XUL (which sizes menu popup frames based on the
// position within the viewport, during this ReflowChild call). So we make an
// educated guess that the child will be at the origin of its containing
// block, and then use align/justify to correct that as-needed further
// down. (If the child has a different writing mode than its parent, though,
// then we can't express the CB origin until we've reflowed the child and
// determined its size. In that case, we throw up our hands and don't bother
// trying to guess the position up-front after all.)
// XXXdholbert We'll remove this special case in bug 1600542, and then we can
// go back to just setting childPos in a single call after ReflowChild.
LogicalPoint childPos(childWM);
if (MOZ_LIKELY(childWM == wm)) {
// Initially, assume the child will be at the containing block origin.
// (This may get corrected during alignment/justification below.)
childPos = cb.Origin(wm);
}
ReflowChild(aChild, pc, childSize, childRI, childWM, childPos,
dummyContainerSize, ReflowChildFlags::Default, aStatus);
if (MOZ_UNLIKELY(childWM != wm)) {
// As above: assume the child will be at the containing block origin.
// (which we can now compute in terms of the childWM, now that we know the
// child's size).
childPos = cb.Origin(wm).ConvertTo(
childWM, wm, aContainerSize - childSize.PhysicalSize());
}
// Apply align/justify-self and reflow again if that affects the size.
if (MOZ_LIKELY(isGridItem)) {
LogicalSize size = childSize.Size(childWM); // from the ReflowChild()
auto applyItemSelfAlignment = [&](LogicalAxis aAxis, nscoord aCBSize) {
auto align =
childRI.mStylePosition->UsedSelfAlignment(aAxis, containerSC);
auto state = aGridItemInfo->mState[aAxis];
auto flags = AlignJustifyFlags::NoFlags;
if (IsMasonry(aAxis)) {
// In a masonry axis, we inhibit applying 'stretch' and auto-margins
// here since AlignJustifyTracksInMasonryAxis deals with that.
// The only other {align,justify}-{self,content} values that have an
// effect are '[last] baseline', the rest behave as 'start'.
if (MOZ_LIKELY(!(state & ItemState::eSelfBaseline))) {
align = {StyleAlignFlags::START};
} else {
auto group = (state & ItemState::eFirstBaseline)
? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
auto itemStart = aGridItemInfo->mArea.LineRangeForAxis(aAxis).mStart;
aCBSize = aState.TracksFor(aAxis)
.mSizes[itemStart]
.mBaselineSubtreeSize[group];
}
flags = AlignJustifyFlags::IgnoreAutoMargins;
} else if (state & ItemState::eContentBaseline) {
align = {(state & ItemState::eFirstBaseline)
? StyleAlignFlags::SELF_START
: StyleAlignFlags::SELF_END};
}
if (aAxis == eLogicalAxisBlock) {
AlignSelf(*aGridItemInfo, align, aCBSize, wm, childRI, size, flags,
&childPos);
} else {
JustifySelf(*aGridItemInfo, align, aCBSize, wm, childRI, size, flags,
&childPos);
}
};
if (aStatus.IsComplete()) {
applyItemSelfAlignment(eLogicalAxisBlock,
cb.BSize(wm) - consumedGridAreaBSize);
}
applyItemSelfAlignment(eLogicalAxisInline, cb.ISize(wm));
} // else, nsAbsoluteContainingBlock.cpp will handle align/justify-self.
FinishReflowChild(aChild, pc, childSize, &childRI, childWM, childPos,
aContainerSize, ReflowChildFlags::ApplyRelativePositioning);
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, aChild);
}
nscoord nsGridContainerFrame::ReflowInFragmentainer(
GridReflowInput& aState, const LogicalRect& aContentArea,
ReflowOutput& aDesiredSize, nsReflowStatus& aStatus,
Fragmentainer& aFragmentainer, const nsSize& aContainerSize) {
MOZ_ASSERT(aStatus.IsEmpty());
MOZ_ASSERT(aState.mReflowInput);
// Collect our grid items and sort them in row order. Collect placeholders
// and put them in a separate array.
nsTArray<const GridItemInfo*> sortedItems(aState.mGridItems.Length());
nsTArray<nsIFrame*> placeholders(aState.mAbsPosItems.Length());
aState.mIter.Reset(CSSOrderAwareFrameIterator::ChildFilter::IncludeAll);
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
nsIFrame* child = *aState.mIter;
if (!child->IsPlaceholderFrame()) {
const GridItemInfo* info = &aState.mGridItems[aState.mIter.ItemIndex()];
sortedItems.AppendElement(info);
} else {
placeholders.AppendElement(child);
}
}
// NOTE: We don't need stable_sort here, except in Masonry layout. There are
// no dependencies on having content order between items on the same row in
// the code below in the non-Masonry case.
if (IsMasonry()) {
std::stable_sort(sortedItems.begin(), sortedItems.end(),
GridItemInfo::IsStartRowLessThan);
} else {
std::sort(sortedItems.begin(), sortedItems.end(),
GridItemInfo::IsStartRowLessThan);
}
// Reflow our placeholder children; they must all be complete.
for (auto child : placeholders) {
nsReflowStatus childStatus;
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(),
&aFragmentainer, aState, aContentArea, aDesiredSize,
childStatus);
MOZ_ASSERT(childStatus.IsComplete(),
"nsPlaceholderFrame should never need to be fragmented");
}
// The available size for children - we'll set this to the edge of the last
// row in most cases below, but for now use the full size.
nscoord childAvailableSize = aFragmentainer.mToFragmentainerEnd;
const uint32_t startRow = aState.mStartRow;
const uint32_t numRows = aState.mRows.mSizes.Length();
bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Clone;
nscoord bpBEnd = aState.mBorderPadding.BEnd(aState.mWM);
// Set |endRow| to the first row that doesn't fit.
uint32_t endRow = numRows;
for (uint32_t row = startRow; row < numRows; ++row) {
auto& sz = aState.mRows.mSizes[row];
const nscoord bEnd = sz.mPosition + sz.mBase;
nscoord remainingAvailableSize = childAvailableSize - bEnd;
if (remainingAvailableSize < 0 ||
(isBDBClone && remainingAvailableSize < bpBEnd)) {
endRow = row;
break;
}
}
// Check for forced breaks on the items if available block-size for children
// is constrained. That is, ignore forced breaks if available block-size for
// children is unconstrained since our parent expected us to be fully
// complete.
bool isForcedBreak = false;
const bool avoidBreakInside = ShouldAvoidBreakInside(*aState.mReflowInput);
if (childAvailableSize != NS_UNCONSTRAINEDSIZE) {
const bool isTopOfPage = aFragmentainer.mIsTopOfPage;
for (const GridItemInfo* info : sortedItems) {
uint32_t itemStartRow = info->mArea.mRows.mStart;
if (itemStartRow == endRow) {
break;
}
const auto* disp = info->mFrame->StyleDisplay();
if (disp->BreakBefore()) {
// Propagate break-before on the first row to the container unless we're
// already at top-of-page.
if ((itemStartRow == 0 && !isTopOfPage) || avoidBreakInside) {
aStatus.SetInlineLineBreakBeforeAndReset();
return aState.mFragBStart;
}
if ((itemStartRow > startRow ||
(itemStartRow == startRow && !isTopOfPage)) &&
itemStartRow < endRow) {
endRow = itemStartRow;
isForcedBreak = true;
// reset any BREAK_AFTER we found on an earlier item
aStatus.Reset();
break; // we're done since the items are sorted in row order
}
}
uint32_t itemEndRow = info->mArea.mRows.mEnd;
if (disp->BreakAfter()) {
if (itemEndRow != numRows) {
if (itemEndRow > startRow && itemEndRow < endRow) {
endRow = itemEndRow;
isForcedBreak = true;
// No "break;" here since later items with break-after may have
// a shorter span.
}
} else {
// Propagate break-after on the last row to the container, we may
// still find a break-before on this row though (and reset aStatus).
aStatus.SetInlineLineBreakAfter(); // tentative
}
}
}
// Consume at least one row in each fragment until we have consumed them
// all. Except for the first row if there's a break opportunity before it.
if (startRow == endRow && startRow != numRows &&
(startRow != 0 || !aFragmentainer.mCanBreakAtStart)) {
++endRow;
}
// Honor break-inside:avoid if we can't fit all rows.
if (avoidBreakInside && endRow < numRows) {
aStatus.SetInlineLineBreakBeforeAndReset();
return aState.mFragBStart;
}
}
// Calculate the block-size including this fragment.
nscoord bEndRow =
aState.mRows.GridLineEdge(endRow, GridLineSide::BeforeGridGap);
nscoord bSize;
if (aFragmentainer.mIsAutoBSize) {
// We only apply min-bsize once all rows are complete (when bsize is auto).
if (endRow < numRows) {
bSize = bEndRow;
auto clampedBSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
if (MOZ_UNLIKELY(clampedBSize != bSize)) {
// We apply max-bsize in all fragments though.
bSize = clampedBSize;
} else if (!isBDBClone) {
// The max-bsize won't make this fragment COMPLETE, so the block-end
// border will be in a later fragment.
bpBEnd = 0;
}
} else {
bSize = NS_CSS_MINMAX(bEndRow, aState.mReflowInput->ComputedMinBSize(),
aState.mReflowInput->ComputedMaxBSize());
}
} else {
bSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
aState.mReflowInput->ComputedMinBSize(),
aState.mReflowInput->ComputedMaxBSize());
}
// Check for overflow and set aStatus INCOMPLETE if so.
bool overflow = bSize + bpBEnd > childAvailableSize;
if (overflow) {
if (avoidBreakInside) {
aStatus.SetInlineLineBreakBeforeAndReset();
return aState.mFragBStart;
}
bool breakAfterLastRow = endRow == numRows && aFragmentainer.mCanBreakAtEnd;
if (breakAfterLastRow) {
MOZ_ASSERT(bEndRow < bSize, "bogus aFragmentainer.mCanBreakAtEnd");
nscoord availableSize = childAvailableSize;
if (isBDBClone) {
availableSize -= bpBEnd;
}
// Pretend we have at least 1px available size, otherwise we'll never make
// progress in consuming our bSize.
availableSize =
std::max(availableSize, aState.mFragBStart + AppUnitsPerCSSPixel());
// Fill the fragmentainer, but not more than our desired block-size and
// at least to the size of the last row (even if that overflows).
nscoord newBSize = std::min(bSize, availableSize);
newBSize = std::max(newBSize, bEndRow);
// If it's just the border+padding that is overflowing and we have
// box-decoration-break:clone then we are technically COMPLETE. There's
// no point in creating another zero-bsize fragment in this case.
if (newBSize < bSize || !isBDBClone) {
aStatus.SetIncomplete();
}
bSize = newBSize;
} else if (bSize <= bEndRow && startRow + 1 < endRow) {
if (endRow == numRows) {
// We have more than one row in this fragment, so we can break before
// the last row instead.
--endRow;
bEndRow =
aState.mRows.GridLineEdge(endRow, GridLineSide::BeforeGridGap);
bSize = bEndRow;
if (aFragmentainer.mIsAutoBSize) {
bSize = ClampToCSSMaxBSize(bSize, aState.mReflowInput);
}
}
aStatus.SetIncomplete();
} else if (endRow < numRows) {
bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
} // else - no break opportunities.
} else {
// Even though our block-size fits we need to honor forced breaks, or if
// a row doesn't fit in an auto-sized container (unless it's constrained
// by a max-bsize which make us overflow-incomplete).
if (endRow < numRows &&
(isForcedBreak || (aFragmentainer.mIsAutoBSize && bEndRow == bSize))) {
bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
}
}
// If we can't fit all rows then we're at least overflow-incomplete.
if (endRow < numRows) {
childAvailableSize = bEndRow;
if (aStatus.IsComplete()) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
} else {
// Children always have the full size of the rows in this fragment.
childAvailableSize = std::max(childAvailableSize, bEndRow);
}
return ReflowRowsInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
aFragmentainer, aContainerSize, sortedItems,
startRow, endRow, bSize, childAvailableSize);
}
nscoord nsGridContainerFrame::ReflowRowsInFragmentainer(
GridReflowInput& aState, const LogicalRect& aContentArea,
ReflowOutput& aDesiredSize, nsReflowStatus& aStatus,
Fragmentainer& aFragmentainer, const nsSize& aContainerSize,
const nsTArray<const GridItemInfo*>& aSortedItems, uint32_t aStartRow,
uint32_t aEndRow, nscoord aBSize, nscoord aAvailableSize) {
FrameHashtable pushedItems;
FrameHashtable incompleteItems;
FrameHashtable overflowIncompleteItems;
Maybe<nsTArray<nscoord>> masonryAxisPos;
const auto rowCount = aState.mRows.mSizes.Length();
nscoord masonryAxisGap;
const auto wm = aState.mWM;
const bool isColMasonry = IsMasonry(eLogicalAxisInline);
if (isColMasonry) {
for (auto& sz : aState.mCols.mSizes) {
sz.mPosition = 0;
}
masonryAxisGap = nsLayoutUtils::ResolveGapToLength(
aState.mGridStyle->mColumnGap, aContentArea.ISize(wm));
aState.mCols.mGridGap = masonryAxisGap;
masonryAxisPos.emplace(rowCount);
masonryAxisPos->SetLength(rowCount);
PodZero(masonryAxisPos->Elements(), rowCount);
}
bool isBDBClone = aState.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Clone;
bool didGrowRow = false;
// As we walk across rows, we track whether the current row is at the top
// of its grid-fragment, to help decide whether we can break before it. When
// this function starts, our row is at the top of the current fragment if:
// - we're starting with a nonzero row (i.e. we're a continuation)
// OR:
// - we're starting with the first row, & we're not allowed to break before
// it (which makes it effectively at the top of its grid-fragment).
bool isRowTopOfPage = aStartRow != 0 || !aFragmentainer.mCanBreakAtStart;
const bool isStartRowTopOfPage = isRowTopOfPage;
// Save our full available size for later.
const nscoord gridAvailableSize = aFragmentainer.mToFragmentainerEnd;
// Propagate the constrained size to our children.
aFragmentainer.mToFragmentainerEnd = aAvailableSize;
// Reflow the items in row order up to |aEndRow| and push items after that.
uint32_t row = 0;
// |i| is intentionally signed, so we can set it to -1 to restart the loop.
for (int32_t i = 0, len = aSortedItems.Length(); i < len; ++i) {
const GridItemInfo* const info = aSortedItems[i];
nsIFrame* child = info->mFrame;
row = info->mArea.mRows.mStart;
MOZ_ASSERT(child->GetPrevInFlow() ? row < aStartRow : row >= aStartRow,
"unexpected child start row");
if (row >= aEndRow) {
pushedItems.PutEntry(child);
continue;
}
bool rowCanGrow = false;
nscoord maxRowSize = 0;
if (row >= aStartRow) {
if (row > aStartRow) {
isRowTopOfPage = false;
}
// Can we grow this row? Only consider span=1 items per spec...
rowCanGrow = !didGrowRow && info->mArea.mRows.Extent() == 1;
if (rowCanGrow) {
auto& sz = aState.mRows.mSizes[row];
// and only min-/max-content rows or flex rows in an auto-sized
// container
rowCanGrow = (sz.mState & TrackSize::eMinOrMaxContentMinSizing) ||
((sz.mState & TrackSize::eFlexMaxSizing) &&
aFragmentainer.mIsAutoBSize);
if (rowCanGrow) {
if (isBDBClone) {
maxRowSize = gridAvailableSize - aState.mBorderPadding.BEnd(wm);
} else {
maxRowSize = gridAvailableSize;
}
maxRowSize -= sz.mPosition;
// ...and only if there is space for it to grow.
rowCanGrow = maxRowSize > sz.mBase;
}
}
}
if (isColMasonry) {
const auto& cols = info->mArea.mCols;
MOZ_ASSERT((cols.mStart == 0 || cols.mStart == 1) && cols.Extent() == 1);
aState.mCols.mSizes[cols.mStart].mPosition = masonryAxisPos.ref()[row];
}
// aFragmentainer.mIsTopOfPage is propagated to the child reflow input.
// When it's false the child may request InlineBreak::Before. We set it
// to false when the row is growable (as determined in the CSS Grid
// Fragmentation spec) and there is a non-zero space between it and the
// fragmentainer end (that can be used to grow it). If the child reports
// a forced break in this case, we grow this row to fill the fragment and
// restart the loop. We also restart the loop with |aEndRow = row|
// (but without growing any row) for a InlineBreak::Before child if it spans
// beyond the last row in this fragment. This is to avoid fragmenting it.
// We only restart the loop once.
aFragmentainer.mIsTopOfPage = isRowTopOfPage && !rowCanGrow;
nsReflowStatus childStatus;
// Pass along how much to stretch this fragment, in case it's needed.
nscoord bSize =
aState.mRows.GridLineEdge(std::min(aEndRow, info->mArea.mRows.mEnd),
GridLineSide::BeforeGridGap) -
aState.mRows.GridLineEdge(std::max(aStartRow, row),
GridLineSide::AfterGridGap);
ReflowInFlowChild(child, info, aContainerSize, Some(bSize), &aFragmentainer,
aState, aContentArea, aDesiredSize, childStatus);
MOZ_ASSERT(childStatus.IsInlineBreakBefore() ||
!childStatus.IsFullyComplete() || !child->GetNextInFlow(),
"fully-complete reflow should destroy any NIFs");
if (childStatus.IsInlineBreakBefore()) {
MOZ_ASSERT(
!child->GetPrevInFlow(),
"continuations should never report InlineBreak::Before status");
MOZ_ASSERT(!aFragmentainer.mIsTopOfPage,
"got IsInlineBreakBefore() at top of page");
if (!didGrowRow) {
if (rowCanGrow) {
// Grow this row and restart with the next row as |aEndRow|.
aState.mRows.ResizeRow(row, maxRowSize);
if (aState.mSharedGridData) {
aState.mSharedGridData->mRows.ResizeRow(row, maxRowSize);
}
didGrowRow = true;
aEndRow = row + 1; // growing this row makes the next one not fit
i = -1; // i == 0 after the next loop increment
isRowTopOfPage = isStartRowTopOfPage;
overflowIncompleteItems.Clear();
incompleteItems.Clear();
nscoord bEndRow =
aState.mRows.GridLineEdge(aEndRow, GridLineSide::BeforeGridGap);
aFragmentainer.mToFragmentainerEnd = bEndRow;
if (aFragmentainer.mIsAutoBSize) {
aBSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowInput, &aStatus);
} else if (aStatus.IsIncomplete()) {
aBSize = NS_CSS_MINMAX(aState.mReflowInput->ComputedBSize(),
aState.mReflowInput->ComputedMinBSize(),
aState.mReflowInput->ComputedMaxBSize());
aBSize = std::min(bEndRow, aBSize);
}
continue;
}
if (!isRowTopOfPage) {
// We can break before this row - restart with it as the new end row.
aEndRow = row;
aBSize =
aState.mRows.GridLineEdge(aEndRow, GridLineSide::BeforeGridGap);
i = -1; // i == 0 after the next loop increment
isRowTopOfPage = isStartRowTopOfPage;
overflowIncompleteItems.Clear();
incompleteItems.Clear();
aStatus.SetIncomplete();
continue;
}
NS_ERROR("got InlineBreak::Before at top-of-page");
childStatus.Reset();
} else {
// We got InlineBreak::Before again after growing the row - this can
// happen if the child isn't splittable, e.g. some form controls.
childStatus.Reset();
if (child->GetNextInFlow()) {
// The child already has a fragment, so we know it's splittable.
childStatus.SetIncomplete();
} // else, report that it's complete
}
} else if (childStatus.IsInlineBreakAfter()) {
MOZ_ASSERT_UNREACHABLE("unexpected child reflow status");
}
MOZ_ASSERT(!childStatus.IsInlineBreakBefore(),
"should've handled InlineBreak::Before above");
if (childStatus.IsIncomplete()) {
incompleteItems.PutEntry(child);
} else if (!childStatus.IsFullyComplete()) {
overflowIncompleteItems.PutEntry(child);
}
if (isColMasonry) {
auto childWM = child->GetWritingMode();
auto childAxis =
!childWM.IsOrthogonalTo(wm) ? eLogicalAxisInline : eLogicalAxisBlock;
auto normalPos = child->GetLogicalNormalPosition(wm, aContainerSize);
auto sz =
childAxis == eLogicalAxisBlock ? child->BSize() : child->ISize();
auto pos = normalPos.Pos(eLogicalAxisInline, wm) + sz +
child->GetLogicalUsedMargin(childWM).End(childAxis, childWM);
masonryAxisPos.ref()[row] =
pos + masonryAxisGap - aContentArea.Start(eLogicalAxisInline, wm);
}
}
// Record a break before |aEndRow|.
aState.mNextFragmentStartRow = aEndRow;
if (aEndRow < rowCount) {
aState.mRows.BreakBeforeRow(aEndRow);
if (aState.mSharedGridData) {
aState.mSharedGridData->mRows.BreakBeforeRow(aEndRow);
}
}
const bool childrenMoved = PushIncompleteChildren(
pushedItems, incompleteItems, overflowIncompleteItems);
if (childrenMoved && aStatus.IsComplete()) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
if (!pushedItems.IsEmpty()) {
AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
// NOTE since we messed with our child list here, we intentionally
// make aState.mIter invalid to avoid any use of it after this point.
aState.mIter.Invalidate();
}
if (!incompleteItems.IsEmpty()) {
// NOTE since we messed with our child list here, we intentionally
// make aState.mIter invalid to avoid any use of it after this point.
aState.mIter.Invalidate();
}
if (isColMasonry) {
nscoord maxSize = 0;
for (auto pos : masonryAxisPos.ref()) {
maxSize = std::max(maxSize, pos);
}
maxSize = std::max(nscoord(0), maxSize - masonryAxisGap);
aState.AlignJustifyContentInMasonryAxis(maxSize, aContentArea.ISize(wm));
}
return aBSize;
}
// Here's a brief overview of how Masonry layout is implemented:
// We setup two synthetic tracks in the Masonry axis so that the Reflow code
// can treat it the same as for normal grid layout. The first track is
// fixed (during item placement/layout) at the content box start and contains
// the start items for each grid-axis track. The second track contains
// all other items and is moved to the position where we want to position
// the currently laid out item (like a sliding window as we place items).
// Once item layout is done, the tracks are resized to be the size of
// the "masonry box", which is the offset from the content box start to
// the margin-box end of the item that is furthest away (this happens in
// AlignJustifyContentInMasonryAxis() called at the end of this method).
// This is to prepare for AlignJustifyTracksInMasonryAxis, which is called
// later by our caller.
// Both tracks store their first-/last-baseline group offsets as usual.
// The first-baseline of the start track, and the last-baseline of the last
// track (if they exist) are exported as the grid container's baselines, or
// we fall back to picking an item's baseline (all this is per normal grid
// layout). There's a slight difference in which items belongs to which
// group though - see InitializeItemBaselinesInMasonryAxis for details.
// This method returns the "masonry box" size (in the masonry axis).
nscoord nsGridContainerFrame::MasonryLayout(GridReflowInput& aState,
const LogicalRect& aContentArea,
SizingConstraint aConstraint,
ReflowOutput& aDesiredSize,
nsReflowStatus& aStatus,
Fragmentainer* aFragmentainer,
const nsSize& aContainerSize) {
using BaselineAlignmentSet = Tracks::BaselineAlignmentSet;
auto recordAutoPlacement = [this, &aState](GridItemInfo* aItem,
LogicalAxis aGridAxis) {
// When we're auto-placing an item in a continuation we need to record
// the placement in mSharedGridData.
if (MOZ_UNLIKELY(aState.mSharedGridData && GetPrevInFlow()) &&
(aItem->mState[aGridAxis] & ItemState::eAutoPlacement)) {
auto* child = aItem->mFrame;
MOZ_RELEASE_ASSERT(!child->GetPrevInFlow(),
"continuations should never be auto-placed");
for (auto& sharedItem : aState.mSharedGridData->mGridItems) {
if (sharedItem.mFrame == child) {
sharedItem.mArea.LineRangeForAxis(aGridAxis) =
aItem->mArea.LineRangeForAxis(aGridAxis);
MOZ_ASSERT(sharedItem.mState[aGridAxis] & ItemState::eAutoPlacement);
sharedItem.mState[aGridAxis] &= ~ItemState::eAutoPlacement;
break;
}
}
}
aItem->mState[aGridAxis] &= ~ItemState::eAutoPlacement;
};
// Collect our grid items and sort them in grid order.
nsTArray<GridItemInfo*> sortedItems(aState.mGridItems.Length());
aState.mIter.Reset(CSSOrderAwareFrameIterator::ChildFilter::IncludeAll);
size_t absposIndex = 0;
const LogicalAxis masonryAxis =
IsMasonry(eLogicalAxisBlock) ? eLogicalAxisBlock : eLogicalAxisInline;
const auto wm = aState.mWM;
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
nsIFrame* child = *aState.mIter;
if (MOZ_LIKELY(!child->IsPlaceholderFrame())) {
GridItemInfo* item = &aState.mGridItems[aState.mIter.ItemIndex()];
sortedItems.AppendElement(item);
} else if (aConstraint == SizingConstraint::NoConstraint) {
// (we only collect placeholders in the NoConstraint case since they
// don't affect intrinsic sizing in any way)
GridItemInfo* item = nullptr;
auto* ph = static_cast<nsPlaceholderFrame*>(child);
if (ph->GetOutOfFlowFrame()->GetParent() == this) {
item = &aState.mAbsPosItems[absposIndex++];
MOZ_RELEASE_ASSERT(item->mFrame == ph->GetOutOfFlowFrame());
auto masonryStart = item->mArea.LineRangeForAxis(masonryAxis).mStart;
// If the item was placed by the author at line 1 (masonryStart == 0)
// then include it to be placed at the masonry-box start. If it's
// auto-placed and has an `auto` inset value in the masonry axis then
// we include it to be placed after the last grid item with the same
// grid-axis start track.
// XXXmats this is all a bit experimental at this point, pending a spec
if (masonryStart == 0 ||
(masonryStart == kAutoLine && item->mFrame->StylePosition()
->mOffset.Start(masonryAxis, wm)
.IsAuto())) {
sortedItems.AppendElement(item);
} else {
item = nullptr;
}
}
if (!item) {
// It wasn't included above - just reflow it and be done with it.
nsReflowStatus childStatus;
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), nullptr,
aState, aContentArea, aDesiredSize, childStatus);
}
}
}
const auto masonryAutoFlow = aState.mGridStyle->mMasonryAutoFlow;
bool definiteFirst = masonryAutoFlow & NS_STYLE_MASONRY_ORDER_DEFINITE_FIRST;
if (masonryAxis == eLogicalAxisBlock) {
std::stable_sort(sortedItems.begin(), sortedItems.end(),
definiteFirst ? GridItemInfo::RowMasonryDefiniteFirst
: GridItemInfo::RowMasonryOrdered);
} else {
std::stable_sort(sortedItems.begin(), sortedItems.end(),
definiteFirst ? GridItemInfo::ColMasonryDefiniteFirst
: GridItemInfo::ColMasonryOrdered);
}
FrameHashtable pushedItems;
FrameHashtable incompleteItems;
FrameHashtable overflowIncompleteItems;
nscoord toFragmentainerEnd = nscoord_MAX;
nscoord fragStartPos = aState.mFragBStart;
const bool avoidBreakInside =
aFragmentainer && ShouldAvoidBreakInside(*aState.mReflowInput);
const bool isTopOfPageAtStart =
aFragmentainer && aFragmentainer->mIsTopOfPage;
if (aFragmentainer) {
toFragmentainerEnd = std::max(0, aFragmentainer->mToFragmentainerEnd);
}
const LogicalAxis gridAxis = GetOrthogonalAxis(masonryAxis);
const auto gridAxisTrackCount = aState.TracksFor(gridAxis).mSizes.Length();
auto& masonryTracks = aState.TracksFor(masonryAxis);
auto& masonrySizes = masonryTracks.mSizes;
MOZ_ASSERT(masonrySizes.Length() == 2);
for (auto& sz : masonrySizes) {
sz.mPosition = fragStartPos;
}
// The current running position for each grid-axis track where the next item
// should be positioned. When an item is placed we'll update the tracks it
// spans to the end of its margin box + 'gap'.
nsTArray<nscoord> currentPos(gridAxisTrackCount);
currentPos.SetLength(gridAxisTrackCount);
for (auto& sz : currentPos) {
sz = fragStartPos;
}
nsTArray<nscoord> lastPos(currentPos.Clone());
nsTArray<GridItemInfo*> lastItems(gridAxisTrackCount);
lastItems.SetLength(gridAxisTrackCount);
PodZero(lastItems.Elements(), gridAxisTrackCount);
const nscoord gap = nsLayoutUtils::ResolveGapToLength(
masonryAxis == eLogicalAxisBlock ? aState.mGridStyle->mRowGap
: aState.mGridStyle->mColumnGap,
masonryTracks.mContentBoxSize);
masonryTracks.mGridGap = gap;
uint32_t cursor = 0;
const auto containerToMasonryBoxOffset =
fragStartPos - aContentArea.Start(masonryAxis, wm);
const bool isPack = masonryAutoFlow & NS_STYLE_MASONRY_PLACEMENT_PACK;
bool didAlignStartAlignedFirstItems = false;
// Return true if any of the lastItems in aRange are baseline-aligned in
// the masonry axis.
auto lastItemHasBaselineAlignment = [&](const LineRange& aRange) {
for (auto i : aRange.Range()) {
if (auto* child = lastItems[i] ? lastItems[i]->mFrame : nullptr) {
const auto& pos = child->StylePosition();
auto selfAlignment = pos->UsedSelfAlignment(masonryAxis, this->Style());
if (selfAlignment == StyleAlignFlags::BASELINE ||
selfAlignment == StyleAlignFlags::LAST_BASELINE) {
return true;
}
auto childAxis = masonryAxis;
if (child->GetWritingMode().IsOrthogonalTo(wm)) {
childAxis = gridAxis;
}
auto contentAlignment = pos->UsedContentAlignment(childAxis).primary;
if (contentAlignment == StyleAlignFlags::BASELINE ||
contentAlignment == StyleAlignFlags::LAST_BASELINE) {
return true;
}
}
}
return false;
};
// Resolve aItem's placement, unless it's definite already. Return its
// masonry axis position with that placement.
auto placeItem = [&](GridItemInfo* aItem) -> nscoord {
auto& masonryAxisRange = aItem->mArea.LineRangeForAxis(masonryAxis);
MOZ_ASSERT(masonryAxisRange.mStart != 0, "item placement is already final");
auto& gridAxisRange = aItem->mArea.LineRangeForAxis(gridAxis);
bool isAutoPlaced = aItem->mState[gridAxis] & ItemState::eAutoPlacement;
uint32_t start = isAutoPlaced ? 0 : gridAxisRange.mStart;
if (isAutoPlaced && !isPack) {
start = cursor;
isAutoPlaced = false;
}
const uint32_t extent = gridAxisRange.Extent();
if (start + extent > gridAxisTrackCount) {
// Note that this will only happen to auto-placed items since the grid is
// always wide enough to fit other items.
start = 0;
}
// This keeps track of the smallest `maxPosForRange` value that
// we discover in the loop below:
nscoord minPos = nscoord_MAX;
MOZ_ASSERT(extent <= gridAxisTrackCount);
const uint32_t iEnd = gridAxisTrackCount + 1 - extent;
for (uint32_t i = start; i < iEnd; ++i) {
// Find the max `currentPos` value for the tracks that we would span
// if we were to use `i` as our start track:
nscoord maxPosForRange = 0;
for (auto j = i, jEnd = j + extent; j < jEnd; ++j) {
maxPosForRange = std::max(currentPos[j], maxPosForRange);
}
if (maxPosForRange < minPos) {
minPos = maxPosForRange;
start = i;
}
if (!isAutoPlaced) {
break;
}
}
gridAxisRange.mStart = start;
gridAxisRange.mEnd = start + extent;
bool isFirstItem = true;
for (uint32_t i : gridAxisRange.Range()) {
if (lastItems[i]) {
isFirstItem = false;
break;
}
}
// If this is the first item in its spanned grid tracks, then place it in
// the first masonry track. Otherwise, place it in the second masonry track.
masonryAxisRange.mStart = isFirstItem ? 0 : 1;
masonryAxisRange.mEnd = masonryAxisRange.mStart + 1;
return minPos;
};
// Handle the resulting reflow status after reflowing aItem.
// This may set aStatus to BreakBefore which the caller is expected
// to handle by returning from MasonryLayout.
// @return true if this item should consume all remaining space
auto handleChildStatus = [&](GridItemInfo* aItem,
const nsReflowStatus& aChildStatus) {
bool result = false;
if (MOZ_UNLIKELY(aFragmentainer)) {
auto* child = aItem->mFrame;
if (!aChildStatus.IsComplete() || aChildStatus.IsInlineBreakBefore() ||
aChildStatus.IsInlineBreakAfter() ||
child->StyleDisplay()->BreakAfter()) {
if (!isTopOfPageAtStart && avoidBreakInside) {
aStatus.SetInlineLineBreakBeforeAndReset();
return result;
}
result = true;
}
if (aChildStatus.IsInlineBreakBefore()) {
aStatus.SetIncomplete();
pushedItems.PutEntry(child);
} else if (aChildStatus.IsIncomplete()) {
recordAutoPlacement(aItem, gridAxis);
aStatus.SetIncomplete();
incompleteItems.PutEntry(child);
} else if (!aChildStatus.IsFullyComplete()) {
recordAutoPlacement(aItem, gridAxis);
overflowIncompleteItems.PutEntry(child);
}
}
return result;
};
// @return the distance from the masonry-box start to the end of the margin-
// box of aChild
auto offsetToMarginBoxEnd = [&](nsIFrame* aChild) {
auto childWM = aChild->GetWritingMode();
auto childAxis = !childWM.IsOrthogonalTo(wm) ? masonryAxis : gridAxis;
auto normalPos = aChild->GetLogicalNormalPosition(wm, aContainerSize);
auto sz =
childAxis == eLogicalAxisBlock ? aChild->BSize() : aChild->ISize();
return containerToMasonryBoxOffset + normalPos.Pos(masonryAxis, wm) + sz +
aChild->GetLogicalUsedMargin(childWM).End(childAxis, childWM);
};
// Apply baseline alignment to items belonging to the given set.
nsTArray<Tracks::ItemBaselineData> firstBaselineItems;
nsTArray<Tracks::ItemBaselineData> lastBaselineItems;
auto applyBaselineAlignment = [&](BaselineAlignmentSet aSet) {
firstBaselineItems.ClearAndRetainStorage();
lastBaselineItems.ClearAndRetainStorage();
masonryTracks.InitializeItemBaselinesInMasonryAxis(
aState, aState.mGridItems, aSet, aContainerSize, currentPos,
firstBaselineItems, lastBaselineItems);
bool didBaselineAdjustment = false;
nsTArray<Tracks::ItemBaselineData>* baselineItems[] = {&firstBaselineItems,
&lastBaselineItems};
for (const auto* items : baselineItems) {
for (const auto& data : *items) {
GridItemInfo* item = data.mGridItem;
MOZ_ASSERT((item->mState[masonryAxis] & ItemState::eIsBaselineAligned));
nscoord baselineOffset = item->mBaselineOffset[masonryAxis];
if (baselineOffset == nscoord(0)) {
continue; // no adjustment needed for this item
}
didBaselineAdjustment = true;
auto* child = item->mFrame;
auto masonryAxisStart =
item->mArea.LineRangeForAxis(masonryAxis).mStart;
auto gridAxisRange = item->mArea.LineRangeForAxis(gridAxis);
masonrySizes[masonryAxisStart].mPosition =
aSet.mItemSet == BaselineAlignmentSet::LastItems
? lastPos[gridAxisRange.mStart]
: fragStartPos;
bool consumeAllSpace = false;
const auto state = item->mState[masonryAxis];
if ((state & ItemState::eContentBaseline) ||
MOZ_UNLIKELY(aFragmentainer)) {
if (MOZ_UNLIKELY(aFragmentainer)) {
aFragmentainer->mIsTopOfPage =
isTopOfPageAtStart &&
masonrySizes[masonryAxisStart].mPosition == fragStartPos;
}
nsReflowStatus childStatus;
ReflowInFlowChild(child, item, aContainerSize, Nothing(),
aFragmentainer, aState, aContentArea, aDesiredSize,
childStatus);
consumeAllSpace = handleChildStatus(item, childStatus);
if (aStatus.IsInlineBreakBefore()) {
return false;
}
} else if (!(state & ItemState::eEndSideBaseline)) {
// `align/justify-self` baselines on the start side can be handled by
// just moving the frame (except in a fragmentainer in which case we
// reflow it above instead since it might make it INCOMPLETE).
LogicalPoint logicalDelta(wm);
logicalDelta.Pos(masonryAxis, wm) = baselineOffset;
child->MovePositionBy(wm, logicalDelta);
}
if ((state & ItemState::eEndSideBaseline) && !consumeAllSpace) {
// Account for an end-side baseline adjustment.
for (uint32_t i : gridAxisRange.Range()) {
currentPos[i] += baselineOffset;
}
} else {
nscoord pos = consumeAllSpace ? toFragmentainerEnd
: offsetToMarginBoxEnd(child);
pos += gap;
for (uint32_t i : gridAxisRange.Range()) {
currentPos[i] = pos;
}
}
}
}
return didBaselineAdjustment;
};
// Place and reflow items. We'll use two fake tracks in the masonry axis.
// The first contains items that were placed there by the regular grid
// placement algo (PlaceGridItems) and we may add some items here if there
// are still empty slots. The second track contains all other items.
// Both tracks always have the size of the content box in the masonry axis.
// The position of the first track is always at the start. The position
// of the second track is updated as we go to a position where we want
// the current item to be positioned.
for (GridItemInfo* item : sortedItems) {
auto* child = item->mFrame;
auto& masonryRange = item->mArea.LineRangeForAxis(masonryAxis);
auto& gridRange = item->mArea.LineRangeForAxis(gridAxis);
nsReflowStatus childStatus;
if (MOZ_UNLIKELY(child->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW))) {
auto contentArea = aContentArea;
nscoord pos = nscoord_MAX;
// XXXmats take mEnd into consideration...
if (gridRange.mStart == kAutoLine) {
for (auto p : currentPos) {
pos = std::min(p, pos);
}
} else if (gridRange.mStart < currentPos.Length()) {
pos = currentPos[gridRange.mStart];
} else if (currentPos.Length() > 0) {
pos = currentPos.LastElement();
}
if (pos == nscoord_MAX) {
pos = nscoord(0);
}
contentArea.Start(masonryAxis, wm) = pos;
child = child->GetPlaceholderFrame();
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), nullptr,
aState, contentArea, aDesiredSize, childStatus);
} else {
MOZ_ASSERT(gridRange.Extent() > 0 &&
gridRange.Extent() <= gridAxisTrackCount);
MOZ_ASSERT((masonryRange.mStart == 0 || masonryRange.mStart == 1) &&
masonryRange.Extent() == 1);
if (masonryRange.mStart != 0) {
masonrySizes[1].mPosition = placeItem(item);
}
// If this is the first item NOT in the first track and if any of
// the grid-axis tracks we span has a baseline-aligned item then we
// need to do that baseline alignment now since it may affect
// the placement of this and later items.
if (!didAlignStartAlignedFirstItems &&
aConstraint == SizingConstraint::NoConstraint &&
masonryRange.mStart != 0 && lastItemHasBaselineAlignment(gridRange)) {
didAlignStartAlignedFirstItems = true;
if (applyBaselineAlignment({BaselineAlignmentSet::FirstItems,
BaselineAlignmentSet::StartStretch})) {
// Baseline alignment resized some items - redo our placement.
masonrySizes[1].mPosition = placeItem(item);
}
if (aStatus.IsInlineBreakBefore()) {
return fragStartPos;
}
}
for (uint32_t i : gridRange.Range()) {
lastItems[i] = item;
}
cursor = gridRange.mEnd;
if (cursor >= gridAxisTrackCount) {
cursor = 0;
}
nscoord pos;
if (aConstraint == SizingConstraint::NoConstraint) {
const auto* disp = child->StyleDisplay();
if (MOZ_UNLIKELY(aFragmentainer)) {
aFragmentainer->mIsTopOfPage =
isTopOfPageAtStart &&
masonrySizes[masonryRange.mStart].mPosition == fragStartPos;
if (!aFragmentainer->mIsTopOfPage &&
(disp->BreakBefore() ||
masonrySizes[masonryRange.mStart].mPosition >=
toFragmentainerEnd)) {
childStatus.SetInlineLineBreakBeforeAndReset();
}
}
if (!childStatus.IsInlineBreakBefore()) {
ReflowInFlowChild(child, item, aContainerSize, Nothing(),
aFragmentainer, aState, aContentArea, aDesiredSize,
childStatus);
}
bool consumeAllSpace = handleChildStatus(item, childStatus);
if (aStatus.IsInlineBreakBefore()) {
return fragStartPos;
}
pos =
consumeAllSpace ? toFragmentainerEnd : offsetToMarginBoxEnd(child);
} else {
LogicalSize percentBasis(
aState.PercentageBasisFor(eLogicalAxisInline, *item));
IntrinsicISizeType type = aConstraint == SizingConstraint::MaxContent
? IntrinsicISizeType::PrefISize
: IntrinsicISizeType::MinISize;
auto sz =
::ContentContribution(*item, aState, &aState.mRenderingContext, wm,
masonryAxis, Some(percentBasis), type);
pos = sz + masonrySizes[masonryRange.mStart].mPosition;
}
pos += gap;
for (uint32_t i : gridRange.Range()) {
lastPos[i] = currentPos[i];
currentPos[i] = pos;
}
}
}
// Do the remaining baseline alignment sets.
if (aConstraint == SizingConstraint::NoConstraint) {
for (auto*& item : lastItems) {
if (item) {
item->mState[masonryAxis] |= ItemState::eIsLastItemInMasonryTrack;
}
}
BaselineAlignmentSet baselineSets[] = {
{BaselineAlignmentSet::FirstItems, BaselineAlignmentSet::StartStretch},
{BaselineAlignmentSet::FirstItems, BaselineAlignmentSet::EndStretch},
{BaselineAlignmentSet::LastItems, BaselineAlignmentSet::StartStretch},
{BaselineAlignmentSet::LastItems, BaselineAlignmentSet::EndStretch},
};
for (uint32_t i = 0; i < ArrayLength(baselineSets); ++i) {
if (i == 0 && didAlignStartAlignedFirstItems) {
continue;
}
applyBaselineAlignment(baselineSets[i]);
}
}
const bool childrenMoved = PushIncompleteChildren(
pushedItems, incompleteItems, overflowIncompleteItems);
if (childrenMoved && aStatus.IsComplete()) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
if (!pushedItems.IsEmpty()) {
AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
// NOTE since we messed with our child list here, we intentionally
// make aState.mIter invalid to avoid any use of it after this point.
aState.mIter.Invalidate();
}
if (!incompleteItems.IsEmpty()) {
// NOTE since we messed with our child list here, we intentionally
// make aState.mIter invalid to avoid any use of it after this point.
aState.mIter.Invalidate();
}
nscoord masonryBoxSize = 0;
for (auto pos : currentPos) {
masonryBoxSize = std::max(masonryBoxSize, pos);
}
masonryBoxSize = std::max(nscoord(0), masonryBoxSize - gap);
if (aConstraint == SizingConstraint::NoConstraint) {
aState.AlignJustifyContentInMasonryAxis(masonryBoxSize,
masonryTracks.mContentBoxSize);
}
return masonryBoxSize;
}
nsGridContainerFrame* nsGridContainerFrame::ParentGridContainerForSubgrid()
const {
MOZ_ASSERT(IsSubgrid());
nsIFrame* p = GetParent();
while (p->GetContent() == GetContent()) {
p = p->GetParent();
}
MOZ_ASSERT(p->IsGridContainerFrame());
auto* parent = static_cast<nsGridContainerFrame*>(p);
MOZ_ASSERT(parent->HasSubgridItems());
return parent;
}
nscoord nsGridContainerFrame::ReflowChildren(GridReflowInput& aState,
const LogicalRect& aContentArea,
const nsSize& aContainerSize,
ReflowOutput& aDesiredSize,
nsReflowStatus& aStatus) {
MOZ_ASSERT(aState.mReflowInput);
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
OverflowAreas ocBounds;
nsReflowStatus ocStatus;
if (GetPrevInFlow()) {
ReflowOverflowContainerChildren(PresContext(), *aState.mReflowInput,
ocBounds, ReflowChildFlags::Default,
ocStatus, MergeSortedFrameListsFor);
}
WritingMode wm = aState.mReflowInput->GetWritingMode();
nscoord bSize = aContentArea.BSize(wm);
Maybe<Fragmentainer> fragmentainer = GetNearestFragmentainer(aState);
// MasonryLayout() can only handle fragmentation in the masonry-axis,
// so we let ReflowInFragmentainer() deal with grid-axis fragmentation
// in the else-clause below.
if (IsMasonry() &&
!(IsMasonry(eLogicalAxisInline) && fragmentainer.isSome())) {
aState.mInFragmentainer = fragmentainer.isSome();
nscoord sz = MasonryLayout(
aState, aContentArea, SizingConstraint::NoConstraint, aDesiredSize,
aStatus, fragmentainer.ptrOr(nullptr), aContainerSize);
if (IsMasonry(eLogicalAxisBlock)) {
bSize = aState.mReflowInput->ComputedBSize();
if (bSize == NS_UNCONSTRAINEDSIZE) {
bSize = NS_CSS_MINMAX(sz, aState.mReflowInput->ComputedMinBSize(),
aState.mReflowInput->ComputedMaxBSize());
}
}
} else if (MOZ_UNLIKELY(fragmentainer.isSome())) {
if (IsMasonry(eLogicalAxisInline) && !GetPrevInFlow()) {
// First we do an unconstrained reflow to resolve the item placement
// which is then kept as-is in the constrained reflow below.
MasonryLayout(aState, aContentArea, SizingConstraint::NoConstraint,
aDesiredSize, aStatus, nullptr, aContainerSize);
}
aState.mInFragmentainer = true;
bSize = ReflowInFragmentainer(aState, aContentArea, aDesiredSize, aStatus,
*fragmentainer, aContainerSize);
} else {
aState.mIter.Reset(CSSOrderAwareFrameIterator::ChildFilter::IncludeAll);
for (; !aState.mIter.AtEnd(); aState.mIter.Next()) {
nsIFrame* child = *aState.mIter;
const GridItemInfo* info = nullptr;
if (!child->IsPlaceholderFrame()) {
info = &aState.mGridItems[aState.mIter.ItemIndex()];
}
ReflowInFlowChild(*aState.mIter, info, aContainerSize, Nothing(), nullptr,
aState, aContentArea, aDesiredSize, aStatus);
MOZ_ASSERT(aStatus.IsComplete(),
"child should be complete in unconstrained reflow");
}
}
// Merge overflow container bounds and status.
aDesiredSize.mOverflowAreas.UnionWith(ocBounds);
aStatus.MergeCompletionStatusFrom(ocStatus);
if (IsAbsoluteContainer()) {
nsFrameList children(GetChildList(GetAbsoluteListID()));
if (!children.IsEmpty()) {
// 'gridOrigin' is the origin of the grid (the start of the first track),
// with respect to the grid container's padding-box (CB).
LogicalMargin pad(aState.mReflowInput->ComputedLogicalPadding(wm));
const LogicalPoint gridOrigin(wm, pad.IStart(wm), pad.BStart(wm));
const LogicalRect gridCB(wm, 0, 0,
aContentArea.ISize(wm) + pad.IStartEnd(wm),
bSize + pad.BStartEnd(wm));
const nsSize gridCBPhysicalSize = gridCB.Size(wm).GetPhysicalSize(wm);
size_t i = 0;
for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) {
nsIFrame* child = e.get();
MOZ_ASSERT(i < aState.mAbsPosItems.Length());
MOZ_ASSERT(aState.mAbsPosItems[i].mFrame == child);
GridArea& area = aState.mAbsPosItems[i].mArea;
LogicalRect itemCB =
aState.ContainingBlockForAbsPos(area, gridOrigin, gridCB);
// nsAbsoluteContainingBlock::Reflow uses physical coordinates.
nsRect* cb = child->GetProperty(GridItemContainingBlockRect());
if (!cb) {
cb = new nsRect;
child->SetProperty(GridItemContainingBlockRect(), cb);
}
*cb = itemCB.GetPhysicalRect(wm, gridCBPhysicalSize);
}
// We pass a dummy rect as CB because each child has its own CB rect.
// The eIsGridContainerCB flag tells nsAbsoluteContainingBlock::Reflow to
// use those instead.
nsRect dummyRect;
AbsPosReflowFlags flags =
AbsPosReflowFlags::CBWidthAndHeightChanged; // XXX could be optimized
flags |= AbsPosReflowFlags::ConstrainHeight;
flags |= AbsPosReflowFlags::IsGridContainerCB;
GetAbsoluteContainingBlock()->Reflow(
this, PresContext(), *aState.mReflowInput, aStatus, dummyRect, flags,
&aDesiredSize.mOverflowAreas);
}
}
return bSize;
}
void nsGridContainerFrame::Reflow(nsPresContext* aPresContext,
ReflowOutput& aDesiredSize,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus) {
MarkInReflow();
DO_GLOBAL_REFLOW_COUNT("nsGridContainerFrame");
DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus);
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) {
return;
}
NormalizeChildLists();
#ifdef DEBUG
mDidPushItemsBitMayLie = false;
SanityCheckChildListsBeforeReflow();
#endif // DEBUG
for (auto& perAxisBaseline : mBaseline) {
for (auto& baseline : perAxisBaseline) {
baseline = NS_INTRINSIC_ISIZE_UNKNOWN;
}
}
const nsStylePosition* stylePos = aReflowInput.mStylePosition;
auto prevInFlow = static_cast<nsGridContainerFrame*>(GetPrevInFlow());
if (MOZ_LIKELY(!prevInFlow)) {
InitImplicitNamedAreas(stylePos);
} else {
MOZ_ASSERT(prevInFlow->HasAnyStateBits(kIsSubgridBits) ==
HasAnyStateBits(kIsSubgridBits),
"continuations should have same kIsSubgridBits");
}
GridReflowInput gridReflowInput(this, aReflowInput);
if (gridReflowInput.mIter.ItemsAreAlreadyInOrder()) {
AddStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
} else {
RemoveStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
}
if (gridReflowInput.mIter.AtEnd() ||
aReflowInput.mStyleDisplay->IsContainLayout()) {
// We have no grid items, or we're layout-contained. So, we have no
// baseline, and our parent should synthesize a baseline if needed.
AddStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
} else {
RemoveStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
}
const nscoord computedBSize = aReflowInput.ComputedBSize();
const nscoord computedISize = aReflowInput.ComputedISize();
const WritingMode& wm = gridReflowInput.mWM;
const LogicalSize computedSize(wm, computedISize, computedBSize);
nscoord consumedBSize = 0;
nscoord bSize = 0;
if (MOZ_LIKELY(!prevInFlow)) {
Grid grid;
if (MOZ_LIKELY(!IsSubgrid())) {
RepeatTrackSizingInput repeatSizing(aReflowInput.ComputedMinSize(),
computedSize,
aReflowInput.ComputedMaxSize());
grid.PlaceGridItems(gridReflowInput, repeatSizing);
} else {
auto* subgrid = GetProperty(Subgrid::Prop());
MOZ_ASSERT(subgrid, "an ancestor forgot to call PlaceGridItems?");
gridReflowInput.mGridItems = subgrid->mGridItems.Clone();
gridReflowInput.mAbsPosItems = subgrid->mAbsPosItems.Clone();
grid.mGridColEnd = subgrid->mGridColEnd;
grid.mGridRowEnd = subgrid->mGridRowEnd;
}
gridReflowInput.CalculateTrackSizes(grid, computedSize,
SizingConstraint::NoConstraint);
// XXX Technically incorrect: We're ignoring our row sizes, when really
// we should use them but *they* should be computed as if we had no
// children. To be fixed in bug 1488878.
if (!aReflowInput.mStyleDisplay->IsContainSize()) {
if (IsMasonry(eLogicalAxisBlock)) {
bSize = computedBSize;
} else {
const auto& rowSizes = gridReflowInput.mRows.mSizes;
if (MOZ_LIKELY(!IsSubgrid(eLogicalAxisBlock))) {
// Note: we can't use GridLineEdge here since we haven't calculated
// the rows' mPosition yet (happens in AlignJustifyContent below).
for (const auto& sz : rowSizes) {
bSize += sz.mBase;
}
bSize += gridReflowInput.mRows.SumOfGridGaps();
} else if (computedBSize == NS_UNCONSTRAINEDSIZE) {
bSize = gridReflowInput.mRows.GridLineEdge(
rowSizes.Length(), GridLineSide::BeforeGridGap);
}
}
}
} else {
consumedBSize = CalcAndCacheConsumedBSize();
gridReflowInput.InitializeForContinuation(this, consumedBSize);
// XXX Technically incorrect: We're ignoring our row sizes, when really
// we should use them but *they* should be computed as if we had no
// children. To be fixed in bug 1488878.
if (!aReflowInput.mStyleDisplay->IsContainSize()) {
const uint32_t numRows = gridReflowInput.mRows.mSizes.Length();
bSize = gridReflowInput.mRows.GridLineEdge(numRows,
GridLineSide::AfterGridGap);
}
}
if (computedBSize == NS_UNCONSTRAINEDSIZE) {
bSize = NS_CSS_MINMAX(bSize, aReflowInput.ComputedMinBSize(),
aReflowInput.ComputedMaxBSize());
} else {
bSize = computedBSize;
}
if (bSize != NS_UNCONSTRAINEDSIZE) {
bSize = std::max(bSize - consumedBSize, 0);
}
auto& bp = gridReflowInput.mBorderPadding;
LogicalRect contentArea(wm, bp.IStart(wm), bp.BStart(wm), computedISize,
bSize);
if (!prevInFlow) {
const auto& rowSizes = gridReflowInput.mRows.mSizes;
if (!IsRowSubgrid()) {
// Apply 'align-content' to the grid.
if (computedBSize == NS_UNCONSTRAINEDSIZE &&
stylePos->mRowGap.IsLengthPercentage() &&
stylePos->mRowGap.AsLengthPercentage().HasPercent()) {
// Re-resolve the row-gap now that we know our intrinsic block-size.
gridReflowInput.mRows.mGridGap =
nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap, bSize);
}
if (!gridReflowInput.mRows.mIsMasonry) {
auto alignment = stylePos->mAlignContent;
gridReflowInput.mRows.AlignJustifyContent(stylePos, alignment, wm,
bSize, false);
}
} else {
if (computedBSize == NS_UNCONSTRAINEDSIZE) {
bSize = gridReflowInput.mRows.GridLineEdge(rowSizes.Length(),
GridLineSide::BeforeGridGap);
contentArea.BSize(wm) = std::max(bSize, nscoord(0));
}
}
// Save the final row sizes for use by subgrids, if needed.
if (HasSubgridItems() || IsSubgrid()) {
StoreUsedTrackSizes(eLogicalAxisBlock, rowSizes);
}
}
nsSize containerSize = contentArea.Size(wm).GetPhysicalSize(wm);
bool repositionChildren = false;
if (containerSize.width == NS_UNCONSTRAINEDSIZE && wm.IsVerticalRL()) {
// Note that writing-mode:vertical-rl is the only case where the block
// logical direction progresses in a negative physical direction, and
// therefore block-dir coordinate conversion depends on knowing the width
// of the coordinate space in order to translate between the logical and
// physical origins.
//
// A masonry axis size may be unconstrained, otherwise in a regular grid
// our intrinsic size is always known by now. We'll re-position
// the children below once our size is known.
repositionChildren = true;
containerSize.width = 0;
}
containerSize.width += bp.LeftRight(wm);
containerSize.height += bp.TopBottom(wm);
bSize = ReflowChildren(gridReflowInput, contentArea, containerSize,
aDesiredSize, aStatus);
bSize = std::max(bSize - consumedBSize, 0);
// Skip our block-end border if we're INCOMPLETE.
if (!aStatus.IsComplete() && !gridReflowInput.mSkipSides.BEnd() &&
StyleBorder()->mBoxDecorationBreak != StyleBoxDecorationBreak::Clone) {
bp.BEnd(wm) = nscoord(0);
}
LogicalSize desiredSize(wm, computedISize + bp.IStartEnd(wm),
bSize + bp.BStartEnd(wm));
aDesiredSize.SetSize(wm, desiredSize);
nsRect frameRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height());
aDesiredSize.mOverflowAreas.UnionAllWith(frameRect);
if (repositionChildren) {
nsPoint physicalDelta(aDesiredSize.Width() - bp.LeftRight(wm), 0);
for (const auto& item : gridReflowInput.mGridItems) {
auto* child = item.mFrame;
child->MovePositionBy(physicalDelta);
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, child);
}
}
// TODO: fix align-tracks alignment in fragments
if ((IsMasonry(eLogicalAxisBlock) && !prevInFlow) ||
IsMasonry(eLogicalAxisInline)) {
gridReflowInput.AlignJustifyTracksInMasonryAxis(
contentArea.Size(wm), aDesiredSize.PhysicalSize());
}
// Convert INCOMPLETE -> OVERFLOW_INCOMPLETE and zero bsize if we're an OC.
if (HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
if (!aStatus.IsComplete()) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
bSize = 0;
desiredSize.BSize(wm) = bSize + bp.BStartEnd(wm);
aDesiredSize.SetSize(wm, desiredSize);
}
if (!gridReflowInput.mInFragmentainer) {
MOZ_ASSERT(gridReflowInput.mIter.IsValid());
auto sz = frameRect.Size();
CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
&gridReflowInput.mGridItems, gridReflowInput.mCols, 0,
gridReflowInput.mCols.mSizes.Length(), wm, sz,
bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm));
CalculateBaselines(BaselineSet::eBoth, &gridReflowInput.mIter,
&gridReflowInput.mGridItems, gridReflowInput.mRows, 0,
gridReflowInput.mRows.mSizes.Length(), wm, sz,
bp.BStart(wm), bp.BEnd(wm), desiredSize.BSize(wm));
} else {
// Only compute 'first baseline' if this fragment contains the first track.
// XXXmats maybe remove this condition? bug 1306499
BaselineSet baselines = BaselineSet::eNone;
if (gridReflowInput.mStartRow == 0 &&
gridReflowInput.mStartRow != gridReflowInput.mNextFragmentStartRow) {
baselines = BaselineSet::eFirst;
}
// Only compute 'last baseline' if this fragment contains the last track.
// XXXmats maybe remove this condition? bug 1306499
uint32_t len = gridReflowInput.mRows.mSizes.Length();
if (gridReflowInput.mStartRow != len &&
gridReflowInput.mNextFragmentStartRow == len) {
baselines = BaselineSet(baselines | BaselineSet::eLast);
}
Maybe<CSSOrderAwareFrameIterator> iter;
Maybe<nsTArray<GridItemInfo>> gridItems;
if (baselines != BaselineSet::eNone) {
// We need to create a new iterator and GridItemInfo array because we
// might have pushed some children at this point.
// Even if the gridReflowInput iterator is invalid we can reuse its
// state about order to optimize initialization of the new iterator.
// An ordered child list can't become unordered by pushing frames.
// An unordered list can become ordered in a number of cases, but we
// ignore that here and guess that the child list is still unordered.
// XXX this is O(n^2) in the number of items in this fragment: bug 1306705
using Filter = CSSOrderAwareFrameIterator::ChildFilter;
using Order = CSSOrderAwareFrameIterator::OrderState;
bool ordered = gridReflowInput.mIter.ItemsAreAlreadyInOrder();
auto orderState = ordered ? Order::Ordered : Order::Unordered;
iter.emplace(this, kPrincipalList, Filter::SkipPlaceholders, orderState);
gridItems.emplace();
for (; !iter->AtEnd(); iter->Next()) {
auto child = **iter;
for (const auto& info : gridReflowInput.mGridItems) {
if (info.mFrame == child) {
gridItems->AppendElement(info);
}
}
}
}
auto sz = frameRect.Size();
CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
gridReflowInput.mCols, 0,
gridReflowInput.mCols.mSizes.Length(), wm, sz,
bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm));
CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
gridReflowInput.mRows, gridReflowInput.mStartRow,
gridReflowInput.mNextFragmentStartRow, wm, sz,
bp.BStart(wm), bp.BEnd(wm), desiredSize.BSize(wm));
}
if (ShouldGenerateComputedInfo()) {
// This state bit will never be cleared, since reflow can be called
// multiple times in fragmented grids, and it's challenging to scope
// the bit to only that sequence of calls. This is relatively harmless
// since this bit is only set by accessing a ChromeOnly property, and
// therefore can't unduly slow down normal web browsing.
// Now that we know column and row sizes and positions, set
// the ComputedGridTrackInfo and related properties
const auto* subgrid = GetProperty(Subgrid::Prop());
const auto* subgridColRange = subgrid && IsSubgrid(eLogicalAxisInline)
? &subgrid->SubgridCols()
: nullptr;
LineNameMap colLineNameMap(
gridReflowInput.mGridStyle, GetImplicitNamedAreas(),
gridReflowInput.mColFunctions, nullptr, subgridColRange, true);
uint32_t colTrackCount = gridReflowInput.mCols.mSizes.Length();
nsTArray<nscoord> colTrackPositions(colTrackCount);
nsTArray<nscoord> colTrackSizes(colTrackCount);
nsTArray<uint32_t> colTrackStates(colTrackCount);
nsTArray<bool> colRemovedRepeatTracks(
gridReflowInput.mColFunctions.mRemovedRepeatTracks.Clone());
uint32_t col = 0;
for (const TrackSize& sz : gridReflowInput.mCols.mSizes) {
colTrackPositions.AppendElement(sz.mPosition);
colTrackSizes.AppendElement(sz.mBase);
bool isRepeat =
((col >= gridReflowInput.mColFunctions.mRepeatAutoStart) &&
(col < gridReflowInput.mColFunctions.mRepeatAutoEnd));
colTrackStates.AppendElement(
isRepeat ? (uint32_t)mozilla::dom::GridTrackState::Repeat
: (uint32_t)mozilla::dom::GridTrackState::Static);
col++;
}
// Get the number of explicit tracks first. The order of argument evaluation
// is implementation-defined. We should be OK here because colTrackSizes is
// taken by rvalue, but computing the size first prevents any changes in the
// argument types of the constructor from breaking this.
const uint32_t numColExplicitTracks =
IsSubgrid(eLogicalAxisInline)
? colTrackSizes.Length()
: gridReflowInput.mColFunctions.NumExplicitTracks();
ComputedGridTrackInfo* colInfo = new ComputedGridTrackInfo(
gridReflowInput.mColFunctions.mExplicitGridOffset, numColExplicitTracks,
0, col, std::move(colTrackPositions), std::move(colTrackSizes),
std::move(colTrackStates), std::move(colRemovedRepeatTracks),
gridReflowInput.mColFunctions.mRepeatAutoStart,
colLineNameMap.GetResolvedLineNamesForComputedGridTrackInfo(),
IsSubgrid(eLogicalAxisInline), IsMasonry(eLogicalAxisInline));
SetProperty(GridColTrackInfo(), colInfo);
const auto* subgridRowRange = subgrid && IsSubgrid(eLogicalAxisBlock)
? &subgrid->SubgridRows()
: nullptr;
LineNameMap rowLineNameMap(
gridReflowInput.mGridStyle, GetImplicitNamedAreas(),
gridReflowInput.mRowFunctions, nullptr, subgridRowRange, true);
uint32_t rowTrackCount = gridReflowInput.mRows.mSizes.Length();
nsTArray<nscoord> rowTrackPositions(rowTrackCount);
nsTArray<nscoord> rowTrackSizes(rowTrackCount);
nsTArray<uint32_t> rowTrackStates(rowTrackCount);
nsTArray<bool> rowRemovedRepeatTracks(
gridReflowInput.mRowFunctions.mRemovedRepeatTracks.Clone());
uint32_t row = 0;
for (const TrackSize& sz : gridReflowInput.mRows.mSizes) {
rowTrackPositions.AppendElement(sz.mPosition);
rowTrackSizes.AppendElement(sz.mBase);
bool isRepeat =
((row >= gridReflowInput.mRowFunctions.mRepeatAutoStart) &&
(row < gridReflowInput.mRowFunctions.mRepeatAutoEnd));
rowTrackStates.AppendElement(
isRepeat ? (uint32_t)mozilla::dom::GridTrackState::Repeat
: (uint32_t)mozilla::dom::GridTrackState::Static);
row++;
}
// Get the number of explicit tracks first. The order of argument evaluation
// is implementation-defined. We should be OK here because colTrackSizes is
// taken by rvalue, but computing the size first prevents any changes in the
// argument types of the constructor from breaking this.
const uint32_t numRowExplicitTracks =
IsSubgrid(eLogicalAxisBlock)
? rowTrackSizes.Length()
: gridReflowInput.mRowFunctions.NumExplicitTracks();
// Row info has to accommodate fragmentation of the grid, which may happen
// in later calls to Reflow. For now, presume that no more fragmentation
// will occur.
ComputedGridTrackInfo* rowInfo = new ComputedGridTrackInfo(
gridReflowInput.mRowFunctions.mExplicitGridOffset, numRowExplicitTracks,
gridReflowInput.mStartRow, row, std::move(rowTrackPositions),
std::move(rowTrackSizes), std::move(rowTrackStates),
std::move(rowRemovedRepeatTracks),
gridReflowInput.mRowFunctions.mRepeatAutoStart,
rowLineNameMap.GetResolvedLineNamesForComputedGridTrackInfo(),
IsSubgrid(eLogicalAxisBlock), IsMasonry(eLogicalAxisBlock));
SetProperty(GridRowTrackInfo(), rowInfo);
if (prevInFlow) {
// This frame is fragmenting rows from a previous frame, so patch up
// the prior GridRowTrackInfo with a new end row.
// FIXME: This can be streamlined and/or removed when bug 1151204 lands.
ComputedGridTrackInfo* priorRowInfo =
prevInFlow->GetProperty(GridRowTrackInfo());
// Adjust track positions based on the first track in this fragment.
if (priorRowInfo->mPositions.Length() >
priorRowInfo->mStartFragmentTrack) {
nscoord delta =
priorRowInfo->mPositions[priorRowInfo->mStartFragmentTrack];
for (nscoord& pos : priorRowInfo->mPositions) {
pos -= delta;
}
}
ComputedGridTrackInfo* revisedPriorRowInfo = new ComputedGridTrackInfo(
priorRowInfo->mNumLeadingImplicitTracks,
priorRowInfo->mNumExplicitTracks, priorRowInfo->mStartFragmentTrack,
gridReflowInput.mStartRow, std::move(priorRowInfo->mPositions),
std::move(priorRowInfo->mSizes), std::move(priorRowInfo->mStates),
std::move(priorRowInfo->mRemovedRepeatTracks),
priorRowInfo->mRepeatFirstTrack,
std::move(priorRowInfo->mResolvedLineNames), priorRowInfo->mIsSubgrid,
priorRowInfo->mIsMasonry);
prevInFlow->SetProperty(GridRowTrackInfo(), revisedPriorRowInfo);
}
// Generate the line info properties. We need to provide the number of
// repeat tracks produced in the reflow. Only explicit names are assigned
// to lines here; the mozilla::dom::GridLines class will later extract
// implicit names from grid areas and assign them to the appropriate lines.
auto& colFunctions = gridReflowInput.mColFunctions;
// Generate column lines first.
uint32_t capacity = gridReflowInput.mCols.mSizes.Length();
nsTArray<nsTArray<RefPtr<nsAtom>>> columnLineNames(capacity);
for (col = 0; col <= gridReflowInput.mCols.mSizes.Length(); col++) {
// Offset col by the explicit grid offset, to get the original names.
nsTArray<RefPtr<nsAtom>> explicitNames =
colLineNameMap.GetExplicitLineNamesAtIndex(
col - colFunctions.mExplicitGridOffset);
columnLineNames.EmplaceBack(std::move(explicitNames));
}
// Get the explicit names that follow a repeat auto declaration.
nsTArray<RefPtr<nsAtom>> colNamesFollowingRepeat;
nsTArray<RefPtr<nsAtom>> colBeforeRepeatAuto;
nsTArray<RefPtr<nsAtom>> colAfterRepeatAuto;
// Note: the following is only used for a non-subgridded axis.
if (colLineNameMap.HasRepeatAuto()) {
MOZ_ASSERT(!colFunctions.mTemplate.IsSubgrid());
// The line name list after the repeatAutoIndex holds the line names
// for the first explicit line after the repeat auto declaration.
uint32_t repeatAutoEnd = colLineNameMap.RepeatAutoStart() + 1;
for (auto* list : colLineNameMap.ExpandedLineNames()[repeatAutoEnd]) {
for (auto& name : list->AsSpan()) {
colNamesFollowingRepeat.AppendElement(name.AsAtom());
}
}
auto names = colLineNameMap.TrackAutoRepeatLineNames();
for (auto& name : names[0].AsSpan()) {
colBeforeRepeatAuto.AppendElement(name.AsAtom());
}
for (auto& name : names[1].AsSpan()) {
colAfterRepeatAuto.AppendElement(name.AsAtom());
}
}
ComputedGridLineInfo* columnLineInfo = new ComputedGridLineInfo(
std::move(columnLineNames), std::move(colBeforeRepeatAuto),
std::move(colAfterRepeatAuto), std::move(colNamesFollowingRepeat));
SetProperty(GridColumnLineInfo(), columnLineInfo);
// Generate row lines next.
auto& rowFunctions = gridReflowInput.mRowFunctions;
capacity = gridReflowInput.mRows.mSizes.Length();
nsTArray<nsTArray<RefPtr<nsAtom>>> rowLineNames(capacity);
for (row = 0; row <= gridReflowInput.mRows.mSizes.Length(); row++) {
// Offset row by the explicit grid offset, to get the original names.
nsTArray<RefPtr<nsAtom>> explicitNames =
rowLineNameMap.GetExplicitLineNamesAtIndex(
row - rowFunctions.mExplicitGridOffset);
rowLineNames.EmplaceBack(std::move(explicitNames));
}
// Get the explicit names that follow a repeat auto declaration.
nsTArray<RefPtr<nsAtom>> rowNamesFollowingRepeat;
nsTArray<RefPtr<nsAtom>> rowBeforeRepeatAuto;
nsTArray<RefPtr<nsAtom>> rowAfterRepeatAuto;
// Note: the following is only used for a non-subgridded axis.
if (rowLineNameMap.HasRepeatAuto()) {
MOZ_ASSERT(!rowFunctions.mTemplate.IsSubgrid());
// The line name list after the repeatAutoIndex holds the line names
// for the first explicit line after the repeat auto declaration.
uint32_t repeatAutoEnd = rowLineNameMap.RepeatAutoStart() + 1;
for (auto* list : rowLineNameMap.ExpandedLineNames()[repeatAutoEnd]) {
for (auto& name : list->AsSpan()) {
rowNamesFollowingRepeat.AppendElement(name.AsAtom());
}
}
auto names = rowLineNameMap.TrackAutoRepeatLineNames();
for (auto& name : names[0].AsSpan()) {
rowBeforeRepeatAuto.AppendElement(name.AsAtom());
}
for (auto& name : names[1].AsSpan()) {
rowAfterRepeatAuto.AppendElement(name.AsAtom());
}
}
ComputedGridLineInfo* rowLineInfo = new ComputedGridLineInfo(
std::move(rowLineNames), std::move(rowBeforeRepeatAuto),
std::move(rowAfterRepeatAuto), std::move(rowNamesFollowingRepeat));
SetProperty(GridRowLineInfo(), rowLineInfo);
// Generate area info for explicit areas. Implicit areas are handled
// elsewhere.
if (!gridReflowInput.mGridStyle->mGridTemplateAreas.IsNone()) {
auto* areas = new StyleOwnedSlice<NamedArea>(
gridReflowInput.mGridStyle->mGridTemplateAreas.AsAreas()->areas);
SetProperty(ExplicitNamedAreasProperty(), areas);
} else {
RemoveProperty(ExplicitNamedAreasProperty());
}
}
if (!prevInFlow) {
SharedGridData* sharedGridData = GetProperty(SharedGridData::Prop());
if (!aStatus.IsFullyComplete()) {
if (!sharedGridData) {
sharedGridData = new SharedGridData;
SetProperty(SharedGridData::Prop(), sharedGridData);
}
sharedGridData->mCols.mSizes = std::move(gridReflowInput.mCols.mSizes);
sharedGridData->mCols.mContentBoxSize =
gridReflowInput.mCols.mContentBoxSize;
sharedGridData->mCols.mBaselineSubtreeAlign =
gridReflowInput.mCols.mBaselineSubtreeAlign;
sharedGridData->mCols.mIsMasonry = gridReflowInput.mCols.mIsMasonry;
sharedGridData->mRows.mSizes = std::move(gridReflowInput.mRows.mSizes);
// Save the original row grid sizes and gaps so we can restore them later
// in GridReflowInput::Initialize for the continuations.
auto& origRowData = sharedGridData->mOriginalRowData;
origRowData.ClearAndRetainStorage();
origRowData.SetCapacity(sharedGridData->mRows.mSizes.Length());
nscoord prevTrackEnd = 0;
for (auto& sz : sharedGridData->mRows.mSizes) {
SharedGridData::RowData data = {sz.mBase, sz.mPosition - prevTrackEnd};
origRowData.AppendElement(data);
prevTrackEnd = sz.mPosition + sz.mBase;
}
sharedGridData->mRows.mContentBoxSize =
gridReflowInput.mRows.mContentBoxSize;
sharedGridData->mRows.mBaselineSubtreeAlign =
gridReflowInput.mRows.mBaselineSubtreeAlign;
sharedGridData->mRows.mIsMasonry = gridReflowInput.mRows.mIsMasonry;
sharedGridData->mGridItems = std::move(gridReflowInput.mGridItems);
sharedGridData->mAbsPosItems = std::move(gridReflowInput.mAbsPosItems);
sharedGridData->mGenerateComputedGridInfo = ShouldGenerateComputedInfo();
} else if (sharedGridData && !GetNextInFlow()) {
RemoveProperty(SharedGridData::Prop());
}
}
FinishAndStoreOverflow(&aDesiredSize);
NS_FRAME_SET_TRUNCATION(aStatus, aReflowInput, aDesiredSize);
}
void nsGridContainerFrame::UpdateSubgridFrameState() {
nsFrameState oldBits = GetStateBits() & kIsSubgridBits;
nsFrameState newBits = ComputeSelfSubgridMasonryBits() & kIsSubgridBits;
if (newBits != oldBits) {
RemoveStateBits(kIsSubgridBits);
if (!newBits) {
RemoveProperty(Subgrid::Prop());
} else {
AddStateBits(newBits);
}
}
}
nsFrameState nsGridContainerFrame::ComputeSelfSubgridMasonryBits() const {
// 'contain:layout/paint' makes us an "independent formatting context",
// which prevents us from being a subgrid in this case (but not always).
// We will also need to check our containing scroll frame for this property.
// https://drafts.csswg.org/css-display-3/#establish-an-independent-formatting-context
const auto* display = StyleDisplay();
const bool inhibitSubgrid =
display->IsContainLayout() || display->IsContainPaint();
nsFrameState bits = nsFrameState(0);
const auto* pos = StylePosition();
// We can only have masonry layout in one axis.
if (pos->mGridTemplateRows.IsMasonry()) {
bits |= NS_STATE_GRID_IS_ROW_MASONRY;
} else if (pos->mGridTemplateColumns.IsMasonry()) {
bits |= NS_STATE_GRID_IS_COL_MASONRY;
}
// Skip our scroll frame and such if we have it.
// This will store the outermost frame that shares our content node:
const nsIFrame* outerFrame = this;
// ...and this will store that frame's parent:
auto* parent = GetParent();
while (parent && parent->GetContent() == GetContent()) {
// If we find our containing frame has 'contain:layout/paint' we can't be
// subgrid, for the same reasons as above. This can happen when this frame
// is itself a grid item.
const auto* parentDisplay = parent->StyleDisplay();
if (parentDisplay->IsContainLayout() || parentDisplay->IsContainPaint()) {
return nsFrameState(0);
}
outerFrame = parent;
parent = parent->GetParent();
}
const nsGridContainerFrame* gridParent = do_QueryFrame(parent);
if (gridParent) {
bool isOrthogonal =
GetWritingMode().IsOrthogonalTo(parent->GetWritingMode());
// NOTE: our NS_FRAME_OUT_OF_FLOW isn't set yet so we check our style.
bool isOutOfFlow =
outerFrame->StyleDisplay()->IsAbsolutelyPositionedStyle();
bool isColSubgrid =
pos->mGridTemplateColumns.IsSubgrid() && !inhibitSubgrid;
// Subgridding a parent masonry axis makes us use masonry layout too,
// unless our other axis is a masonry axis.
if (isColSubgrid &&
parent->HasAnyStateBits(isOrthogonal ? NS_STATE_GRID_IS_ROW_MASONRY
: NS_STATE_GRID_IS_COL_MASONRY)) {
isColSubgrid = false;
if (!HasAnyStateBits(NS_STATE_GRID_IS_ROW_MASONRY)) {
bits |= NS_STATE_GRID_IS_COL_MASONRY;
}
}
// OOF subgrids don't create tracks in the parent, so we need to check that
// it has one anyway. Otherwise we refuse to subgrid that axis since we
// can't place grid items inside a subgrid without at least one track.
if (isColSubgrid && isOutOfFlow) {
auto parentAxis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline;
if (!gridParent->WillHaveAtLeastOneTrackInAxis(parentAxis)) {
isColSubgrid = false;
}
}
if (isColSubgrid) {
bits |= NS_STATE_GRID_IS_COL_SUBGRID;
}
bool isRowSubgrid = pos->mGridTemplateRows.IsSubgrid() && !inhibitSubgrid;
if (isRowSubgrid &&
parent->HasAnyStateBits(isOrthogonal ? NS_STATE_GRID_IS_COL_MASONRY
: NS_STATE_GRID_IS_ROW_MASONRY)) {
isRowSubgrid = false;
if (!HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY)) {
bits |= NS_STATE_GRID_IS_ROW_MASONRY;
}
}
if (isRowSubgrid && isOutOfFlow) {
auto parentAxis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock;
if (!gridParent->WillHaveAtLeastOneTrackInAxis(parentAxis)) {
isRowSubgrid = false;
}
}
if (isRowSubgrid) {
bits |= NS_STATE_GRID_IS_ROW_SUBGRID;
}
}
return bits;
}
bool nsGridContainerFrame::WillHaveAtLeastOneTrackInAxis(
LogicalAxis aAxis) const {
if (IsSubgrid(aAxis)) {
// This is enforced by refusing to be a subgrid unless our parent has
// at least one track in aAxis by ComputeSelfSubgridMasonryBits above.
return true;
}
if (IsMasonry(aAxis)) {
return false;
}
const auto* pos = StylePosition();
const auto& gridTemplate = aAxis == eLogicalAxisBlock
? pos->mGridTemplateRows
: pos->mGridTemplateColumns;
if (gridTemplate.IsTrackList()) {
return true;
}
for (nsIFrame* child : PrincipalChildList()) {
if (!child->IsPlaceholderFrame()) {
// A grid item triggers at least one implicit track in each axis.
return true;
}
}
if (!pos->mGridTemplateAreas.IsNone()) {
return true;
}
return false;
}
void nsGridContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
nsIFrame* aPrevInFlow) {
nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) {
AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT);
}
nsFrameState bits = nsFrameState(0);
if (MOZ_LIKELY(!aPrevInFlow)) {
bits = ComputeSelfSubgridMasonryBits();
} else {
bits = aPrevInFlow->GetStateBits() &
(NS_STATE_GRID_IS_ROW_MASONRY | NS_STATE_GRID_IS_COL_MASONRY |
kIsSubgridBits | NS_STATE_GRID_HAS_COL_SUBGRID_ITEM |
NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM);
}
AddStateBits(bits);
}
void nsGridContainerFrame::DidSetComputedStyle(ComputedStyle* aOldStyle) {
nsContainerFrame::DidSetComputedStyle(aOldStyle);
if (!aOldStyle) {
return; // Init() already initialized the bits.
}
UpdateSubgridFrameState();
}
nscoord nsGridContainerFrame::IntrinsicISize(gfxContext* aRenderingContext,
IntrinsicISizeType aType) {
// Calculate the sum of column sizes under intrinsic sizing.
// http://dev.w3.org/csswg/css-grid/#intrinsic-sizes
NormalizeChildLists();
GridReflowInput state(this, *aRenderingContext);
InitImplicitNamedAreas(state.mGridStyle); // XXX optimize
// The min/sz/max sizes are the input to the "repeat-to-fill" algorithm:
// https://drafts.csswg.org/css-grid/#auto-repeat
// They're only used for auto-repeat so we skip computing them otherwise.
RepeatTrackSizingInput repeatSizing(state.mWM);
if (!IsColSubgrid() && state.mColFunctions.mHasRepeatAuto) {
repeatSizing.InitFromStyle(eLogicalAxisInline, state.mWM,
state.mFrame->Style());
}
if ((!IsRowSubgrid() && state.mRowFunctions.mHasRepeatAuto &&
!(state.mGridStyle->mGridAutoFlow & StyleGridAutoFlow::ROW)) ||
IsMasonry(eLogicalAxisInline)) {
// Only 'grid-auto-flow:column' can create new implicit columns, so that's
// the only case where our block-size can affect the number of columns.
// Masonry layout always depends on how many rows we have though.
repeatSizing.InitFromStyle(eLogicalAxisBlock, state.mWM,
state.mFrame->Style());
}
Grid grid;
if (MOZ_LIKELY(!IsSubgrid())) {
grid.PlaceGridItems(state, repeatSizing); // XXX optimize
} else {
auto* subgrid = GetProperty(Subgrid::Prop());
state.mGridItems = subgrid->mGridItems.Clone();
state.mAbsPosItems = subgrid->mAbsPosItems.Clone();
grid.mGridColEnd = subgrid->mGridColEnd;
grid.mGridRowEnd = subgrid->mGridRowEnd;
}
auto constraint = aType == IntrinsicISizeType::MinISize
? SizingConstraint::MinContent
: SizingConstraint::MaxContent;
if (IsMasonry(eLogicalAxisInline)) {
ReflowOutput desiredSize(state.mWM);
nsSize containerSize;
LogicalRect contentArea(state.mWM);
nsReflowStatus status;
state.mRows.mSizes.SetLength(grid.mGridRowEnd);
state.CalculateTrackSizesForAxis(eLogicalAxisInline, grid,
NS_UNCONSTRAINEDSIZE, constraint);
return MasonryLayout(state, contentArea, constraint, desiredSize, status,
nullptr, containerSize);
}
if (grid.mGridColEnd == 0) {
return nscoord(0);
}
state.CalculateTrackSizesForAxis(eLogicalAxisInline, grid,
NS_UNCONSTRAINEDSIZE, constraint);
if (MOZ_LIKELY(!IsSubgrid())) {
nscoord length = 0;
for (const TrackSize& sz : state.mCols.mSizes) {
length += sz.mBase;
}
return length + state.mCols.SumOfGridGaps();
}
const auto& last = state.mCols.mSizes.LastElement();
return last.mPosition + last.mBase;
}
nscoord nsGridContainerFrame::GetMinISize(gfxContext* aRC) {
auto* f = static_cast<nsGridContainerFrame*>(FirstContinuation());
if (f != this) {
return f->GetMinISize(aRC);
}
DISPLAY_MIN_INLINE_SIZE(this, mCachedMinISize);
if (mCachedMinISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
mCachedMinISize = StyleDisplay()->IsContainSize()
? 0
: IntrinsicISize(aRC, IntrinsicISizeType::MinISize);
}
return mCachedMinISize;
}
nscoord nsGridContainerFrame::GetPrefISize(gfxContext* aRC) {
auto* f = static_cast<nsGridContainerFrame*>(FirstContinuation());
if (f != this) {
return f->GetPrefISize(aRC);
}
DISPLAY_PREF_INLINE_SIZE(this, mCachedPrefISize);
if (mCachedPrefISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
mCachedPrefISize = StyleDisplay()->IsContainSize()
? 0
: IntrinsicISize(aRC, IntrinsicISizeType::PrefISize);
}
return mCachedPrefISize;
}
void nsGridContainerFrame::MarkIntrinsicISizesDirty() {
mCachedMinISize = NS_INTRINSIC_ISIZE_UNKNOWN;
mCachedPrefISize = NS_INTRINSIC_ISIZE_UNKNOWN;
for (auto& perAxisBaseline : mBaseline) {
for (auto& baseline : perAxisBaseline) {
baseline = NS_INTRINSIC_ISIZE_UNKNOWN;
}
}
nsContainerFrame::MarkIntrinsicISizesDirty();
}
void nsGridContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
DisplayBorderBackgroundOutline(aBuilder, aLists);
if (GetPrevInFlow()) {
DisplayOverflowContainers(aBuilder, aLists);
}
// Our children are all grid-level boxes, which behave the same as
// inline-blocks in painting, so their borders/backgrounds all go on
// the BlockBorderBackgrounds list.
typedef CSSOrderAwareFrameIterator::OrderState OrderState;
OrderState order =
HasAnyStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
? OrderState::Ordered
: OrderState::Unordered;
CSSOrderAwareFrameIterator iter(
this, kPrincipalList, CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
order);
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* child = *iter;
BuildDisplayListForChild(aBuilder, child, aLists,
child->DisplayFlagForFlexOrGridItem());
}
}
bool nsGridContainerFrame::DrainSelfOverflowList() {
return DrainAndMergeSelfOverflowList();
}
void nsGridContainerFrame::AppendFrames(ChildListID aListID,
nsFrameList& aFrameList) {
NoteNewChildren(aListID, aFrameList);
nsContainerFrame::AppendFrames(aListID, aFrameList);
}
void nsGridContainerFrame::InsertFrames(
ChildListID aListID, nsIFrame* aPrevFrame,
const nsLineList::iterator* aPrevFrameLine, nsFrameList& aFrameList) {
NoteNewChildren(aListID, aFrameList);
nsContainerFrame::InsertFrames(aListID, aPrevFrame, aPrevFrameLine,
aFrameList);
}
void nsGridContainerFrame::RemoveFrame(ChildListID aListID,
nsIFrame* aOldFrame) {
MOZ_ASSERT(aListID == kPrincipalList, "unexpected child list");
#ifdef DEBUG
SetDidPushItemsBitIfNeeded(aListID, aOldFrame);
#endif
nsContainerFrame::RemoveFrame(aListID, aOldFrame);
}
StyleAlignFlags nsGridContainerFrame::CSSAlignmentForAbsPosChild(
const ReflowInput& aChildRI, LogicalAxis aLogicalAxis) const {
MOZ_ASSERT(aChildRI.mFrame->IsAbsolutelyPositioned(),
"This method should only be called for abspos children");
StyleAlignFlags alignment =
(aLogicalAxis == eLogicalAxisInline)
? aChildRI.mStylePosition->UsedJustifySelf(Style())._0
: aChildRI.mStylePosition->UsedAlignSelf(Style())._0;
// Extract and strip the flag bits
StyleAlignFlags alignmentFlags = alignment & StyleAlignFlags::FLAG_BITS;
alignment &= ~StyleAlignFlags::FLAG_BITS;
if (alignment == StyleAlignFlags::NORMAL) {
// "the 'normal' keyword behaves as 'start' on replaced
// absolutely-positioned boxes, and behaves as 'stretch' on all other
// absolutely-positioned boxes."
// https://drafts.csswg.org/css-align/#align-abspos
// https://drafts.csswg.org/css-align/#justify-abspos
alignment = aChildRI.mFrame->IsFrameOfType(nsIFrame::eReplaced)
? StyleAlignFlags::START
: StyleAlignFlags::STRETCH;
} else if (alignment == StyleAlignFlags::FLEX_START) {
alignment = StyleAlignFlags::START;
} else if (alignment == StyleAlignFlags::FLEX_END) {
alignment = StyleAlignFlags::END;
} else if (alignment == StyleAlignFlags::LEFT ||
alignment == StyleAlignFlags::RIGHT) {
if (aLogicalAxis == eLogicalAxisInline) {
const bool isLeft = (alignment == StyleAlignFlags::LEFT);
WritingMode wm = GetWritingMode();
alignment = (isLeft == wm.IsBidiLTR()) ? StyleAlignFlags::START
: StyleAlignFlags::END;
} else {
alignment = StyleAlignFlags::START;
}
} else if (alignment == StyleAlignFlags::BASELINE) {
alignment = StyleAlignFlags::START;
} else if (alignment == StyleAlignFlags::LAST_BASELINE) {
alignment = StyleAlignFlags::END;
}
return (alignment | alignmentFlags);
}
nscoord nsGridContainerFrame::SynthesizeBaseline(
const FindItemInGridOrderResult& aGridOrderItem, LogicalAxis aAxis,
BaselineSharingGroup aGroup, const nsSize& aCBPhysicalSize, nscoord aCBSize,
WritingMode aCBWM) {
if (MOZ_UNLIKELY(!aGridOrderItem.mItem)) {
// No item in this fragment - synthesize a baseline from our border-box.
return ::SynthesizeBaselineFromBorderBox(aGroup, aCBWM, aCBSize);
}
auto GetBBaseline = [](BaselineSharingGroup aGroup, WritingMode aWM,
const nsIFrame* aFrame, nscoord* aBaseline) {
return aGroup == BaselineSharingGroup::First
? nsLayoutUtils::GetFirstLineBaseline(aWM, aFrame, aBaseline)
: nsLayoutUtils::GetLastLineBaseline(aWM, aFrame, aBaseline);
};
nsIFrame* child = aGridOrderItem.mItem->mFrame;
nsGridContainerFrame* grid = do_QueryFrame(child);
auto childWM = child->GetWritingMode();
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
nscoord baseline;
nscoord start;
nscoord size;
if (aAxis == eLogicalAxisBlock) {
start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).B(aCBWM);
size = child->BSize(aCBWM);
if (grid && aGridOrderItem.mIsInEdgeTrack) {
isOrthogonal ? grid->GetIBaseline(aGroup, &baseline)
: grid->GetBBaseline(aGroup, &baseline);
} else if (!isOrthogonal && aGridOrderItem.mIsInEdgeTrack) {
baseline =
child->BaselineBOffset(childWM, aGroup, AlignmentContext::Grid);
} else {
baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
}
} else {
start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).I(aCBWM);
size = child->ISize(aCBWM);
if (grid && aGridOrderItem.mIsInEdgeTrack) {
isOrthogonal ? grid->GetBBaseline(aGroup, &baseline)
: grid->GetIBaseline(aGroup, &baseline);
} else if (isOrthogonal && aGridOrderItem.mIsInEdgeTrack &&
GetBBaseline(aGroup, childWM, child, &baseline)) {
if (aGroup == BaselineSharingGroup::Last) {
baseline = size - baseline; // convert to distance from border-box end
}
} else {
baseline = ::SynthesizeBaselineFromBorderBox(aGroup, childWM, size);
}
}
return aGroup == BaselineSharingGroup::First
? start + baseline
: aCBSize - start - size + baseline;
}
void nsGridContainerFrame::CalculateBaselines(
BaselineSet aBaselineSet, CSSOrderAwareFrameIterator* aIter,
const nsTArray<GridItemInfo>* aGridItems, const Tracks& aTracks,
uint32_t aFragmentStartTrack, uint32_t aFirstExcludedTrack, WritingMode aWM,
const nsSize& aCBPhysicalSize, nscoord aCBBorderPaddingStart,
nscoord aCBBorderPaddingEnd, nscoord aCBSize) {
const auto axis = aTracks.mAxis;
auto firstBaseline = aTracks.mBaseline[BaselineSharingGroup::First];
if (!(aBaselineSet & BaselineSet::eFirst)) {
mBaseline[axis][BaselineSharingGroup::First] =
::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::First, aWM,
aCBSize);
} else if (firstBaseline == NS_INTRINSIC_ISIZE_UNKNOWN) {
FindItemInGridOrderResult gridOrderFirstItem = FindFirstItemInGridOrder(
*aIter, *aGridItems,
axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
aFragmentStartTrack);
mBaseline[axis][BaselineSharingGroup::First] = SynthesizeBaseline(
gridOrderFirstItem, axis, BaselineSharingGroup::First, aCBPhysicalSize,
aCBSize, aWM);
} else {
// We have a 'first baseline' group in the start track in this fragment.
// Convert it from track to grid container border-box coordinates.
MOZ_ASSERT(!aGridItems->IsEmpty());
nscoord gapBeforeStartTrack =
aFragmentStartTrack == 0
? aTracks.GridLineEdge(aFragmentStartTrack,
GridLineSide::AfterGridGap)
: nscoord(0); // no content gap at start of fragment
mBaseline[axis][BaselineSharingGroup::First] =
aCBBorderPaddingStart + gapBeforeStartTrack + firstBaseline;
}
auto lastBaseline = aTracks.mBaseline[BaselineSharingGroup::Last];
if (!(aBaselineSet & BaselineSet::eLast)) {
mBaseline[axis][BaselineSharingGroup::Last] =
::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::Last, aWM,
aCBSize);
} else if (lastBaseline == NS_INTRINSIC_ISIZE_UNKNOWN) {
// For finding items for the 'last baseline' we need to create a reverse
// iterator ('aIter' is the forward iterator from the GridReflowInput).
using Iter = ReverseCSSOrderAwareFrameIterator;
auto orderState = aIter->ItemsAreAlreadyInOrder()
? Iter::OrderState::Ordered
: Iter::OrderState::Unordered;
Iter iter(this, kPrincipalList, Iter::ChildFilter::SkipPlaceholders,
orderState);
iter.SetItemCount(aGridItems->Length());
FindItemInGridOrderResult gridOrderLastItem = FindLastItemInGridOrder(
iter, *aGridItems,
axis == eLogicalAxisBlock ? &GridArea::mRows : &GridArea::mCols,
axis == eLogicalAxisBlock ? &GridArea::mCols : &GridArea::mRows,
aFragmentStartTrack, aFirstExcludedTrack);
mBaseline[axis][BaselineSharingGroup::Last] =
SynthesizeBaseline(gridOrderLastItem, axis, BaselineSharingGroup::Last,
aCBPhysicalSize, aCBSize, aWM);
} else {
// We have a 'last baseline' group in the end track in this fragment.
// Convert it from track to grid container border-box coordinates.
MOZ_ASSERT(!aGridItems->IsEmpty());
auto borderBoxStartToEndOfEndTrack =
aCBBorderPaddingStart +
aTracks.GridLineEdge(aFirstExcludedTrack, GridLineSide::BeforeGridGap) -
aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::BeforeGridGap);
mBaseline[axis][BaselineSharingGroup::Last] =
(aCBSize - borderBoxStartToEndOfEndTrack) + lastBaseline;
}
}
#ifdef DEBUG_FRAME_DUMP
nsresult nsGridContainerFrame::GetFrameName(nsAString& aResult) const {
return MakeFrameName(u"GridContainer"_ns, aResult);
}
void nsGridContainerFrame::ExtraContainerFrameInfo(nsACString& aTo) const {
if (const void* const subgrid = GetProperty(Subgrid::Prop())) {
aTo += nsPrintfCString(" [subgrid=%p]", subgrid);
}
}
#endif
/* static */ nsGridContainerFrame::FindItemInGridOrderResult
nsGridContainerFrame::FindFirstItemInGridOrder(
CSSOrderAwareFrameIterator& aIter, const nsTArray<GridItemInfo>& aGridItems,
LineRange GridArea::*aMajor, LineRange GridArea::*aMinor,
uint32_t aFragmentStartTrack) {
FindItemInGridOrderResult result = {nullptr, false};
uint32_t minMajor = kTranslatedMaxLine + 1;
uint32_t minMinor = kTranslatedMaxLine + 1;
aIter.Reset();
for (; !aIter.AtEnd(); aIter.Next()) {
const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
if ((item.mArea.*aMajor).mEnd <= aFragmentStartTrack) {
continue; // item doesn't span any track in this fragment
}
uint32_t major = (item.mArea.*aMajor).mStart;
uint32_t minor = (item.mArea.*aMinor).mStart;
if (major < minMajor || (major == minMajor && minor < minMinor)) {
minMajor = major;
minMinor = minor;
result.mItem = &item;
result.mIsInEdgeTrack = major == 0U;
}
}
return result;
}
/* static */ nsGridContainerFrame::FindItemInGridOrderResult
nsGridContainerFrame::FindLastItemInGridOrder(
ReverseCSSOrderAwareFrameIterator& aIter,
const nsTArray<GridItemInfo>& aGridItems, LineRange GridArea::*aMajor,
LineRange GridArea::*aMinor, uint32_t aFragmentStartTrack,
uint32_t aFirstExcludedTrack) {
FindItemInGridOrderResult result = {nullptr, false};
int32_t maxMajor = -1;
int32_t maxMinor = -1;
aIter.Reset();
int32_t lastMajorTrack = int32_t(aFirstExcludedTrack) - 1;
for (; !aIter.AtEnd(); aIter.Next()) {
const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
// Subtract 1 from the end line to get the item's last track index.
int32_t major = (item.mArea.*aMajor).mEnd - 1;
// Currently, this method is only called with aFirstExcludedTrack ==
// the first track in the next fragment, so we take the opportunity
// to assert this item really belongs to this fragment.
MOZ_ASSERT((item.mArea.*aMajor).mStart < aFirstExcludedTrack,
"found an item that belongs to some later fragment");
if (major < int32_t(aFragmentStartTrack)) {
continue; // item doesn't span any track in this fragment
}
int32_t minor = (item.mArea.*aMinor).mEnd - 1;
MOZ_ASSERT(minor >= 0 && major >= 0, "grid item must have span >= 1");
if (major > maxMajor || (major == maxMajor && minor > maxMinor)) {
maxMajor = major;
maxMinor = minor;
result.mItem = &item;
result.mIsInEdgeTrack = major == lastMajorTrack;
}
}
return result;
}
nsGridContainerFrame::UsedTrackSizes* nsGridContainerFrame::GetUsedTrackSizes()
const {
return GetProperty(UsedTrackSizes::Prop());
}
void nsGridContainerFrame::StoreUsedTrackSizes(
LogicalAxis aAxis, const nsTArray<TrackSize>& aSizes) {
auto* uts = GetUsedTrackSizes();
if (!uts) {
uts = new UsedTrackSizes();
SetProperty(UsedTrackSizes::Prop(), uts);
}
uts->mSizes[aAxis] = aSizes.Clone();
uts->mCanResolveLineRangeSize[aAxis] = true;
// XXX is resetting these bits necessary?
for (auto& sz : uts->mSizes[aAxis]) {
sz.mState &= ~(TrackSize::eFrozen | TrackSize::eSkipGrowUnlimited |
TrackSize::eInfinitelyGrowable);
}
}
#ifdef DEBUG
void nsGridContainerFrame::SetInitialChildList(ChildListID aListID,
nsFrameList& aChildList) {
ChildListIDs supportedLists = {kPrincipalList};
// We don't handle the kBackdropList frames in any way, but it only contains
// a placeholder for ::backdrop which is OK to not reflow (for now anyway).
supportedLists += kBackdropList;
MOZ_ASSERT(supportedLists.contains(aListID), "unexpected child list");
return nsContainerFrame::SetInitialChildList(aListID, aChildList);
}
void nsGridContainerFrame::TrackSize::DumpStateBits(StateBits aState) {
printf("min:");
if (aState & eAutoMinSizing) {
printf("auto-min ");
} else if (aState & eMinContentMinSizing) {
printf("min-content ");
} else if (aState & eMaxContentMinSizing) {
printf("max-content ");
}
printf(" max:");
if (aState & eAutoMaxSizing) {
printf("auto ");
} else if (aState & eMinContentMaxSizing) {
printf("min-content ");
} else if (aState & eMaxContentMaxSizing) {
printf("max-content ");
} else if (aState & eFlexMaxSizing) {
printf("flex ");
}
if (aState & eFrozen) {
printf("frozen ");
}
if (aState & eModified) {
printf("modified ");
}
if (aState & eBreakBefore) {
printf("break-before ");
}
}
void nsGridContainerFrame::TrackSize::Dump() const {
printf("mPosition=%d mBase=%d mLimit=%d ", mPosition, mBase, mLimit);
DumpStateBits(mState);
}
#endif // DEBUG
nsGridContainerFrame* nsGridContainerFrame::GetGridContainerFrame(
nsIFrame* aFrame) {
nsGridContainerFrame* gridFrame = nullptr;
if (aFrame) {
nsIFrame* inner = aFrame;
if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) {
inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner();
}
// Since "Get" methods like GetInner and GetContentInsertionFrame can
// return null, we check the return values before dereferencing. Our
// calling pattern makes this unlikely, but we're being careful.
nsIFrame* insertionFrame =
inner ? inner->GetContentInsertionFrame() : nullptr;
nsIFrame* possibleGridFrame = insertionFrame ? insertionFrame : aFrame;
gridFrame = possibleGridFrame->IsGridContainerFrame()
? static_cast<nsGridContainerFrame*>(possibleGridFrame)
: nullptr;
}
return gridFrame;
}
nsGridContainerFrame* nsGridContainerFrame::GetGridFrameWithComputedInfo(
nsIFrame* aFrame) {
nsGridContainerFrame* gridFrame = GetGridContainerFrame(aFrame);
if (!gridFrame) {
return nullptr;
}
auto HasComputedInfo = [](const nsGridContainerFrame& aFrame) -> bool {
return aFrame.HasProperty(GridColTrackInfo()) &&
aFrame.HasProperty(GridRowTrackInfo()) &&
aFrame.HasProperty(GridColumnLineInfo()) &&
aFrame.HasProperty(GridRowLineInfo());
};
if (HasComputedInfo(*gridFrame)) {
return gridFrame;
}
// Trigger a reflow that generates additional grid property data.
// Hold onto aFrame while we do this, in case reflow destroys it.
AutoWeakFrame weakFrameRef(gridFrame);
RefPtr<mozilla::PresShell> presShell = gridFrame->PresShell();
gridFrame->SetShouldGenerateComputedInfo(true);
presShell->FrameNeedsReflow(gridFrame, IntrinsicDirty::Resize,
NS_FRAME_IS_DIRTY);
presShell->FlushPendingNotifications(FlushType::Layout);
// If the weakFrameRef is no longer valid, then we must bail out.
if (!weakFrameRef.IsAlive()) {
return nullptr;
}
// This can happen if for some reason we ended up not reflowing, like in print
// preview under some circumstances.
if (MOZ_UNLIKELY(!HasComputedInfo(*gridFrame))) {
return nullptr;
}
return gridFrame;
}