gecko-dev/dom/media/MediaData.cpp

603 строки
20 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MediaData.h"
#include "ImageContainer.h"
#include "MediaInfo.h"
#include "MediaResult.h"
#include "PerformanceRecorder.h"
#include "VideoUtils.h"
#include "YCbCrUtils.h"
#include "mozilla/gfx/gfxVars.h"
#include "mozilla/layers/ImageBridgeChild.h"
#include "mozilla/layers/KnowsCompositor.h"
#include "mozilla/layers/SharedRGBImage.h"
#include <stdint.h>
#ifdef XP_WIN
# include "mozilla/gfx/DeviceManagerDx.h"
# include "mozilla/layers/D3D11ShareHandleImage.h"
# include "mozilla/layers/D3D11YCbCrImage.h"
#elif XP_MACOSX
# include "MacIOSurfaceImage.h"
# include "mozilla/gfx/gfxVars.h"
#endif
namespace mozilla {
using namespace mozilla::gfx;
using layers::PlanarYCbCrData;
using layers::PlanarYCbCrImage;
using media::TimeUnit;
const char* AudioData::sTypeName = "audio";
const char* VideoData::sTypeName = "video";
AudioData::AudioData(int64_t aOffset, const media::TimeUnit& aTime,
AlignedAudioBuffer&& aData, uint32_t aChannels,
uint32_t aRate, uint32_t aChannelMap)
// Passing TimeUnit::Zero() here because we can't pass the result of an
// arithmetic operation to the CheckedInt ctor. We set the duration in the
// ctor body below.
: MediaData(sType, aOffset, aTime, TimeUnit::Zero()),
mChannels(aChannels),
mChannelMap(aChannelMap),
mRate(aRate),
mOriginalTime(aTime),
mAudioData(std::move(aData)),
mFrames(mAudioData.Length() / aChannels) {
MOZ_RELEASE_ASSERT(aChannels != 0,
"Can't create an AudioData with 0 channels.");
MOZ_RELEASE_ASSERT(aRate != 0,
"Can't create an AudioData with a sample-rate of 0.");
mDuration = TimeUnit(mFrames, aRate);
}
Span<AudioDataValue> AudioData::Data() const {
return Span{GetAdjustedData(), mFrames * mChannels};
}
void AudioData::SetOriginalStartTime(const media::TimeUnit& aStartTime) {
MOZ_ASSERT(mTime == mOriginalTime,
"Do not call this if data has been trimmed!");
mTime = aStartTime;
mOriginalTime = aStartTime;
}
bool AudioData::AdjustForStartTime(const media::TimeUnit& aStartTime) {
mOriginalTime -= aStartTime;
mTime -= aStartTime;
if (mTrimWindow) {
*mTrimWindow -= aStartTime;
}
if (mTime.IsNegative()) {
NS_WARNING("Negative audio start time after time-adjustment!");
}
return mTime.IsValid() && mOriginalTime.IsValid();
}
bool AudioData::SetTrimWindow(const media::TimeInterval& aTrim) {
MOZ_DIAGNOSTIC_ASSERT(aTrim.mStart.IsValid() && aTrim.mEnd.IsValid(),
"An overflow occurred on the provided TimeInterval");
if (!mAudioData) {
// MoveableData got called. Can no longer work on it.
return false;
}
if (aTrim.mStart < mOriginalTime || aTrim.mEnd > GetEndTime()) {
return false;
}
auto trimBefore = aTrim.mStart - mOriginalTime;
auto trimAfter = aTrim.mEnd - mOriginalTime;
if (!trimBefore.IsValid() || !trimAfter.IsValid()) {
// Overflow.
return false;
}
if (!mTrimWindow && trimBefore.IsZero() && trimAfter == mDuration) {
// Nothing to change, abort early to prevent rounding errors.
return true;
}
size_t frameOffset = trimBefore.ToTicksAtRate(mRate);
mTrimWindow = Some(aTrim);
mDataOffset = frameOffset * mChannels;
MOZ_DIAGNOSTIC_ASSERT(mDataOffset <= mAudioData.Length(),
"Data offset outside original buffer");
int64_t frameCountAfterTrim = (trimAfter - trimBefore).ToTicksAtRate(mRate);
if (frameCountAfterTrim >
AssertedCast<int64_t>(mAudioData.Length() / mChannels)) {
// Accept rounding error caused by an imprecise time_base in the container,
// that can cause a mismatch but not other kind of unexpected frame count.
MOZ_RELEASE_ASSERT(!trimBefore.IsBase(mRate));
mFrames = 0;
} else {
mFrames = frameCountAfterTrim;
}
mTime = mOriginalTime + trimBefore;
mDuration = TimeUnit(mFrames, mRate);
return true;
}
AudioDataValue* AudioData::GetAdjustedData() const {
if (!mAudioData) {
return nullptr;
}
return mAudioData.Data() + mDataOffset;
}
void AudioData::EnsureAudioBuffer() {
if (mAudioBuffer || !mAudioData) {
return;
}
const AudioDataValue* srcData = GetAdjustedData();
CheckedInt<size_t> bufferSize(sizeof(AudioDataValue));
bufferSize *= mFrames;
bufferSize *= mChannels;
mAudioBuffer = SharedBuffer::Create(bufferSize);
AudioDataValue* destData = static_cast<AudioDataValue*>(mAudioBuffer->Data());
for (uint32_t i = 0; i < mFrames; ++i) {
for (uint32_t j = 0; j < mChannels; ++j) {
destData[j * mFrames + i] = srcData[i * mChannels + j];
}
}
}
size_t AudioData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
size_t size =
aMallocSizeOf(this) + mAudioData.SizeOfExcludingThis(aMallocSizeOf);
if (mAudioBuffer) {
size += mAudioBuffer->SizeOfIncludingThis(aMallocSizeOf);
}
return size;
}
AlignedAudioBuffer AudioData::MoveableData() {
// Trim buffer according to trimming mask.
mAudioData.PopFront(mDataOffset);
mAudioData.SetLength(mFrames * mChannels);
mDataOffset = 0;
mFrames = 0;
mTrimWindow.reset();
return std::move(mAudioData);
}
static bool ValidatePlane(const VideoData::YCbCrBuffer::Plane& aPlane) {
return aPlane.mWidth <= PlanarYCbCrImage::MAX_DIMENSION &&
aPlane.mHeight <= PlanarYCbCrImage::MAX_DIMENSION &&
aPlane.mWidth * aPlane.mHeight < MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT &&
aPlane.mStride > 0 && aPlane.mWidth <= aPlane.mStride;
}
static MediaResult ValidateBufferAndPicture(
const VideoData::YCbCrBuffer& aBuffer, const IntRect& aPicture) {
// The following situation should never happen unless there is a bug
// in the decoder
if (aBuffer.mPlanes[1].mWidth != aBuffer.mPlanes[2].mWidth ||
aBuffer.mPlanes[1].mHeight != aBuffer.mPlanes[2].mHeight) {
return MediaResult(NS_ERROR_INVALID_ARG,
"Chroma planes with different sizes");
}
// The following situations could be triggered by invalid input
if (aPicture.width <= 0 || aPicture.height <= 0) {
return MediaResult(NS_ERROR_INVALID_ARG, "Empty picture rect");
}
if (!ValidatePlane(aBuffer.mPlanes[0]) ||
!ValidatePlane(aBuffer.mPlanes[1]) ||
!ValidatePlane(aBuffer.mPlanes[2])) {
return MediaResult(NS_ERROR_INVALID_ARG, "Invalid plane size");
}
// Ensure the picture size specified in the headers can be extracted out of
// the frame we've been supplied without indexing out of bounds.
CheckedUint32 xLimit = aPicture.x + CheckedUint32(aPicture.width);
CheckedUint32 yLimit = aPicture.y + CheckedUint32(aPicture.height);
if (!xLimit.isValid() || xLimit.value() > aBuffer.mPlanes[0].mStride ||
!yLimit.isValid() || yLimit.value() > aBuffer.mPlanes[0].mHeight) {
// The specified picture dimensions can't be contained inside the video
// frame, we'll stomp memory if we try to copy it. Fail.
return MediaResult(NS_ERROR_INVALID_ARG, "Overflowing picture rect");
}
return MediaResult(NS_OK);
}
VideoData::VideoData(int64_t aOffset, const TimeUnit& aTime,
const TimeUnit& aDuration, bool aKeyframe,
const TimeUnit& aTimecode, IntSize aDisplay,
layers::ImageContainer::FrameID aFrameID)
: MediaData(Type::VIDEO_DATA, aOffset, aTime, aDuration),
mDisplay(aDisplay),
mFrameID(aFrameID),
mSentToCompositor(false),
mNextKeyFrameTime(TimeUnit::Invalid()) {
MOZ_ASSERT(!mDuration.IsNegative(), "Frame must have non-negative duration.");
mKeyframe = aKeyframe;
mTimecode = aTimecode;
}
VideoData::~VideoData() = default;
size_t VideoData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
size_t size = aMallocSizeOf(this);
// Currently only PLANAR_YCBCR has a well defined function for determining
// it's size, so reporting is limited to that type.
if (mImage && mImage->GetFormat() == ImageFormat::PLANAR_YCBCR) {
const mozilla::layers::PlanarYCbCrImage* img =
static_cast<const mozilla::layers::PlanarYCbCrImage*>(mImage.get());
size += img->SizeOfIncludingThis(aMallocSizeOf);
}
return size;
}
ColorDepth VideoData::GetColorDepth() const {
if (!mImage) {
return ColorDepth::COLOR_8;
}
return mImage->GetColorDepth();
}
void VideoData::UpdateDuration(const TimeUnit& aDuration) {
MOZ_ASSERT(!aDuration.IsNegative());
mDuration = aDuration;
}
void VideoData::UpdateTimestamp(const TimeUnit& aTimestamp) {
MOZ_ASSERT(!aTimestamp.IsNegative());
auto updatedDuration = GetEndTime() - aTimestamp;
MOZ_ASSERT(!updatedDuration.IsNegative());
mTime = aTimestamp;
mDuration = updatedDuration;
}
bool VideoData::AdjustForStartTime(const media::TimeUnit& aStartTime) {
mTime -= aStartTime;
if (mTime.IsNegative()) {
NS_WARNING("Negative video start time after time-adjustment!");
}
return mTime.IsValid();
}
PlanarYCbCrData ConstructPlanarYCbCrData(const VideoInfo& aInfo,
const VideoData::YCbCrBuffer& aBuffer,
const IntRect& aPicture) {
const VideoData::YCbCrBuffer::Plane& Y = aBuffer.mPlanes[0];
const VideoData::YCbCrBuffer::Plane& Cb = aBuffer.mPlanes[1];
const VideoData::YCbCrBuffer::Plane& Cr = aBuffer.mPlanes[2];
PlanarYCbCrData data;
data.mYChannel = Y.mData;
data.mYStride = AssertedCast<int32_t>(Y.mStride);
data.mYSkip = AssertedCast<int32_t>(Y.mSkip);
data.mCbChannel = Cb.mData;
data.mCrChannel = Cr.mData;
data.mCbCrStride = AssertedCast<int32_t>(Cb.mStride);
data.mCbSkip = AssertedCast<int32_t>(Cb.mSkip);
data.mCrSkip = AssertedCast<int32_t>(Cr.mSkip);
data.mPictureRect = aPicture;
data.mStereoMode = aInfo.mStereoMode;
data.mYUVColorSpace = aBuffer.mYUVColorSpace;
data.mColorPrimaries = aBuffer.mColorPrimaries;
data.mColorDepth = aBuffer.mColorDepth;
if (aInfo.mTransferFunction) {
data.mTransferFunction = *aInfo.mTransferFunction;
}
data.mColorRange = aBuffer.mColorRange;
data.mChromaSubsampling = aBuffer.mChromaSubsampling;
return data;
}
/* static */
MediaResult VideoData::SetVideoDataToImage(PlanarYCbCrImage* aVideoImage,
const VideoInfo& aInfo,
const YCbCrBuffer& aBuffer,
const IntRect& aPicture,
bool aCopyData) {
MOZ_ASSERT(aVideoImage);
PlanarYCbCrData data = ConstructPlanarYCbCrData(aInfo, aBuffer, aPicture);
if (aCopyData) {
return MediaResult(aVideoImage->CopyData(data),
RESULT_DETAIL("Failed to copy image data"));
}
return MediaResult(aVideoImage->AdoptData(data),
RESULT_DETAIL("Failed to adopt image data"));
}
/* static */
Result<already_AddRefed<VideoData>, MediaResult> VideoData::CreateAndCopyData(
const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset,
const TimeUnit& aTime, const TimeUnit& aDuration,
const YCbCrBuffer& aBuffer, bool aKeyframe, const TimeUnit& aTimecode,
const IntRect& aPicture, layers::KnowsCompositor* aAllocator) {
if (!aContainer) {
// Create a dummy VideoData with no image. This gives us something to
// send to media streams if necessary.
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aInfo.mDisplay, 0));
return v.forget();
}
if (MediaResult r = ValidateBufferAndPicture(aBuffer, aPicture);
NS_FAILED(r)) {
return Err(r);
}
PerformanceRecorder<PlaybackStage> perfRecorder(MediaStage::CopyDecodedVideo,
aInfo.mImage.height);
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aInfo.mDisplay, 0));
// Currently our decoder only knows how to output to ImageFormat::PLANAR_YCBCR
// format.
#if XP_MACOSX
if (aAllocator && aAllocator->GetWebRenderCompositorType() !=
layers::WebRenderCompositor::SOFTWARE) {
RefPtr<layers::MacIOSurfaceImage> ioImage =
new layers::MacIOSurfaceImage(nullptr);
PlanarYCbCrData data = ConstructPlanarYCbCrData(aInfo, aBuffer, aPicture);
if (ioImage->SetData(aContainer, data)) {
v->mImage = ioImage;
perfRecorder.Record();
return v.forget();
}
}
#endif
if (!v->mImage) {
v->mImage = aContainer->CreatePlanarYCbCrImage();
}
if (!v->mImage) {
// TODO: Should other error like NS_ERROR_UNEXPECTED be used here to
// distinguish this error from the NS_ERROR_OUT_OF_MEMORY below?
return Err(MediaResult(NS_ERROR_OUT_OF_MEMORY,
"Failed to create a PlanarYCbCrImage"));
}
NS_ASSERTION(v->mImage->GetFormat() == ImageFormat::PLANAR_YCBCR,
"Wrong format?");
PlanarYCbCrImage* videoImage = v->mImage->AsPlanarYCbCrImage();
MOZ_ASSERT(videoImage);
if (MediaResult r = VideoData::SetVideoDataToImage(
videoImage, aInfo, aBuffer, aPicture, true /* aCopyData */);
NS_FAILED(r)) {
return Err(r);
}
perfRecorder.Record();
return v.forget();
}
/* static */
already_AddRefed<VideoData> VideoData::CreateAndCopyData(
const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset,
const TimeUnit& aTime, const TimeUnit& aDuration,
const YCbCrBuffer& aBuffer, const YCbCrBuffer::Plane& aAlphaPlane,
bool aKeyframe, const TimeUnit& aTimecode, const IntRect& aPicture) {
if (!aContainer) {
// Create a dummy VideoData with no image. This gives us something to
// send to media streams if necessary.
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aInfo.mDisplay, 0));
return v.forget();
}
if (MediaResult r = ValidateBufferAndPicture(aBuffer, aPicture);
NS_FAILED(r)) {
NS_ERROR(r.Message().get());
return nullptr;
}
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aInfo.mDisplay, 0));
// Convert from YUVA to BGRA format on the software side.
RefPtr<layers::SharedRGBImage> videoImage =
aContainer->CreateSharedRGBImage();
v->mImage = videoImage;
if (!v->mImage) {
return nullptr;
}
if (!videoImage->Allocate(
IntSize(aBuffer.mPlanes[0].mWidth, aBuffer.mPlanes[0].mHeight),
SurfaceFormat::B8G8R8A8)) {
return nullptr;
}
RefPtr<layers::TextureClient> texture =
videoImage->GetTextureClient(/* aKnowsCompositor */ nullptr);
if (!texture) {
NS_WARNING("Failed to allocate TextureClient");
return nullptr;
}
layers::TextureClientAutoLock autoLock(texture,
layers::OpenMode::OPEN_WRITE_ONLY);
if (!autoLock.Succeeded()) {
NS_WARNING("Failed to lock TextureClient");
return nullptr;
}
layers::MappedTextureData buffer;
if (!texture->BorrowMappedData(buffer)) {
NS_WARNING("Failed to borrow mapped data");
return nullptr;
}
// The naming convention for libyuv and associated utils is word-order.
// The naming convention in the gfx stack is byte-order.
ConvertI420AlphaToARGB(aBuffer.mPlanes[0].mData, aBuffer.mPlanes[1].mData,
aBuffer.mPlanes[2].mData, aAlphaPlane.mData,
AssertedCast<int>(aBuffer.mPlanes[0].mStride),
AssertedCast<int>(aBuffer.mPlanes[1].mStride),
buffer.data, buffer.stride, buffer.size.width,
buffer.size.height);
return v.forget();
}
/* static */
already_AddRefed<VideoData> VideoData::CreateFromImage(
const IntSize& aDisplay, int64_t aOffset, const TimeUnit& aTime,
const TimeUnit& aDuration, const RefPtr<Image>& aImage, bool aKeyframe,
const TimeUnit& aTimecode) {
RefPtr<VideoData> v(new VideoData(aOffset, aTime, aDuration, aKeyframe,
aTimecode, aDisplay, 0));
v->mImage = aImage;
return v.forget();
}
nsCString VideoData::ToString() const {
std::array ImageFormatStrings = {
"PLANAR_YCBCR",
"NV_IMAGE",
"SHARED_RGB",
"MOZ2D_SURFACE",
"MAC_IOSURFACE",
"SURFACE_TEXTURE",
"D3D9_RGB32_TEXTURE",
"OVERLAY_IMAGE",
"D3D11_SHARE_HANDLE_TEXTURE",
"D3D11_TEXTURE_IMF_SAMPLE",
"TEXTURE_WRAPPER",
"D3D11_YCBCR_IMAGE",
"GPU_VIDEO",
"DMABUF",
"DCOMP_SURFACE",
};
nsCString rv;
rv.AppendPrintf(
"VideoFrame [%s,%s] [%dx%d] format: %s", mTime.ToString().get(),
mDuration.ToString().get(), mDisplay.Width(), mDisplay.Height(),
mImage ? ImageFormatStrings[static_cast<int>(mImage->GetFormat())]
: "null");
return rv;
}
MediaRawData::MediaRawData()
: MediaData(Type::RAW_DATA), mCrypto(mCryptoInternal) {}
MediaRawData::MediaRawData(const uint8_t* aData, size_t aSize)
: MediaData(Type::RAW_DATA),
mCrypto(mCryptoInternal),
mBuffer(aData, aSize) {}
MediaRawData::MediaRawData(const uint8_t* aData, size_t aSize,
const uint8_t* aAlphaData, size_t aAlphaSize)
: MediaData(Type::RAW_DATA),
mCrypto(mCryptoInternal),
mBuffer(aData, aSize),
mAlphaBuffer(aAlphaData, aAlphaSize) {}
MediaRawData::MediaRawData(AlignedByteBuffer&& aData)
: MediaData(Type::RAW_DATA),
mCrypto(mCryptoInternal),
mBuffer(std::move(aData)) {}
MediaRawData::MediaRawData(AlignedByteBuffer&& aData,
AlignedByteBuffer&& aAlphaData)
: MediaData(Type::RAW_DATA),
mCrypto(mCryptoInternal),
mBuffer(std::move(aData)),
mAlphaBuffer(std::move(aAlphaData)) {}
already_AddRefed<MediaRawData> MediaRawData::Clone() const {
int32_t sampleHeight = 0;
if (mTrackInfo && mTrackInfo->GetAsVideoInfo()) {
sampleHeight = mTrackInfo->GetAsVideoInfo()->mImage.height;
}
PerformanceRecorder<PlaybackStage> perfRecorder(MediaStage::CopyDemuxedData,
sampleHeight);
RefPtr<MediaRawData> s = new MediaRawData;
s->mTimecode = mTimecode;
s->mTime = mTime;
s->mDuration = mDuration;
s->mOffset = mOffset;
s->mKeyframe = mKeyframe;
s->mExtraData = mExtraData;
s->mCryptoInternal = mCryptoInternal;
s->mTrackInfo = mTrackInfo;
s->mEOS = mEOS;
s->mOriginalPresentationWindow = mOriginalPresentationWindow;
if (!s->mBuffer.Append(mBuffer.Data(), mBuffer.Length())) {
return nullptr;
}
if (!s->mAlphaBuffer.Append(mAlphaBuffer.Data(), mAlphaBuffer.Length())) {
return nullptr;
}
perfRecorder.Record();
return s.forget();
}
MediaRawData::~MediaRawData() = default;
size_t MediaRawData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
size_t size = aMallocSizeOf(this);
size += mBuffer.SizeOfExcludingThis(aMallocSizeOf);
return size;
}
UniquePtr<MediaRawDataWriter> MediaRawData::CreateWriter() {
UniquePtr<MediaRawDataWriter> p(new MediaRawDataWriter(this));
return p;
}
MediaRawDataWriter::MediaRawDataWriter(MediaRawData* aMediaRawData)
: mCrypto(aMediaRawData->mCryptoInternal), mTarget(aMediaRawData) {}
bool MediaRawDataWriter::SetSize(size_t aSize) {
return mTarget->mBuffer.SetLength(aSize);
}
bool MediaRawDataWriter::Prepend(const uint8_t* aData, size_t aSize) {
return mTarget->mBuffer.Prepend(aData, aSize);
}
bool MediaRawDataWriter::Append(const uint8_t* aData, size_t aSize) {
return mTarget->mBuffer.Append(aData, aSize);
}
bool MediaRawDataWriter::Replace(const uint8_t* aData, size_t aSize) {
return mTarget->mBuffer.Replace(aData, aSize);
}
void MediaRawDataWriter::Clear() { mTarget->mBuffer.Clear(); }
uint8_t* MediaRawDataWriter::Data() { return mTarget->mBuffer.Data(); }
size_t MediaRawDataWriter::Size() { return mTarget->Size(); }
void MediaRawDataWriter::PopFront(size_t aSize) {
mTarget->mBuffer.PopFront(aSize);
}
const char* CryptoSchemeToString(const CryptoScheme& aScheme) {
switch (aScheme) {
case CryptoScheme::None:
return "None";
case CryptoScheme::Cenc:
return "Cenc";
case CryptoScheme::Cbcs:
return "Cbcs";
default:
MOZ_ASSERT_UNREACHABLE();
return "";
}
}
} // namespace mozilla