зеркало из https://github.com/mozilla/gecko-dev.git
879 строки
33 KiB
C
879 строки
33 KiB
C
/*
|
|
* jdcoefct.c
|
|
*
|
|
* This file was part of the Independent JPEG Group's software:
|
|
* Copyright (C) 1994-1997, Thomas G. Lane.
|
|
* libjpeg-turbo Modifications:
|
|
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
|
* Copyright (C) 2010, 2015-2016, 2019-2020, D. R. Commander.
|
|
* Copyright (C) 2015, 2020, Google, Inc.
|
|
* For conditions of distribution and use, see the accompanying README.ijg
|
|
* file.
|
|
*
|
|
* This file contains the coefficient buffer controller for decompression.
|
|
* This controller is the top level of the JPEG decompressor proper.
|
|
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
|
|
*
|
|
* In buffered-image mode, this controller is the interface between
|
|
* input-oriented processing and output-oriented processing.
|
|
* Also, the input side (only) is used when reading a file for transcoding.
|
|
*/
|
|
|
|
#include "jinclude.h"
|
|
#include "jdcoefct.h"
|
|
#include "jpegcomp.h"
|
|
|
|
|
|
/* Forward declarations */
|
|
METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo,
|
|
JSAMPIMAGE output_buf);
|
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
|
METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
|
|
#endif
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo);
|
|
METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo,
|
|
JSAMPIMAGE output_buf);
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Initialize for an input processing pass.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_input_pass(j_decompress_ptr cinfo)
|
|
{
|
|
cinfo->input_iMCU_row = 0;
|
|
start_iMCU_row(cinfo);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize for an output processing pass.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_output_pass(j_decompress_ptr cinfo)
|
|
{
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
|
|
|
/* If multipass, check to see whether to use block smoothing on this pass */
|
|
if (coef->pub.coef_arrays != NULL) {
|
|
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
|
|
coef->pub.decompress_data = decompress_smooth_data;
|
|
else
|
|
coef->pub.decompress_data = decompress_data;
|
|
}
|
|
#endif
|
|
cinfo->output_iMCU_row = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Decompress and return some data in the single-pass case.
|
|
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
|
* Input and output must run in lockstep since we have only a one-MCU buffer.
|
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
|
*
|
|
* NB: output_buf contains a plane for each component in image,
|
|
* which we index according to the component's SOF position.
|
|
*/
|
|
|
|
METHODDEF(int)
|
|
decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
|
{
|
|
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
|
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
|
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
|
int blkn, ci, xindex, yindex, yoffset, useful_width;
|
|
JSAMPARRAY output_ptr;
|
|
JDIMENSION start_col, output_col;
|
|
jpeg_component_info *compptr;
|
|
inverse_DCT_method_ptr inverse_DCT;
|
|
|
|
/* Loop to process as much as one whole iMCU row */
|
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
|
yoffset++) {
|
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
|
|
MCU_col_num++) {
|
|
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
|
|
jzero_far((void *)coef->MCU_buffer[0],
|
|
(size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK)));
|
|
if (!cinfo->entropy->insufficient_data)
|
|
cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
|
|
if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
|
/* Suspension forced; update state counters and exit */
|
|
coef->MCU_vert_offset = yoffset;
|
|
coef->MCU_ctr = MCU_col_num;
|
|
return JPEG_SUSPENDED;
|
|
}
|
|
|
|
/* Only perform the IDCT on blocks that are contained within the desired
|
|
* cropping region.
|
|
*/
|
|
if (MCU_col_num >= cinfo->master->first_iMCU_col &&
|
|
MCU_col_num <= cinfo->master->last_iMCU_col) {
|
|
/* Determine where data should go in output_buf and do the IDCT thing.
|
|
* We skip dummy blocks at the right and bottom edges (but blkn gets
|
|
* incremented past them!). Note the inner loop relies on having
|
|
* allocated the MCU_buffer[] blocks sequentially.
|
|
*/
|
|
blkn = 0; /* index of current DCT block within MCU */
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
/* Don't bother to IDCT an uninteresting component. */
|
|
if (!compptr->component_needed) {
|
|
blkn += compptr->MCU_blocks;
|
|
continue;
|
|
}
|
|
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
|
|
useful_width = (MCU_col_num < last_MCU_col) ?
|
|
compptr->MCU_width : compptr->last_col_width;
|
|
output_ptr = output_buf[compptr->component_index] +
|
|
yoffset * compptr->_DCT_scaled_size;
|
|
start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
|
|
compptr->MCU_sample_width;
|
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
|
if (cinfo->input_iMCU_row < last_iMCU_row ||
|
|
yoffset + yindex < compptr->last_row_height) {
|
|
output_col = start_col;
|
|
for (xindex = 0; xindex < useful_width; xindex++) {
|
|
(*inverse_DCT) (cinfo, compptr,
|
|
(JCOEFPTR)coef->MCU_buffer[blkn + xindex],
|
|
output_ptr, output_col);
|
|
output_col += compptr->_DCT_scaled_size;
|
|
}
|
|
}
|
|
blkn += compptr->MCU_width;
|
|
output_ptr += compptr->_DCT_scaled_size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Completed an MCU row, but perhaps not an iMCU row */
|
|
coef->MCU_ctr = 0;
|
|
}
|
|
/* Completed the iMCU row, advance counters for next one */
|
|
cinfo->output_iMCU_row++;
|
|
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
|
start_iMCU_row(cinfo);
|
|
return JPEG_ROW_COMPLETED;
|
|
}
|
|
/* Completed the scan */
|
|
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
|
return JPEG_SCAN_COMPLETED;
|
|
}
|
|
|
|
|
|
/*
|
|
* Dummy consume-input routine for single-pass operation.
|
|
*/
|
|
|
|
METHODDEF(int)
|
|
dummy_consume_data(j_decompress_ptr cinfo)
|
|
{
|
|
return JPEG_SUSPENDED; /* Always indicate nothing was done */
|
|
}
|
|
|
|
|
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
|
|
|
/*
|
|
* Consume input data and store it in the full-image coefficient buffer.
|
|
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
|
|
* ie, v_samp_factor block rows for each component in the scan.
|
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
|
*/
|
|
|
|
METHODDEF(int)
|
|
consume_data(j_decompress_ptr cinfo)
|
|
{
|
|
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
|
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
|
int blkn, ci, xindex, yindex, yoffset;
|
|
JDIMENSION start_col;
|
|
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
|
JBLOCKROW buffer_ptr;
|
|
jpeg_component_info *compptr;
|
|
|
|
/* Align the virtual buffers for the components used in this scan. */
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
|
((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
|
|
cinfo->input_iMCU_row * compptr->v_samp_factor,
|
|
(JDIMENSION)compptr->v_samp_factor, TRUE);
|
|
/* Note: entropy decoder expects buffer to be zeroed,
|
|
* but this is handled automatically by the memory manager
|
|
* because we requested a pre-zeroed array.
|
|
*/
|
|
}
|
|
|
|
/* Loop to process one whole iMCU row */
|
|
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
|
yoffset++) {
|
|
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
|
MCU_col_num++) {
|
|
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
|
blkn = 0; /* index of current DCT block within MCU */
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
compptr = cinfo->cur_comp_info[ci];
|
|
start_col = MCU_col_num * compptr->MCU_width;
|
|
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
|
buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
|
|
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
|
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
|
}
|
|
}
|
|
}
|
|
if (!cinfo->entropy->insufficient_data)
|
|
cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
|
|
/* Try to fetch the MCU. */
|
|
if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
|
/* Suspension forced; update state counters and exit */
|
|
coef->MCU_vert_offset = yoffset;
|
|
coef->MCU_ctr = MCU_col_num;
|
|
return JPEG_SUSPENDED;
|
|
}
|
|
}
|
|
/* Completed an MCU row, but perhaps not an iMCU row */
|
|
coef->MCU_ctr = 0;
|
|
}
|
|
/* Completed the iMCU row, advance counters for next one */
|
|
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
|
start_iMCU_row(cinfo);
|
|
return JPEG_ROW_COMPLETED;
|
|
}
|
|
/* Completed the scan */
|
|
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
|
return JPEG_SCAN_COMPLETED;
|
|
}
|
|
|
|
|
|
/*
|
|
* Decompress and return some data in the multi-pass case.
|
|
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
|
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
|
*
|
|
* NB: output_buf contains a plane for each component in image.
|
|
*/
|
|
|
|
METHODDEF(int)
|
|
decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
|
{
|
|
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
|
JDIMENSION block_num;
|
|
int ci, block_row, block_rows;
|
|
JBLOCKARRAY buffer;
|
|
JBLOCKROW buffer_ptr;
|
|
JSAMPARRAY output_ptr;
|
|
JDIMENSION output_col;
|
|
jpeg_component_info *compptr;
|
|
inverse_DCT_method_ptr inverse_DCT;
|
|
|
|
/* Force some input to be done if we are getting ahead of the input. */
|
|
while (cinfo->input_scan_number < cinfo->output_scan_number ||
|
|
(cinfo->input_scan_number == cinfo->output_scan_number &&
|
|
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
|
|
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
|
return JPEG_SUSPENDED;
|
|
}
|
|
|
|
/* OK, output from the virtual arrays. */
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
/* Don't bother to IDCT an uninteresting component. */
|
|
if (!compptr->component_needed)
|
|
continue;
|
|
/* Align the virtual buffer for this component. */
|
|
buffer = (*cinfo->mem->access_virt_barray)
|
|
((j_common_ptr)cinfo, coef->whole_image[ci],
|
|
cinfo->output_iMCU_row * compptr->v_samp_factor,
|
|
(JDIMENSION)compptr->v_samp_factor, FALSE);
|
|
/* Count non-dummy DCT block rows in this iMCU row. */
|
|
if (cinfo->output_iMCU_row < last_iMCU_row)
|
|
block_rows = compptr->v_samp_factor;
|
|
else {
|
|
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
|
block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
|
|
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
|
}
|
|
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
|
output_ptr = output_buf[ci];
|
|
/* Loop over all DCT blocks to be processed. */
|
|
for (block_row = 0; block_row < block_rows; block_row++) {
|
|
buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
|
|
output_col = 0;
|
|
for (block_num = cinfo->master->first_MCU_col[ci];
|
|
block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
|
|
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr,
|
|
output_col);
|
|
buffer_ptr++;
|
|
output_col += compptr->_DCT_scaled_size;
|
|
}
|
|
output_ptr += compptr->_DCT_scaled_size;
|
|
}
|
|
}
|
|
|
|
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
|
return JPEG_ROW_COMPLETED;
|
|
return JPEG_SCAN_COMPLETED;
|
|
}
|
|
|
|
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
|
|
|
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
|
|
/*
|
|
* This code applies interblock smoothing; the first 9 AC coefficients are
|
|
* estimated from the DC values of a DCT block and its 24 neighboring blocks.
|
|
* We apply smoothing only for progressive JPEG decoding, and only if
|
|
* the coefficients it can estimate are not yet known to full precision.
|
|
*/
|
|
|
|
/* Natural-order array positions of the first 9 zigzag-order coefficients */
|
|
#define Q01_POS 1
|
|
#define Q10_POS 8
|
|
#define Q20_POS 16
|
|
#define Q11_POS 9
|
|
#define Q02_POS 2
|
|
#define Q03_POS 3
|
|
#define Q12_POS 10
|
|
#define Q21_POS 17
|
|
#define Q30_POS 24
|
|
|
|
/*
|
|
* Determine whether block smoothing is applicable and safe.
|
|
* We also latch the current states of the coef_bits[] entries for the
|
|
* AC coefficients; otherwise, if the input side of the decompressor
|
|
* advances into a new scan, we might think the coefficients are known
|
|
* more accurately than they really are.
|
|
*/
|
|
|
|
LOCAL(boolean)
|
|
smoothing_ok(j_decompress_ptr cinfo)
|
|
{
|
|
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
|
boolean smoothing_useful = FALSE;
|
|
int ci, coefi;
|
|
jpeg_component_info *compptr;
|
|
JQUANT_TBL *qtable;
|
|
int *coef_bits, *prev_coef_bits;
|
|
int *coef_bits_latch, *prev_coef_bits_latch;
|
|
|
|
if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)
|
|
return FALSE;
|
|
|
|
/* Allocate latch area if not already done */
|
|
if (coef->coef_bits_latch == NULL)
|
|
coef->coef_bits_latch = (int *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
cinfo->num_components * 2 *
|
|
(SAVED_COEFS * sizeof(int)));
|
|
coef_bits_latch = coef->coef_bits_latch;
|
|
prev_coef_bits_latch =
|
|
&coef->coef_bits_latch[cinfo->num_components * SAVED_COEFS];
|
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
/* All components' quantization values must already be latched. */
|
|
if ((qtable = compptr->quant_table) == NULL)
|
|
return FALSE;
|
|
/* Verify DC & first 9 AC quantizers are nonzero to avoid zero-divide. */
|
|
if (qtable->quantval[0] == 0 ||
|
|
qtable->quantval[Q01_POS] == 0 ||
|
|
qtable->quantval[Q10_POS] == 0 ||
|
|
qtable->quantval[Q20_POS] == 0 ||
|
|
qtable->quantval[Q11_POS] == 0 ||
|
|
qtable->quantval[Q02_POS] == 0 ||
|
|
qtable->quantval[Q03_POS] == 0 ||
|
|
qtable->quantval[Q12_POS] == 0 ||
|
|
qtable->quantval[Q21_POS] == 0 ||
|
|
qtable->quantval[Q30_POS] == 0)
|
|
return FALSE;
|
|
/* DC values must be at least partly known for all components. */
|
|
coef_bits = cinfo->coef_bits[ci];
|
|
prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components];
|
|
if (coef_bits[0] < 0)
|
|
return FALSE;
|
|
coef_bits_latch[0] = coef_bits[0];
|
|
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
|
|
for (coefi = 1; coefi < SAVED_COEFS; coefi++) {
|
|
if (cinfo->input_scan_number > 1)
|
|
prev_coef_bits_latch[coefi] = prev_coef_bits[coefi];
|
|
else
|
|
prev_coef_bits_latch[coefi] = -1;
|
|
coef_bits_latch[coefi] = coef_bits[coefi];
|
|
if (coef_bits[coefi] != 0)
|
|
smoothing_useful = TRUE;
|
|
}
|
|
coef_bits_latch += SAVED_COEFS;
|
|
prev_coef_bits_latch += SAVED_COEFS;
|
|
}
|
|
|
|
return smoothing_useful;
|
|
}
|
|
|
|
|
|
/*
|
|
* Variant of decompress_data for use when doing block smoothing.
|
|
*/
|
|
|
|
METHODDEF(int)
|
|
decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
|
{
|
|
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
|
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
|
JDIMENSION block_num, last_block_column;
|
|
int ci, block_row, block_rows, access_rows;
|
|
JBLOCKARRAY buffer;
|
|
JBLOCKROW buffer_ptr, prev_prev_block_row, prev_block_row;
|
|
JBLOCKROW next_block_row, next_next_block_row;
|
|
JSAMPARRAY output_ptr;
|
|
JDIMENSION output_col;
|
|
jpeg_component_info *compptr;
|
|
inverse_DCT_method_ptr inverse_DCT;
|
|
boolean change_dc;
|
|
JCOEF *workspace;
|
|
int *coef_bits;
|
|
JQUANT_TBL *quanttbl;
|
|
JLONG Q00, Q01, Q02, Q03 = 0, Q10, Q11, Q12 = 0, Q20, Q21 = 0, Q30 = 0, num;
|
|
int DC01, DC02, DC03, DC04, DC05, DC06, DC07, DC08, DC09, DC10, DC11, DC12,
|
|
DC13, DC14, DC15, DC16, DC17, DC18, DC19, DC20, DC21, DC22, DC23, DC24,
|
|
DC25;
|
|
int Al, pred;
|
|
|
|
/* Keep a local variable to avoid looking it up more than once */
|
|
workspace = coef->workspace;
|
|
|
|
/* Force some input to be done if we are getting ahead of the input. */
|
|
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
|
!cinfo->inputctl->eoi_reached) {
|
|
if (cinfo->input_scan_number == cinfo->output_scan_number) {
|
|
/* If input is working on current scan, we ordinarily want it to
|
|
* have completed the current row. But if input scan is DC,
|
|
* we want it to keep two rows ahead so that next two block rows' DC
|
|
* values are up to date.
|
|
*/
|
|
JDIMENSION delta = (cinfo->Ss == 0) ? 2 : 0;
|
|
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)
|
|
break;
|
|
}
|
|
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
|
|
return JPEG_SUSPENDED;
|
|
}
|
|
|
|
/* OK, output from the virtual arrays. */
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
/* Don't bother to IDCT an uninteresting component. */
|
|
if (!compptr->component_needed)
|
|
continue;
|
|
/* Count non-dummy DCT block rows in this iMCU row. */
|
|
if (cinfo->output_iMCU_row < last_iMCU_row - 1) {
|
|
block_rows = compptr->v_samp_factor;
|
|
access_rows = block_rows * 3; /* this and next two iMCU rows */
|
|
} else if (cinfo->output_iMCU_row < last_iMCU_row) {
|
|
block_rows = compptr->v_samp_factor;
|
|
access_rows = block_rows * 2; /* this and next iMCU row */
|
|
} else {
|
|
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
|
block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
|
|
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
|
access_rows = block_rows; /* this iMCU row only */
|
|
}
|
|
/* Align the virtual buffer for this component. */
|
|
if (cinfo->output_iMCU_row > 1) {
|
|
access_rows += 2 * compptr->v_samp_factor; /* prior two iMCU rows too */
|
|
buffer = (*cinfo->mem->access_virt_barray)
|
|
((j_common_ptr)cinfo, coef->whole_image[ci],
|
|
(cinfo->output_iMCU_row - 2) * compptr->v_samp_factor,
|
|
(JDIMENSION)access_rows, FALSE);
|
|
buffer += 2 * compptr->v_samp_factor; /* point to current iMCU row */
|
|
} else if (cinfo->output_iMCU_row > 0) {
|
|
buffer = (*cinfo->mem->access_virt_barray)
|
|
((j_common_ptr)cinfo, coef->whole_image[ci],
|
|
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
|
|
(JDIMENSION)access_rows, FALSE);
|
|
buffer += compptr->v_samp_factor; /* point to current iMCU row */
|
|
} else {
|
|
buffer = (*cinfo->mem->access_virt_barray)
|
|
((j_common_ptr)cinfo, coef->whole_image[ci],
|
|
(JDIMENSION)0, (JDIMENSION)access_rows, FALSE);
|
|
}
|
|
/* Fetch component-dependent info.
|
|
* If the current scan is incomplete, then we use the component-dependent
|
|
* info from the previous scan.
|
|
*/
|
|
if (cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row)
|
|
coef_bits =
|
|
coef->coef_bits_latch + ((ci + cinfo->num_components) * SAVED_COEFS);
|
|
else
|
|
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
|
|
|
|
/* We only do DC interpolation if no AC coefficient data is available. */
|
|
change_dc =
|
|
coef_bits[1] == -1 && coef_bits[2] == -1 && coef_bits[3] == -1 &&
|
|
coef_bits[4] == -1 && coef_bits[5] == -1 && coef_bits[6] == -1 &&
|
|
coef_bits[7] == -1 && coef_bits[8] == -1 && coef_bits[9] == -1;
|
|
|
|
quanttbl = compptr->quant_table;
|
|
Q00 = quanttbl->quantval[0];
|
|
Q01 = quanttbl->quantval[Q01_POS];
|
|
Q10 = quanttbl->quantval[Q10_POS];
|
|
Q20 = quanttbl->quantval[Q20_POS];
|
|
Q11 = quanttbl->quantval[Q11_POS];
|
|
Q02 = quanttbl->quantval[Q02_POS];
|
|
if (change_dc) {
|
|
Q03 = quanttbl->quantval[Q03_POS];
|
|
Q12 = quanttbl->quantval[Q12_POS];
|
|
Q21 = quanttbl->quantval[Q21_POS];
|
|
Q30 = quanttbl->quantval[Q30_POS];
|
|
}
|
|
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
|
output_ptr = output_buf[ci];
|
|
/* Loop over all DCT blocks to be processed. */
|
|
for (block_row = 0; block_row < block_rows; block_row++) {
|
|
buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
|
|
|
|
if (block_row > 0 || cinfo->output_iMCU_row > 0)
|
|
prev_block_row =
|
|
buffer[block_row - 1] + cinfo->master->first_MCU_col[ci];
|
|
else
|
|
prev_block_row = buffer_ptr;
|
|
|
|
if (block_row > 1 || cinfo->output_iMCU_row > 1)
|
|
prev_prev_block_row =
|
|
buffer[block_row - 2] + cinfo->master->first_MCU_col[ci];
|
|
else
|
|
prev_prev_block_row = prev_block_row;
|
|
|
|
if (block_row < block_rows - 1 || cinfo->output_iMCU_row < last_iMCU_row)
|
|
next_block_row =
|
|
buffer[block_row + 1] + cinfo->master->first_MCU_col[ci];
|
|
else
|
|
next_block_row = buffer_ptr;
|
|
|
|
if (block_row < block_rows - 2 ||
|
|
cinfo->output_iMCU_row < last_iMCU_row - 1)
|
|
next_next_block_row =
|
|
buffer[block_row + 2] + cinfo->master->first_MCU_col[ci];
|
|
else
|
|
next_next_block_row = next_block_row;
|
|
|
|
/* We fetch the surrounding DC values using a sliding-register approach.
|
|
* Initialize all 25 here so as to do the right thing on narrow pics.
|
|
*/
|
|
DC01 = DC02 = DC03 = DC04 = DC05 = (int)prev_prev_block_row[0][0];
|
|
DC06 = DC07 = DC08 = DC09 = DC10 = (int)prev_block_row[0][0];
|
|
DC11 = DC12 = DC13 = DC14 = DC15 = (int)buffer_ptr[0][0];
|
|
DC16 = DC17 = DC18 = DC19 = DC20 = (int)next_block_row[0][0];
|
|
DC21 = DC22 = DC23 = DC24 = DC25 = (int)next_next_block_row[0][0];
|
|
output_col = 0;
|
|
last_block_column = compptr->width_in_blocks - 1;
|
|
for (block_num = cinfo->master->first_MCU_col[ci];
|
|
block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
|
|
/* Fetch current DCT block into workspace so we can modify it. */
|
|
jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1);
|
|
/* Update DC values */
|
|
if (block_num == cinfo->master->first_MCU_col[ci] &&
|
|
block_num < last_block_column) {
|
|
DC04 = (int)prev_prev_block_row[1][0];
|
|
DC09 = (int)prev_block_row[1][0];
|
|
DC14 = (int)buffer_ptr[1][0];
|
|
DC19 = (int)next_block_row[1][0];
|
|
DC24 = (int)next_next_block_row[1][0];
|
|
}
|
|
if (block_num + 1 < last_block_column) {
|
|
DC05 = (int)prev_prev_block_row[2][0];
|
|
DC10 = (int)prev_block_row[2][0];
|
|
DC15 = (int)buffer_ptr[2][0];
|
|
DC20 = (int)next_block_row[2][0];
|
|
DC25 = (int)next_next_block_row[2][0];
|
|
}
|
|
/* If DC interpolation is enabled, compute coefficient estimates using
|
|
* a Gaussian-like kernel, keeping the averages of the DC values.
|
|
*
|
|
* If DC interpolation is disabled, compute coefficient estimates using
|
|
* an algorithm similar to the one described in Section K.8 of the JPEG
|
|
* standard, except applied to a 5x5 window rather than a 3x3 window.
|
|
*
|
|
* An estimate is applied only if the coefficient is still zero and is
|
|
* not known to be fully accurate.
|
|
*/
|
|
/* AC01 */
|
|
if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) {
|
|
num = Q00 * (change_dc ?
|
|
(-DC01 - DC02 + DC04 + DC05 - 3 * DC06 + 13 * DC07 -
|
|
13 * DC09 + 3 * DC10 - 3 * DC11 + 38 * DC12 - 38 * DC14 +
|
|
3 * DC15 - 3 * DC16 + 13 * DC17 - 13 * DC19 + 3 * DC20 -
|
|
DC21 - DC22 + DC24 + DC25) :
|
|
(-7 * DC11 + 50 * DC12 - 50 * DC14 + 7 * DC15));
|
|
if (num >= 0) {
|
|
pred = (int)(((Q01 << 7) + num) / (Q01 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
} else {
|
|
pred = (int)(((Q01 << 7) - num) / (Q01 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
pred = -pred;
|
|
}
|
|
workspace[1] = (JCOEF)pred;
|
|
}
|
|
/* AC10 */
|
|
if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) {
|
|
num = Q00 * (change_dc ?
|
|
(-DC01 - 3 * DC02 - 3 * DC03 - 3 * DC04 - DC05 - DC06 +
|
|
13 * DC07 + 38 * DC08 + 13 * DC09 - DC10 + DC16 -
|
|
13 * DC17 - 38 * DC18 - 13 * DC19 + DC20 + DC21 +
|
|
3 * DC22 + 3 * DC23 + 3 * DC24 + DC25) :
|
|
(-7 * DC03 + 50 * DC08 - 50 * DC18 + 7 * DC23));
|
|
if (num >= 0) {
|
|
pred = (int)(((Q10 << 7) + num) / (Q10 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
} else {
|
|
pred = (int)(((Q10 << 7) - num) / (Q10 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
pred = -pred;
|
|
}
|
|
workspace[8] = (JCOEF)pred;
|
|
}
|
|
/* AC20 */
|
|
if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) {
|
|
num = Q00 * (change_dc ?
|
|
(DC03 + 2 * DC07 + 7 * DC08 + 2 * DC09 - 5 * DC12 - 14 * DC13 -
|
|
5 * DC14 + 2 * DC17 + 7 * DC18 + 2 * DC19 + DC23) :
|
|
(-DC03 + 13 * DC08 - 24 * DC13 + 13 * DC18 - DC23));
|
|
if (num >= 0) {
|
|
pred = (int)(((Q20 << 7) + num) / (Q20 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
} else {
|
|
pred = (int)(((Q20 << 7) - num) / (Q20 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
pred = -pred;
|
|
}
|
|
workspace[16] = (JCOEF)pred;
|
|
}
|
|
/* AC11 */
|
|
if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) {
|
|
num = Q00 * (change_dc ?
|
|
(-DC01 + DC05 + 9 * DC07 - 9 * DC09 - 9 * DC17 +
|
|
9 * DC19 + DC21 - DC25) :
|
|
(DC10 + DC16 - 10 * DC17 + 10 * DC19 - DC02 - DC20 + DC22 -
|
|
DC24 + DC04 - DC06 + 10 * DC07 - 10 * DC09));
|
|
if (num >= 0) {
|
|
pred = (int)(((Q11 << 7) + num) / (Q11 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
} else {
|
|
pred = (int)(((Q11 << 7) - num) / (Q11 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
pred = -pred;
|
|
}
|
|
workspace[9] = (JCOEF)pred;
|
|
}
|
|
/* AC02 */
|
|
if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) {
|
|
num = Q00 * (change_dc ?
|
|
(2 * DC07 - 5 * DC08 + 2 * DC09 + DC11 + 7 * DC12 - 14 * DC13 +
|
|
7 * DC14 + DC15 + 2 * DC17 - 5 * DC18 + 2 * DC19) :
|
|
(-DC11 + 13 * DC12 - 24 * DC13 + 13 * DC14 - DC15));
|
|
if (num >= 0) {
|
|
pred = (int)(((Q02 << 7) + num) / (Q02 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
} else {
|
|
pred = (int)(((Q02 << 7) - num) / (Q02 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
pred = -pred;
|
|
}
|
|
workspace[2] = (JCOEF)pred;
|
|
}
|
|
if (change_dc) {
|
|
/* AC03 */
|
|
if ((Al = coef_bits[6]) != 0 && workspace[3] == 0) {
|
|
num = Q00 * (DC07 - DC09 + 2 * DC12 - 2 * DC14 + DC17 - DC19);
|
|
if (num >= 0) {
|
|
pred = (int)(((Q03 << 7) + num) / (Q03 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
} else {
|
|
pred = (int)(((Q03 << 7) - num) / (Q03 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
pred = -pred;
|
|
}
|
|
workspace[3] = (JCOEF)pred;
|
|
}
|
|
/* AC12 */
|
|
if ((Al = coef_bits[7]) != 0 && workspace[10] == 0) {
|
|
num = Q00 * (DC07 - 3 * DC08 + DC09 - DC17 + 3 * DC18 - DC19);
|
|
if (num >= 0) {
|
|
pred = (int)(((Q12 << 7) + num) / (Q12 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
} else {
|
|
pred = (int)(((Q12 << 7) - num) / (Q12 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
pred = -pred;
|
|
}
|
|
workspace[10] = (JCOEF)pred;
|
|
}
|
|
/* AC21 */
|
|
if ((Al = coef_bits[8]) != 0 && workspace[17] == 0) {
|
|
num = Q00 * (DC07 - DC09 - 3 * DC12 + 3 * DC14 + DC17 - DC19);
|
|
if (num >= 0) {
|
|
pred = (int)(((Q21 << 7) + num) / (Q21 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
} else {
|
|
pred = (int)(((Q21 << 7) - num) / (Q21 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
pred = -pred;
|
|
}
|
|
workspace[17] = (JCOEF)pred;
|
|
}
|
|
/* AC30 */
|
|
if ((Al = coef_bits[9]) != 0 && workspace[24] == 0) {
|
|
num = Q00 * (DC07 + 2 * DC08 + DC09 - DC17 - 2 * DC18 - DC19);
|
|
if (num >= 0) {
|
|
pred = (int)(((Q30 << 7) + num) / (Q30 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
} else {
|
|
pred = (int)(((Q30 << 7) - num) / (Q30 << 8));
|
|
if (Al > 0 && pred >= (1 << Al))
|
|
pred = (1 << Al) - 1;
|
|
pred = -pred;
|
|
}
|
|
workspace[24] = (JCOEF)pred;
|
|
}
|
|
/* coef_bits[0] is non-negative. Otherwise this function would not
|
|
* be called.
|
|
*/
|
|
num = Q00 *
|
|
(-2 * DC01 - 6 * DC02 - 8 * DC03 - 6 * DC04 - 2 * DC05 -
|
|
6 * DC06 + 6 * DC07 + 42 * DC08 + 6 * DC09 - 6 * DC10 -
|
|
8 * DC11 + 42 * DC12 + 152 * DC13 + 42 * DC14 - 8 * DC15 -
|
|
6 * DC16 + 6 * DC17 + 42 * DC18 + 6 * DC19 - 6 * DC20 -
|
|
2 * DC21 - 6 * DC22 - 8 * DC23 - 6 * DC24 - 2 * DC25);
|
|
if (num >= 0) {
|
|
pred = (int)(((Q00 << 7) + num) / (Q00 << 8));
|
|
} else {
|
|
pred = (int)(((Q00 << 7) - num) / (Q00 << 8));
|
|
pred = -pred;
|
|
}
|
|
workspace[0] = (JCOEF)pred;
|
|
} /* change_dc */
|
|
|
|
/* OK, do the IDCT */
|
|
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr,
|
|
output_col);
|
|
/* Advance for next column */
|
|
DC01 = DC02; DC02 = DC03; DC03 = DC04; DC04 = DC05;
|
|
DC06 = DC07; DC07 = DC08; DC08 = DC09; DC09 = DC10;
|
|
DC11 = DC12; DC12 = DC13; DC13 = DC14; DC14 = DC15;
|
|
DC16 = DC17; DC17 = DC18; DC18 = DC19; DC19 = DC20;
|
|
DC21 = DC22; DC22 = DC23; DC23 = DC24; DC24 = DC25;
|
|
buffer_ptr++, prev_block_row++, next_block_row++,
|
|
prev_prev_block_row++, next_next_block_row++;
|
|
output_col += compptr->_DCT_scaled_size;
|
|
}
|
|
output_ptr += compptr->_DCT_scaled_size;
|
|
}
|
|
}
|
|
|
|
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
|
return JPEG_ROW_COMPLETED;
|
|
return JPEG_SCAN_COMPLETED;
|
|
}
|
|
|
|
#endif /* BLOCK_SMOOTHING_SUPPORTED */
|
|
|
|
|
|
/*
|
|
* Initialize coefficient buffer controller.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
|
|
{
|
|
my_coef_ptr coef;
|
|
|
|
coef = (my_coef_ptr)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
sizeof(my_coef_controller));
|
|
cinfo->coef = (struct jpeg_d_coef_controller *)coef;
|
|
coef->pub.start_input_pass = start_input_pass;
|
|
coef->pub.start_output_pass = start_output_pass;
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
coef->coef_bits_latch = NULL;
|
|
#endif
|
|
|
|
/* Create the coefficient buffer. */
|
|
if (need_full_buffer) {
|
|
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
|
/* Allocate a full-image virtual array for each component, */
|
|
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
|
/* Note we ask for a pre-zeroed array. */
|
|
int ci, access_rows;
|
|
jpeg_component_info *compptr;
|
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
access_rows = compptr->v_samp_factor;
|
|
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
/* If block smoothing could be used, need a bigger window */
|
|
if (cinfo->progressive_mode)
|
|
access_rows *= 5;
|
|
#endif
|
|
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
|
((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE,
|
|
(JDIMENSION)jround_up((long)compptr->width_in_blocks,
|
|
(long)compptr->h_samp_factor),
|
|
(JDIMENSION)jround_up((long)compptr->height_in_blocks,
|
|
(long)compptr->v_samp_factor),
|
|
(JDIMENSION)access_rows);
|
|
}
|
|
coef->pub.consume_data = consume_data;
|
|
coef->pub.decompress_data = decompress_data;
|
|
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
|
|
#else
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
#endif
|
|
} else {
|
|
/* We only need a single-MCU buffer. */
|
|
JBLOCKROW buffer;
|
|
int i;
|
|
|
|
buffer = (JBLOCKROW)
|
|
(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
|
|
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
|
|
coef->MCU_buffer[i] = buffer + i;
|
|
}
|
|
coef->pub.consume_data = dummy_consume_data;
|
|
coef->pub.decompress_data = decompress_onepass;
|
|
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
|
|
}
|
|
|
|
/* Allocate the workspace buffer */
|
|
coef->workspace = (JCOEF *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
sizeof(JCOEF) * DCTSIZE2);
|
|
}
|