зеркало из https://github.com/mozilla/gecko-dev.git
1917 строки
65 KiB
C++
1917 строки
65 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "mozilla/ArrayUtils.h"
|
|
#include "mozilla/BinarySearch.h"
|
|
|
|
#include "gfxFontUtils.h"
|
|
#include "gfxFontEntry.h"
|
|
#include "gfxFontVariations.h"
|
|
|
|
#include "nsServiceManagerUtils.h"
|
|
|
|
#include "mozilla/Preferences.h"
|
|
#include "mozilla/BinarySearch.h"
|
|
#include "mozilla/Sprintf.h"
|
|
#include "mozilla/Unused.h"
|
|
|
|
#include "nsCOMPtr.h"
|
|
#include "nsIUUIDGenerator.h"
|
|
#include "mozilla/Encoding.h"
|
|
|
|
#include "harfbuzz/hb.h"
|
|
|
|
#include "plbase64.h"
|
|
#include "mozilla/Logging.h"
|
|
|
|
#ifdef XP_MACOSX
|
|
# include <CoreFoundation/CoreFoundation.h>
|
|
#endif
|
|
|
|
#define LOG(log, args) MOZ_LOG(gfxPlatform::GetLog(log), LogLevel::Debug, args)
|
|
|
|
#define UNICODE_BMP_LIMIT 0x10000
|
|
|
|
using namespace mozilla;
|
|
|
|
#pragma pack(1)
|
|
|
|
typedef struct {
|
|
AutoSwap_PRUint16 format;
|
|
AutoSwap_PRUint16 reserved;
|
|
AutoSwap_PRUint32 length;
|
|
AutoSwap_PRUint32 language;
|
|
AutoSwap_PRUint32 startCharCode;
|
|
AutoSwap_PRUint32 numChars;
|
|
} Format10CmapHeader;
|
|
|
|
typedef struct {
|
|
AutoSwap_PRUint16 format;
|
|
AutoSwap_PRUint16 reserved;
|
|
AutoSwap_PRUint32 length;
|
|
AutoSwap_PRUint32 language;
|
|
AutoSwap_PRUint32 numGroups;
|
|
} Format12CmapHeader;
|
|
|
|
typedef struct {
|
|
AutoSwap_PRUint32 startCharCode;
|
|
AutoSwap_PRUint32 endCharCode;
|
|
AutoSwap_PRUint32 startGlyphId;
|
|
} Format12Group;
|
|
|
|
#pragma pack()
|
|
|
|
void gfxSparseBitSet::Dump(const char* aPrefix, eGfxLog aWhichLog) const {
|
|
uint32_t numBlocks = mBlockIndex.Length();
|
|
|
|
for (uint32_t b = 0; b < numBlocks; b++) {
|
|
if (mBlockIndex[b] == NO_BLOCK) {
|
|
continue;
|
|
}
|
|
const Block* block = &mBlocks[mBlockIndex[b]];
|
|
const int BUFSIZE = 256;
|
|
char outStr[BUFSIZE];
|
|
int index = 0;
|
|
index += snprintf(&outStr[index], BUFSIZE - index, "%s u+%6.6x [", aPrefix,
|
|
(b * BLOCK_SIZE_BITS));
|
|
for (int i = 0; i < 32; i += 4) {
|
|
for (int j = i; j < i + 4; j++) {
|
|
uint8_t bits = block->mBits[j];
|
|
uint8_t flip1 = ((bits & 0xaa) >> 1) | ((bits & 0x55) << 1);
|
|
uint8_t flip2 = ((flip1 & 0xcc) >> 2) | ((flip1 & 0x33) << 2);
|
|
uint8_t flipped = ((flip2 & 0xf0) >> 4) | ((flip2 & 0x0f) << 4);
|
|
|
|
index += snprintf(&outStr[index], BUFSIZE - index, "%2.2x", flipped);
|
|
}
|
|
if (i + 4 != 32) index += snprintf(&outStr[index], BUFSIZE - index, " ");
|
|
}
|
|
Unused << snprintf(&outStr[index], BUFSIZE - index, "]");
|
|
LOG(aWhichLog, ("%s", outStr));
|
|
}
|
|
}
|
|
|
|
nsresult gfxFontUtils::ReadCMAPTableFormat10(const uint8_t* aBuf,
|
|
uint32_t aLength,
|
|
gfxSparseBitSet& aCharacterMap) {
|
|
// Ensure table is large enough that we can safely read the header
|
|
NS_ENSURE_TRUE(aLength >= sizeof(Format10CmapHeader),
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
// Sanity-check header fields
|
|
const Format10CmapHeader* cmap10 =
|
|
reinterpret_cast<const Format10CmapHeader*>(aBuf);
|
|
NS_ENSURE_TRUE(uint16_t(cmap10->format) == 10, NS_ERROR_GFX_CMAP_MALFORMED);
|
|
NS_ENSURE_TRUE(uint16_t(cmap10->reserved) == 0, NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
uint32_t tablelen = cmap10->length;
|
|
NS_ENSURE_TRUE(tablelen >= sizeof(Format10CmapHeader) && tablelen <= aLength,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
NS_ENSURE_TRUE(cmap10->language == 0, NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
uint32_t numChars = cmap10->numChars;
|
|
NS_ENSURE_TRUE(
|
|
tablelen == sizeof(Format10CmapHeader) + numChars * sizeof(uint16_t),
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
uint32_t charCode = cmap10->startCharCode;
|
|
NS_ENSURE_TRUE(charCode <= CMAP_MAX_CODEPOINT &&
|
|
charCode + numChars <= CMAP_MAX_CODEPOINT,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
// glyphs[] array immediately follows the subtable header
|
|
const AutoSwap_PRUint16* glyphs =
|
|
reinterpret_cast<const AutoSwap_PRUint16*>(cmap10 + 1);
|
|
|
|
for (uint32_t i = 0; i < numChars; ++i) {
|
|
if (uint16_t(*glyphs) != 0) {
|
|
aCharacterMap.set(charCode);
|
|
}
|
|
++charCode;
|
|
++glyphs;
|
|
}
|
|
|
|
aCharacterMap.Compact();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult gfxFontUtils::ReadCMAPTableFormat12or13(
|
|
const uint8_t* aBuf, uint32_t aLength, gfxSparseBitSet& aCharacterMap) {
|
|
// Format 13 has the same structure as format 12, the only difference is
|
|
// the interpretation of the glyphID field. So we can share the code here
|
|
// that reads the table and just records character coverage.
|
|
|
|
// Ensure table is large enough that we can safely read the header
|
|
NS_ENSURE_TRUE(aLength >= sizeof(Format12CmapHeader),
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
// Sanity-check header fields
|
|
const Format12CmapHeader* cmap12 =
|
|
reinterpret_cast<const Format12CmapHeader*>(aBuf);
|
|
NS_ENSURE_TRUE(
|
|
uint16_t(cmap12->format) == 12 || uint16_t(cmap12->format) == 13,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
NS_ENSURE_TRUE(uint16_t(cmap12->reserved) == 0, NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
uint32_t tablelen = cmap12->length;
|
|
NS_ENSURE_TRUE(tablelen >= sizeof(Format12CmapHeader) && tablelen <= aLength,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
NS_ENSURE_TRUE(cmap12->language == 0, NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
// Check that the table is large enough for the group array
|
|
const uint32_t numGroups = cmap12->numGroups;
|
|
NS_ENSURE_TRUE(
|
|
(tablelen - sizeof(Format12CmapHeader)) / sizeof(Format12Group) >=
|
|
numGroups,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
// The array of groups immediately follows the subtable header.
|
|
const Format12Group* group =
|
|
reinterpret_cast<const Format12Group*>(aBuf + sizeof(Format12CmapHeader));
|
|
|
|
// Check that groups are in correct order and do not overlap,
|
|
// and record character coverage in aCharacterMap.
|
|
uint32_t prevEndCharCode = 0;
|
|
for (uint32_t i = 0; i < numGroups; i++, group++) {
|
|
uint32_t startCharCode = group->startCharCode;
|
|
const uint32_t endCharCode = group->endCharCode;
|
|
NS_ENSURE_TRUE((prevEndCharCode < startCharCode || i == 0) &&
|
|
startCharCode <= endCharCode &&
|
|
endCharCode <= CMAP_MAX_CODEPOINT,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
// don't include a character that maps to glyph ID 0 (.notdef)
|
|
if (group->startGlyphId == 0) {
|
|
startCharCode++;
|
|
}
|
|
if (startCharCode <= endCharCode) {
|
|
aCharacterMap.SetRange(startCharCode, endCharCode);
|
|
}
|
|
prevEndCharCode = endCharCode;
|
|
}
|
|
|
|
aCharacterMap.Compact();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult gfxFontUtils::ReadCMAPTableFormat4(const uint8_t* aBuf,
|
|
uint32_t aLength,
|
|
gfxSparseBitSet& aCharacterMap) {
|
|
enum {
|
|
OffsetFormat = 0,
|
|
OffsetLength = 2,
|
|
OffsetLanguage = 4,
|
|
OffsetSegCountX2 = 6
|
|
};
|
|
|
|
NS_ENSURE_TRUE(ReadShortAt(aBuf, OffsetFormat) == 4,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
uint16_t tablelen = ReadShortAt(aBuf, OffsetLength);
|
|
NS_ENSURE_TRUE(tablelen <= aLength, NS_ERROR_GFX_CMAP_MALFORMED);
|
|
NS_ENSURE_TRUE(tablelen > 16, NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
// This field should normally (except for Mac platform subtables) be zero
|
|
// according to the OT spec, but some buggy fonts have lang = 1 (which would
|
|
// be English for MacOS). E.g. Arial Narrow Bold, v. 1.1 (Tiger), Arial
|
|
// Unicode MS (see bug 530614). So accept either zero or one here; the error
|
|
// should be harmless.
|
|
NS_ENSURE_TRUE((ReadShortAt(aBuf, OffsetLanguage) & 0xfffe) == 0,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
uint16_t segCountX2 = ReadShortAt(aBuf, OffsetSegCountX2);
|
|
NS_ENSURE_TRUE(tablelen >= 16 + (segCountX2 * 4),
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
const uint16_t segCount = segCountX2 / 2;
|
|
|
|
const uint16_t* endCounts = reinterpret_cast<const uint16_t*>(aBuf + 14);
|
|
const uint16_t* startCounts =
|
|
endCounts + 1 /* skip one uint16_t for reservedPad */ + segCount;
|
|
const uint16_t* idDeltas = startCounts + segCount;
|
|
const uint16_t* idRangeOffsets = idDeltas + segCount;
|
|
uint16_t prevEndCount = 0;
|
|
for (uint16_t i = 0; i < segCount; i++) {
|
|
const uint16_t endCount = ReadShortAt16(endCounts, i);
|
|
const uint16_t startCount = ReadShortAt16(startCounts, i);
|
|
const uint16_t idRangeOffset = ReadShortAt16(idRangeOffsets, i);
|
|
|
|
// sanity-check range
|
|
// This permits ranges to overlap by 1 character, which is strictly
|
|
// incorrect but occurs in Baskerville on OS X 10.7 (see bug 689087),
|
|
// and appears to be harmless in practice
|
|
NS_ENSURE_TRUE(startCount >= prevEndCount && startCount <= endCount,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
prevEndCount = endCount;
|
|
|
|
if (idRangeOffset == 0) {
|
|
// figure out if there's a code in the range that would map to
|
|
// glyph ID 0 (.notdef); if so, we need to skip setting that
|
|
// character code in the map
|
|
const uint16_t skipCode = 65536 - ReadShortAt16(idDeltas, i);
|
|
if (startCount < skipCode) {
|
|
aCharacterMap.SetRange(startCount,
|
|
std::min<uint16_t>(skipCode - 1, endCount));
|
|
}
|
|
if (skipCode < endCount) {
|
|
aCharacterMap.SetRange(std::max<uint16_t>(startCount, skipCode + 1),
|
|
endCount);
|
|
}
|
|
} else {
|
|
// Unused: self-documenting.
|
|
// const uint16_t idDelta = ReadShortAt16(idDeltas, i);
|
|
for (uint32_t c = startCount; c <= endCount; ++c) {
|
|
if (c == 0xFFFF) break;
|
|
|
|
const uint16_t* gdata =
|
|
(idRangeOffset / 2 + (c - startCount) + &idRangeOffsets[i]);
|
|
|
|
NS_ENSURE_TRUE(
|
|
(uint8_t*)gdata > aBuf && (uint8_t*)gdata < aBuf + aLength,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
// make sure we have a glyph
|
|
if (*gdata != 0) {
|
|
// The glyph index at this point is:
|
|
uint16_t glyph = ReadShortAt16(idDeltas, i) + *gdata;
|
|
if (glyph) {
|
|
aCharacterMap.set(c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
aCharacterMap.Compact();
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
nsresult gfxFontUtils::ReadCMAPTableFormat14(const uint8_t* aBuf,
|
|
uint32_t aLength,
|
|
UniquePtr<uint8_t[]>& aTable) {
|
|
enum {
|
|
OffsetFormat = 0,
|
|
OffsetTableLength = 2,
|
|
OffsetNumVarSelectorRecords = 6,
|
|
OffsetVarSelectorRecords = 10,
|
|
|
|
SizeOfVarSelectorRecord = 11,
|
|
VSRecOffsetVarSelector = 0,
|
|
VSRecOffsetDefUVSOffset = 3,
|
|
VSRecOffsetNonDefUVSOffset = 7,
|
|
|
|
SizeOfDefUVSTable = 4,
|
|
DefUVSOffsetStartUnicodeValue = 0,
|
|
DefUVSOffsetAdditionalCount = 3,
|
|
|
|
SizeOfNonDefUVSTable = 5,
|
|
NonDefUVSOffsetUnicodeValue = 0,
|
|
NonDefUVSOffsetGlyphID = 3
|
|
};
|
|
NS_ENSURE_TRUE(aLength >= OffsetVarSelectorRecords,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
NS_ENSURE_TRUE(ReadShortAt(aBuf, OffsetFormat) == 14,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
uint32_t tablelen = ReadLongAt(aBuf, OffsetTableLength);
|
|
NS_ENSURE_TRUE(tablelen <= aLength, NS_ERROR_GFX_CMAP_MALFORMED);
|
|
NS_ENSURE_TRUE(tablelen >= OffsetVarSelectorRecords,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
const uint32_t numVarSelectorRecords =
|
|
ReadLongAt(aBuf, OffsetNumVarSelectorRecords);
|
|
NS_ENSURE_TRUE(
|
|
(tablelen - OffsetVarSelectorRecords) / SizeOfVarSelectorRecord >=
|
|
numVarSelectorRecords,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
const uint8_t* records = aBuf + OffsetVarSelectorRecords;
|
|
for (uint32_t i = 0; i < numVarSelectorRecords;
|
|
i++, records += SizeOfVarSelectorRecord) {
|
|
const uint32_t varSelector = ReadUint24At(records, VSRecOffsetVarSelector);
|
|
const uint32_t defUVSOffset = ReadLongAt(records, VSRecOffsetDefUVSOffset);
|
|
const uint32_t nonDefUVSOffset =
|
|
ReadLongAt(records, VSRecOffsetNonDefUVSOffset);
|
|
NS_ENSURE_TRUE(varSelector <= CMAP_MAX_CODEPOINT &&
|
|
defUVSOffset <= tablelen - 4 &&
|
|
nonDefUVSOffset <= tablelen - 4,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
|
|
if (defUVSOffset) {
|
|
const uint32_t numUnicodeValueRanges = ReadLongAt(aBuf, defUVSOffset);
|
|
NS_ENSURE_TRUE((tablelen - defUVSOffset) / SizeOfDefUVSTable >=
|
|
numUnicodeValueRanges,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
const uint8_t* tables = aBuf + defUVSOffset + 4;
|
|
uint32_t prevEndUnicode = 0;
|
|
for (uint32_t j = 0; j < numUnicodeValueRanges;
|
|
j++, tables += SizeOfDefUVSTable) {
|
|
const uint32_t startUnicode =
|
|
ReadUint24At(tables, DefUVSOffsetStartUnicodeValue);
|
|
const uint32_t endUnicode =
|
|
startUnicode + tables[DefUVSOffsetAdditionalCount];
|
|
NS_ENSURE_TRUE((prevEndUnicode < startUnicode || j == 0) &&
|
|
endUnicode <= CMAP_MAX_CODEPOINT,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
prevEndUnicode = endUnicode;
|
|
}
|
|
}
|
|
|
|
if (nonDefUVSOffset) {
|
|
const uint32_t numUVSMappings = ReadLongAt(aBuf, nonDefUVSOffset);
|
|
NS_ENSURE_TRUE(
|
|
(tablelen - nonDefUVSOffset) / SizeOfNonDefUVSTable >= numUVSMappings,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
const uint8_t* tables = aBuf + nonDefUVSOffset + 4;
|
|
uint32_t prevUnicode = 0;
|
|
for (uint32_t j = 0; j < numUVSMappings;
|
|
j++, tables += SizeOfNonDefUVSTable) {
|
|
const uint32_t unicodeValue =
|
|
ReadUint24At(tables, NonDefUVSOffsetUnicodeValue);
|
|
NS_ENSURE_TRUE((prevUnicode < unicodeValue || j == 0) &&
|
|
unicodeValue <= CMAP_MAX_CODEPOINT,
|
|
NS_ERROR_GFX_CMAP_MALFORMED);
|
|
prevUnicode = unicodeValue;
|
|
}
|
|
}
|
|
}
|
|
|
|
aTable = MakeUnique<uint8_t[]>(tablelen);
|
|
memcpy(aTable.get(), aBuf, tablelen);
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
// For fonts with two format-4 tables, the first one (Unicode platform) is
|
|
// preferred on the Mac; on other platforms we allow the Microsoft-platform
|
|
// subtable to replace it.
|
|
|
|
#if defined(XP_MACOSX)
|
|
# define acceptableFormat4(p, e, k) \
|
|
(((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDMicrosoft && !(k)) || \
|
|
((p) == PLATFORM_ID_UNICODE))
|
|
|
|
# define acceptableUCS4Encoding(p, e, k) \
|
|
(((p) == PLATFORM_ID_MICROSOFT && \
|
|
(e) == EncodingIDUCS4ForMicrosoftPlatform) && \
|
|
(k) != 12 || \
|
|
((p) == PLATFORM_ID_UNICODE && ((e) != EncodingIDUVSForUnicodePlatform)))
|
|
#else
|
|
# define acceptableFormat4(p, e, k) \
|
|
(((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDMicrosoft) || \
|
|
((p) == PLATFORM_ID_UNICODE))
|
|
|
|
# define acceptableUCS4Encoding(p, e, k) \
|
|
((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDUCS4ForMicrosoftPlatform)
|
|
#endif
|
|
|
|
#define acceptablePlatform(p) \
|
|
((p) == PLATFORM_ID_UNICODE || (p) == PLATFORM_ID_MICROSOFT)
|
|
#define isSymbol(p, e) ((p) == PLATFORM_ID_MICROSOFT && (e) == EncodingIDSymbol)
|
|
#define isUVSEncoding(p, e) \
|
|
((p) == PLATFORM_ID_UNICODE && (e) == EncodingIDUVSForUnicodePlatform)
|
|
|
|
uint32_t gfxFontUtils::FindPreferredSubtable(const uint8_t* aBuf,
|
|
uint32_t aBufLength,
|
|
uint32_t* aTableOffset,
|
|
uint32_t* aUVSTableOffset) {
|
|
enum {
|
|
OffsetVersion = 0,
|
|
OffsetNumTables = 2,
|
|
SizeOfHeader = 4,
|
|
|
|
TableOffsetPlatformID = 0,
|
|
TableOffsetEncodingID = 2,
|
|
TableOffsetOffset = 4,
|
|
SizeOfTable = 8,
|
|
|
|
SubtableOffsetFormat = 0
|
|
};
|
|
enum {
|
|
EncodingIDSymbol = 0,
|
|
EncodingIDMicrosoft = 1,
|
|
EncodingIDDefaultForUnicodePlatform = 0,
|
|
EncodingIDUCS4ForUnicodePlatform = 3,
|
|
EncodingIDUVSForUnicodePlatform = 5,
|
|
EncodingIDUCS4ForMicrosoftPlatform = 10
|
|
};
|
|
|
|
if (aUVSTableOffset) {
|
|
*aUVSTableOffset = 0;
|
|
}
|
|
|
|
if (!aBuf || aBufLength < SizeOfHeader) {
|
|
// cmap table is missing, or too small to contain header fields!
|
|
return 0;
|
|
}
|
|
|
|
// uint16_t version = ReadShortAt(aBuf, OffsetVersion); // Unused:
|
|
// self-documenting.
|
|
uint16_t numTables = ReadShortAt(aBuf, OffsetNumTables);
|
|
if (aBufLength < uint32_t(SizeOfHeader + numTables * SizeOfTable)) {
|
|
return 0;
|
|
}
|
|
|
|
// save the format we want here
|
|
uint32_t keepFormat = 0;
|
|
|
|
const uint8_t* table = aBuf + SizeOfHeader;
|
|
for (uint16_t i = 0; i < numTables; ++i, table += SizeOfTable) {
|
|
const uint16_t platformID = ReadShortAt(table, TableOffsetPlatformID);
|
|
if (!acceptablePlatform(platformID)) continue;
|
|
|
|
const uint16_t encodingID = ReadShortAt(table, TableOffsetEncodingID);
|
|
const uint32_t offset = ReadLongAt(table, TableOffsetOffset);
|
|
if (aBufLength - 2 < offset) {
|
|
// this subtable is not valid - beyond end of buffer
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t* subtable = aBuf + offset;
|
|
const uint16_t format = ReadShortAt(subtable, SubtableOffsetFormat);
|
|
|
|
if (isSymbol(platformID, encodingID)) {
|
|
keepFormat = format;
|
|
*aTableOffset = offset;
|
|
break;
|
|
} else if (format == 4 &&
|
|
acceptableFormat4(platformID, encodingID, keepFormat)) {
|
|
keepFormat = format;
|
|
*aTableOffset = offset;
|
|
} else if ((format == 10 || format == 12 || format == 13) &&
|
|
acceptableUCS4Encoding(platformID, encodingID, keepFormat)) {
|
|
keepFormat = format;
|
|
*aTableOffset = offset;
|
|
if (platformID > PLATFORM_ID_UNICODE || !aUVSTableOffset ||
|
|
*aUVSTableOffset) {
|
|
break; // we don't want to try anything else when this format is
|
|
// available.
|
|
}
|
|
} else if (format == 14 && isUVSEncoding(platformID, encodingID) &&
|
|
aUVSTableOffset) {
|
|
*aUVSTableOffset = offset;
|
|
if (keepFormat == 10 || keepFormat == 12) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return keepFormat;
|
|
}
|
|
|
|
nsresult gfxFontUtils::ReadCMAP(const uint8_t* aBuf, uint32_t aBufLength,
|
|
gfxSparseBitSet& aCharacterMap,
|
|
uint32_t& aUVSOffset) {
|
|
uint32_t offset;
|
|
uint32_t format =
|
|
FindPreferredSubtable(aBuf, aBufLength, &offset, &aUVSOffset);
|
|
|
|
switch (format) {
|
|
case 4:
|
|
return ReadCMAPTableFormat4(aBuf + offset, aBufLength - offset,
|
|
aCharacterMap);
|
|
|
|
case 10:
|
|
return ReadCMAPTableFormat10(aBuf + offset, aBufLength - offset,
|
|
aCharacterMap);
|
|
|
|
case 12:
|
|
case 13:
|
|
return ReadCMAPTableFormat12or13(aBuf + offset, aBufLength - offset,
|
|
aCharacterMap);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
#pragma pack(1)
|
|
|
|
typedef struct {
|
|
AutoSwap_PRUint16 format;
|
|
AutoSwap_PRUint16 length;
|
|
AutoSwap_PRUint16 language;
|
|
AutoSwap_PRUint16 segCountX2;
|
|
AutoSwap_PRUint16 searchRange;
|
|
AutoSwap_PRUint16 entrySelector;
|
|
AutoSwap_PRUint16 rangeShift;
|
|
|
|
AutoSwap_PRUint16 arrays[1];
|
|
} Format4Cmap;
|
|
|
|
typedef struct {
|
|
AutoSwap_PRUint16 format;
|
|
AutoSwap_PRUint32 length;
|
|
AutoSwap_PRUint32 numVarSelectorRecords;
|
|
|
|
typedef struct {
|
|
AutoSwap_PRUint24 varSelector;
|
|
AutoSwap_PRUint32 defaultUVSOffset;
|
|
AutoSwap_PRUint32 nonDefaultUVSOffset;
|
|
} VarSelectorRecord;
|
|
|
|
VarSelectorRecord varSelectorRecords[1];
|
|
} Format14Cmap;
|
|
|
|
typedef struct {
|
|
AutoSwap_PRUint32 numUVSMappings;
|
|
|
|
typedef struct {
|
|
AutoSwap_PRUint24 unicodeValue;
|
|
AutoSwap_PRUint16 glyphID;
|
|
} UVSMapping;
|
|
|
|
UVSMapping uvsMappings[1];
|
|
} NonDefUVSTable;
|
|
|
|
#pragma pack()
|
|
|
|
uint32_t gfxFontUtils::MapCharToGlyphFormat4(const uint8_t* aBuf,
|
|
uint32_t aLength, char16_t aCh) {
|
|
const Format4Cmap* cmap4 = reinterpret_cast<const Format4Cmap*>(aBuf);
|
|
|
|
uint16_t segCount = (uint16_t)(cmap4->segCountX2) / 2;
|
|
|
|
const AutoSwap_PRUint16* endCodes = &cmap4->arrays[0];
|
|
const AutoSwap_PRUint16* startCodes = &cmap4->arrays[segCount + 1];
|
|
const AutoSwap_PRUint16* idDelta = &startCodes[segCount];
|
|
const AutoSwap_PRUint16* idRangeOffset = &idDelta[segCount];
|
|
|
|
// Sanity-check that the fixed-size arrays don't exceed the buffer.
|
|
const uint8_t* const limit = aBuf + aLength;
|
|
if ((const uint8_t*)(&idRangeOffset[segCount]) > limit) {
|
|
return 0; // broken font, just bail out safely
|
|
}
|
|
|
|
// For most efficient binary search, we want to work on a range of segment
|
|
// indexes that is a power of 2 so that we can always halve it by shifting.
|
|
// So we find the largest power of 2 that is <= segCount.
|
|
// We will offset this range by segOffset so as to reach the end
|
|
// of the table, provided that doesn't put us beyond the target
|
|
// value from the outset.
|
|
uint32_t powerOf2 = mozilla::FindHighestBit(segCount);
|
|
uint32_t segOffset = segCount - powerOf2;
|
|
uint32_t idx = 0;
|
|
|
|
if (uint16_t(startCodes[segOffset]) <= aCh) {
|
|
idx = segOffset;
|
|
}
|
|
|
|
// Repeatedly halve the size of the range until we find the target group
|
|
while (powerOf2 > 1) {
|
|
powerOf2 >>= 1;
|
|
if (uint16_t(startCodes[idx + powerOf2]) <= aCh) {
|
|
idx += powerOf2;
|
|
}
|
|
}
|
|
|
|
if (aCh >= uint16_t(startCodes[idx]) && aCh <= uint16_t(endCodes[idx])) {
|
|
uint16_t result;
|
|
if (uint16_t(idRangeOffset[idx]) == 0) {
|
|
result = aCh;
|
|
} else {
|
|
uint16_t offset = aCh - uint16_t(startCodes[idx]);
|
|
const AutoSwap_PRUint16* glyphIndexTable =
|
|
(const AutoSwap_PRUint16*)((const char*)&idRangeOffset[idx] +
|
|
uint16_t(idRangeOffset[idx]));
|
|
if ((const uint8_t*)(glyphIndexTable + offset + 1) > limit) {
|
|
return 0; // broken font, just bail out safely
|
|
}
|
|
result = glyphIndexTable[offset];
|
|
}
|
|
|
|
// Note that this is unsigned 16-bit arithmetic, and may wrap around
|
|
// (which is required behavior per spec)
|
|
result += uint16_t(idDelta[idx]);
|
|
return result;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t gfxFontUtils::MapCharToGlyphFormat10(const uint8_t* aBuf,
|
|
uint32_t aCh) {
|
|
const Format10CmapHeader* cmap10 =
|
|
reinterpret_cast<const Format10CmapHeader*>(aBuf);
|
|
|
|
uint32_t startChar = cmap10->startCharCode;
|
|
uint32_t numChars = cmap10->numChars;
|
|
|
|
if (aCh < startChar || aCh >= startChar + numChars) {
|
|
return 0;
|
|
}
|
|
|
|
const AutoSwap_PRUint16* glyphs =
|
|
reinterpret_cast<const AutoSwap_PRUint16*>(cmap10 + 1);
|
|
|
|
uint16_t glyph = glyphs[aCh - startChar];
|
|
return glyph;
|
|
}
|
|
|
|
uint32_t gfxFontUtils::MapCharToGlyphFormat12or13(const uint8_t* aBuf,
|
|
uint32_t aCh) {
|
|
// The only difference between formats 12 and 13 is the interpretation of
|
|
// the glyphId field. So the code here uses the same "Format12" structures,
|
|
// etc., to handle both subtable formats.
|
|
|
|
const Format12CmapHeader* cmap12 =
|
|
reinterpret_cast<const Format12CmapHeader*>(aBuf);
|
|
|
|
// We know that numGroups is within range for the subtable size
|
|
// because it was checked by ReadCMAPTableFormat12or13.
|
|
uint32_t numGroups = cmap12->numGroups;
|
|
|
|
// The array of groups immediately follows the subtable header.
|
|
const Format12Group* groups =
|
|
reinterpret_cast<const Format12Group*>(aBuf + sizeof(Format12CmapHeader));
|
|
|
|
// For most efficient binary search, we want to work on a range that
|
|
// is a power of 2 so that we can always halve it by shifting.
|
|
// So we find the largest power of 2 that is <= numGroups.
|
|
// We will offset this range by rangeOffset so as to reach the end
|
|
// of the table, provided that doesn't put us beyond the target
|
|
// value from the outset.
|
|
uint32_t powerOf2 = mozilla::FindHighestBit(numGroups);
|
|
uint32_t rangeOffset = numGroups - powerOf2;
|
|
uint32_t range = 0;
|
|
uint32_t startCharCode;
|
|
|
|
if (groups[rangeOffset].startCharCode <= aCh) {
|
|
range = rangeOffset;
|
|
}
|
|
|
|
// Repeatedly halve the size of the range until we find the target group
|
|
while (powerOf2 > 1) {
|
|
powerOf2 >>= 1;
|
|
if (groups[range + powerOf2].startCharCode <= aCh) {
|
|
range += powerOf2;
|
|
}
|
|
}
|
|
|
|
// Check if the character is actually present in the range and return
|
|
// the corresponding glyph ID. Here is where formats 12 and 13 interpret
|
|
// the startGlyphId (12) or glyphId (13) field differently
|
|
startCharCode = groups[range].startCharCode;
|
|
if (startCharCode <= aCh && groups[range].endCharCode >= aCh) {
|
|
return uint16_t(cmap12->format) == 12
|
|
? uint16_t(groups[range].startGlyphId) + aCh - startCharCode
|
|
: uint16_t(groups[range].startGlyphId);
|
|
}
|
|
|
|
// Else it's not present, so return the .notdef glyph
|
|
return 0;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct Format14CmapWrapper {
|
|
const Format14Cmap& mCmap14;
|
|
explicit Format14CmapWrapper(const Format14Cmap& cmap14) : mCmap14(cmap14) {}
|
|
uint32_t operator[](size_t index) const {
|
|
return mCmap14.varSelectorRecords[index].varSelector;
|
|
}
|
|
};
|
|
|
|
struct NonDefUVSTableWrapper {
|
|
const NonDefUVSTable& mTable;
|
|
explicit NonDefUVSTableWrapper(const NonDefUVSTable& table) : mTable(table) {}
|
|
uint32_t operator[](size_t index) const {
|
|
return mTable.uvsMappings[index].unicodeValue;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
uint16_t gfxFontUtils::MapUVSToGlyphFormat14(const uint8_t* aBuf, uint32_t aCh,
|
|
uint32_t aVS) {
|
|
using mozilla::BinarySearch;
|
|
const Format14Cmap* cmap14 = reinterpret_cast<const Format14Cmap*>(aBuf);
|
|
|
|
size_t index;
|
|
if (!BinarySearch(Format14CmapWrapper(*cmap14), 0,
|
|
cmap14->numVarSelectorRecords, aVS, &index)) {
|
|
return 0;
|
|
}
|
|
|
|
const uint32_t nonDefUVSOffset =
|
|
cmap14->varSelectorRecords[index].nonDefaultUVSOffset;
|
|
if (!nonDefUVSOffset) {
|
|
return 0;
|
|
}
|
|
|
|
const NonDefUVSTable* table =
|
|
reinterpret_cast<const NonDefUVSTable*>(aBuf + nonDefUVSOffset);
|
|
|
|
if (BinarySearch(NonDefUVSTableWrapper(*table), 0, table->numUVSMappings, aCh,
|
|
&index)) {
|
|
return table->uvsMappings[index].glyphID;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t gfxFontUtils::MapCharToGlyph(const uint8_t* aCmapBuf,
|
|
uint32_t aBufLength, uint32_t aUnicode,
|
|
uint32_t aVarSelector) {
|
|
uint32_t offset, uvsOffset;
|
|
uint32_t format =
|
|
FindPreferredSubtable(aCmapBuf, aBufLength, &offset, &uvsOffset);
|
|
|
|
uint32_t gid;
|
|
switch (format) {
|
|
case 4:
|
|
gid = aUnicode < UNICODE_BMP_LIMIT
|
|
? MapCharToGlyphFormat4(aCmapBuf + offset, aBufLength - offset,
|
|
char16_t(aUnicode))
|
|
: 0;
|
|
break;
|
|
case 10:
|
|
gid = MapCharToGlyphFormat10(aCmapBuf + offset, aUnicode);
|
|
break;
|
|
case 12:
|
|
case 13:
|
|
gid = MapCharToGlyphFormat12or13(aCmapBuf + offset, aUnicode);
|
|
break;
|
|
default:
|
|
NS_WARNING("unsupported cmap format, glyphs will be missing");
|
|
gid = 0;
|
|
}
|
|
|
|
if (aVarSelector && uvsOffset && gid) {
|
|
uint32_t varGID = gfxFontUtils::MapUVSToGlyphFormat14(
|
|
aCmapBuf + uvsOffset, aUnicode, aVarSelector);
|
|
if (!varGID) {
|
|
aUnicode = gfxFontUtils::GetUVSFallback(aUnicode, aVarSelector);
|
|
if (aUnicode) {
|
|
switch (format) {
|
|
case 4:
|
|
if (aUnicode < UNICODE_BMP_LIMIT) {
|
|
varGID = MapCharToGlyphFormat4(
|
|
aCmapBuf + offset, aBufLength - offset, char16_t(aUnicode));
|
|
}
|
|
break;
|
|
case 10:
|
|
varGID = MapCharToGlyphFormat10(aCmapBuf + offset, aUnicode);
|
|
break;
|
|
case 12:
|
|
case 13:
|
|
varGID = MapCharToGlyphFormat12or13(aCmapBuf + offset, aUnicode);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (varGID) {
|
|
gid = varGID;
|
|
}
|
|
|
|
// else the variation sequence was not supported, use default mapping
|
|
// of the character code alone
|
|
}
|
|
|
|
return gid;
|
|
}
|
|
|
|
void gfxFontUtils::ParseFontList(const nsACString& aFamilyList,
|
|
nsTArray<nsCString>& aFontList) {
|
|
const char kComma = ',';
|
|
|
|
// append each font name to the list
|
|
nsAutoCString fontname;
|
|
const char *p, *p_end;
|
|
aFamilyList.BeginReading(p);
|
|
aFamilyList.EndReading(p_end);
|
|
|
|
while (p < p_end) {
|
|
const char* nameStart = p;
|
|
while (++p != p_end && *p != kComma) /* nothing */
|
|
;
|
|
|
|
// pull out a single name and clean out leading/trailing whitespace
|
|
fontname = Substring(nameStart, p);
|
|
fontname.CompressWhitespace(true, true);
|
|
|
|
// append it to the list if it's not empty
|
|
if (!fontname.IsEmpty()) {
|
|
aFontList.AppendElement(fontname);
|
|
}
|
|
++p;
|
|
}
|
|
}
|
|
|
|
void gfxFontUtils::AppendPrefsFontList(const char* aPrefName,
|
|
nsTArray<nsCString>& aFontList,
|
|
bool aLocalized) {
|
|
// get the list of single-face font families
|
|
nsAutoCString fontlistValue;
|
|
nsresult rv = aLocalized
|
|
? Preferences::GetLocalizedCString(aPrefName, fontlistValue)
|
|
: Preferences::GetCString(aPrefName, fontlistValue);
|
|
if (NS_FAILED(rv)) {
|
|
return;
|
|
}
|
|
|
|
ParseFontList(fontlistValue, aFontList);
|
|
}
|
|
|
|
void gfxFontUtils::GetPrefsFontList(const char* aPrefName,
|
|
nsTArray<nsCString>& aFontList,
|
|
bool aLocalized) {
|
|
aFontList.Clear();
|
|
AppendPrefsFontList(aPrefName, aFontList, aLocalized);
|
|
}
|
|
|
|
// produce a unique font name that is (1) a valid Postscript name and (2) less
|
|
// than 31 characters in length. Using AddFontMemResourceEx on Windows fails
|
|
// for names longer than 30 characters in length.
|
|
|
|
#define MAX_B64_LEN 32
|
|
|
|
nsresult gfxFontUtils::MakeUniqueUserFontName(nsAString& aName) {
|
|
nsCOMPtr<nsIUUIDGenerator> uuidgen =
|
|
do_GetService("@mozilla.org/uuid-generator;1");
|
|
NS_ENSURE_TRUE(uuidgen, NS_ERROR_OUT_OF_MEMORY);
|
|
|
|
nsID guid;
|
|
|
|
NS_ASSERTION(sizeof(guid) * 2 <= MAX_B64_LEN, "size of nsID has changed!");
|
|
|
|
nsresult rv = uuidgen->GenerateUUIDInPlace(&guid);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
char guidB64[MAX_B64_LEN] = {0};
|
|
|
|
if (!PL_Base64Encode(reinterpret_cast<char*>(&guid), sizeof(guid), guidB64))
|
|
return NS_ERROR_FAILURE;
|
|
|
|
// all b64 characters except for '/' are allowed in Postscript names, so
|
|
// convert / ==> -
|
|
char* p;
|
|
for (p = guidB64; *p; p++) {
|
|
if (*p == '/') *p = '-';
|
|
}
|
|
|
|
aName.AssignLiteral(u"uf");
|
|
aName.AppendASCII(guidB64);
|
|
return NS_OK;
|
|
}
|
|
|
|
// TrueType/OpenType table handling code
|
|
|
|
// need byte aligned structs
|
|
#pragma pack(1)
|
|
|
|
// name table stores set of name record structures, followed by
|
|
// large block containing all the strings. name record offset and length
|
|
// indicates the offset and length within that block.
|
|
// http://www.microsoft.com/typography/otspec/name.htm
|
|
struct NameRecordData {
|
|
uint32_t offset;
|
|
uint32_t length;
|
|
};
|
|
|
|
#pragma pack()
|
|
|
|
static bool IsValidSFNTVersion(uint32_t version) {
|
|
// normally 0x00010000, CFF-style OT fonts == 'OTTO' and Apple TT fonts =
|
|
// 'true' 'typ1' is also possible for old Type 1 fonts in a SFNT container but
|
|
// not supported
|
|
return version == 0x10000 || version == TRUETYPE_TAG('O', 'T', 'T', 'O') ||
|
|
version == TRUETYPE_TAG('t', 'r', 'u', 'e');
|
|
}
|
|
|
|
gfxUserFontType gfxFontUtils::DetermineFontDataType(const uint8_t* aFontData,
|
|
uint32_t aFontDataLength) {
|
|
// test for OpenType font data
|
|
// problem: EOT-Lite with 0x10000 length will look like TrueType!
|
|
if (aFontDataLength >= sizeof(SFNTHeader)) {
|
|
const SFNTHeader* sfntHeader =
|
|
reinterpret_cast<const SFNTHeader*>(aFontData);
|
|
uint32_t sfntVersion = sfntHeader->sfntVersion;
|
|
if (IsValidSFNTVersion(sfntVersion)) {
|
|
return GFX_USERFONT_OPENTYPE;
|
|
}
|
|
}
|
|
|
|
// test for WOFF or WOFF2
|
|
if (aFontDataLength >= sizeof(AutoSwap_PRUint32)) {
|
|
const AutoSwap_PRUint32* version =
|
|
reinterpret_cast<const AutoSwap_PRUint32*>(aFontData);
|
|
if (uint32_t(*version) == TRUETYPE_TAG('w', 'O', 'F', 'F')) {
|
|
return GFX_USERFONT_WOFF;
|
|
}
|
|
if (uint32_t(*version) == TRUETYPE_TAG('w', 'O', 'F', '2')) {
|
|
return GFX_USERFONT_WOFF2;
|
|
}
|
|
}
|
|
|
|
// tests for other formats here
|
|
|
|
return GFX_USERFONT_UNKNOWN;
|
|
}
|
|
|
|
static int DirEntryCmp(const void* aKey, const void* aItem) {
|
|
int32_t tag = *static_cast<const int32_t*>(aKey);
|
|
const TableDirEntry* entry = static_cast<const TableDirEntry*>(aItem);
|
|
return tag - int32_t(entry->tag);
|
|
}
|
|
|
|
/* static */
|
|
TableDirEntry* gfxFontUtils::FindTableDirEntry(const void* aFontData,
|
|
uint32_t aTableTag) {
|
|
const SFNTHeader* header = reinterpret_cast<const SFNTHeader*>(aFontData);
|
|
const TableDirEntry* dir = reinterpret_cast<const TableDirEntry*>(header + 1);
|
|
return static_cast<TableDirEntry*>(
|
|
bsearch(&aTableTag, dir, uint16_t(header->numTables),
|
|
sizeof(TableDirEntry), DirEntryCmp));
|
|
}
|
|
|
|
/* static */
|
|
hb_blob_t* gfxFontUtils::GetTableFromFontData(const void* aFontData,
|
|
uint32_t aTableTag) {
|
|
const TableDirEntry* dir = FindTableDirEntry(aFontData, aTableTag);
|
|
if (dir) {
|
|
return hb_blob_create(
|
|
reinterpret_cast<const char*>(aFontData) + dir->offset, dir->length,
|
|
HB_MEMORY_MODE_READONLY, nullptr, nullptr);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
nsresult gfxFontUtils::RenameFont(const nsAString& aName,
|
|
const uint8_t* aFontData,
|
|
uint32_t aFontDataLength,
|
|
FallibleTArray<uint8_t>* aNewFont) {
|
|
NS_ASSERTION(aNewFont, "null font data array");
|
|
|
|
uint64_t dataLength(aFontDataLength);
|
|
|
|
// new name table
|
|
static const uint32_t neededNameIDs[] = {NAME_ID_FAMILY, NAME_ID_STYLE,
|
|
NAME_ID_UNIQUE, NAME_ID_FULL,
|
|
NAME_ID_POSTSCRIPT};
|
|
|
|
// calculate new name table size
|
|
uint16_t nameCount = ArrayLength(neededNameIDs);
|
|
|
|
// leave room for null-terminator
|
|
uint32_t nameStrLength = (aName.Length() + 1) * sizeof(char16_t);
|
|
if (nameStrLength > 65535) {
|
|
// The name length _in bytes_ must fit in an unsigned short field;
|
|
// therefore, a name longer than this cannot be used.
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// round name table size up to 4-byte multiple
|
|
uint32_t nameTableSize =
|
|
(sizeof(NameHeader) + sizeof(NameRecord) * nameCount + nameStrLength +
|
|
3) &
|
|
~3;
|
|
|
|
if (dataLength + nameTableSize > UINT32_MAX) return NS_ERROR_FAILURE;
|
|
|
|
// bug 505386 - need to handle unpadded font length
|
|
uint32_t paddedFontDataSize = (aFontDataLength + 3) & ~3;
|
|
uint32_t adjFontDataSize = paddedFontDataSize + nameTableSize;
|
|
|
|
// create new buffer: old font data plus new name table
|
|
if (!aNewFont->AppendElements(adjFontDataSize, fallible))
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
|
|
// copy the old font data
|
|
uint8_t* newFontData = reinterpret_cast<uint8_t*>(aNewFont->Elements());
|
|
|
|
// null the last four bytes in case the font length is not a multiple of 4
|
|
memset(newFontData + aFontDataLength, 0,
|
|
paddedFontDataSize - aFontDataLength);
|
|
|
|
// copy font data
|
|
memcpy(newFontData, aFontData, aFontDataLength);
|
|
|
|
// null out the last 4 bytes for checksum calculations
|
|
memset(newFontData + adjFontDataSize - 4, 0, 4);
|
|
|
|
NameHeader* nameHeader =
|
|
reinterpret_cast<NameHeader*>(newFontData + paddedFontDataSize);
|
|
|
|
// -- name header
|
|
nameHeader->format = 0;
|
|
nameHeader->count = nameCount;
|
|
nameHeader->stringOffset =
|
|
sizeof(NameHeader) + nameCount * sizeof(NameRecord);
|
|
|
|
// -- name records
|
|
uint32_t i;
|
|
NameRecord* nameRecord = reinterpret_cast<NameRecord*>(nameHeader + 1);
|
|
|
|
for (i = 0; i < nameCount; i++, nameRecord++) {
|
|
nameRecord->platformID = PLATFORM_ID_MICROSOFT;
|
|
nameRecord->encodingID = ENCODING_ID_MICROSOFT_UNICODEBMP;
|
|
nameRecord->languageID = LANG_ID_MICROSOFT_EN_US;
|
|
nameRecord->nameID = neededNameIDs[i];
|
|
nameRecord->offset = 0;
|
|
nameRecord->length = nameStrLength;
|
|
}
|
|
|
|
// -- string data, located after the name records, stored in big-endian form
|
|
char16_t* strData = reinterpret_cast<char16_t*>(nameRecord);
|
|
|
|
mozilla::NativeEndian::copyAndSwapToBigEndian(strData, aName.BeginReading(),
|
|
aName.Length());
|
|
strData[aName.Length()] = 0; // add null termination
|
|
|
|
// adjust name table header to point to the new name table
|
|
SFNTHeader* sfntHeader = reinterpret_cast<SFNTHeader*>(newFontData);
|
|
|
|
// table directory entries begin immediately following SFNT header
|
|
TableDirEntry* dirEntry =
|
|
FindTableDirEntry(newFontData, TRUETYPE_TAG('n', 'a', 'm', 'e'));
|
|
// function only called if font validates, so this should always be true
|
|
MOZ_ASSERT(dirEntry, "attempt to rename font with no name table");
|
|
|
|
uint32_t numTables = sfntHeader->numTables;
|
|
|
|
// note: dirEntry now points to 'name' table record
|
|
|
|
// recalculate name table checksum
|
|
uint32_t checkSum = 0;
|
|
AutoSwap_PRUint32* nameData =
|
|
reinterpret_cast<AutoSwap_PRUint32*>(nameHeader);
|
|
AutoSwap_PRUint32* nameDataEnd = nameData + (nameTableSize >> 2);
|
|
|
|
while (nameData < nameDataEnd) checkSum = checkSum + *nameData++;
|
|
|
|
// adjust name table entry to point to new name table
|
|
dirEntry->offset = paddedFontDataSize;
|
|
dirEntry->length = nameTableSize;
|
|
dirEntry->checkSum = checkSum;
|
|
|
|
// fix up checksums
|
|
uint32_t checksum = 0;
|
|
|
|
// checksum for font = (checksum of header) + (checksum of tables)
|
|
uint32_t headerLen = sizeof(SFNTHeader) + sizeof(TableDirEntry) * numTables;
|
|
const AutoSwap_PRUint32* headerData =
|
|
reinterpret_cast<const AutoSwap_PRUint32*>(newFontData);
|
|
|
|
// header length is in bytes, checksum calculated in longwords
|
|
for (i = 0; i < (headerLen >> 2); i++, headerData++) {
|
|
checksum += *headerData;
|
|
}
|
|
|
|
uint32_t headOffset = 0;
|
|
dirEntry = reinterpret_cast<TableDirEntry*>(newFontData + sizeof(SFNTHeader));
|
|
|
|
for (i = 0; i < numTables; i++, dirEntry++) {
|
|
if (dirEntry->tag == TRUETYPE_TAG('h', 'e', 'a', 'd')) {
|
|
headOffset = dirEntry->offset;
|
|
}
|
|
checksum += dirEntry->checkSum;
|
|
}
|
|
|
|
NS_ASSERTION(headOffset != 0, "no head table for font");
|
|
|
|
HeadTable* headData = reinterpret_cast<HeadTable*>(newFontData + headOffset);
|
|
|
|
headData->checkSumAdjustment = HeadTable::HEAD_CHECKSUM_CALC_CONST - checksum;
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
// This is only called after the basic validity of the downloaded sfnt
|
|
// data has been checked, so it should never fail to find the name table
|
|
// (though it might fail to read it, if memory isn't available);
|
|
// other checks here are just for extra paranoia.
|
|
nsresult gfxFontUtils::GetFullNameFromSFNT(const uint8_t* aFontData,
|
|
uint32_t aLength,
|
|
nsACString& aFullName) {
|
|
aFullName = "(MISSING NAME)"; // should always get replaced
|
|
|
|
const TableDirEntry* dirEntry =
|
|
FindTableDirEntry(aFontData, TRUETYPE_TAG('n', 'a', 'm', 'e'));
|
|
|
|
// should never fail, as we're only called after font validation succeeded
|
|
NS_ENSURE_TRUE(dirEntry, NS_ERROR_NOT_AVAILABLE);
|
|
|
|
uint32_t len = dirEntry->length;
|
|
NS_ENSURE_TRUE(aLength > len && aLength - len >= dirEntry->offset,
|
|
NS_ERROR_UNEXPECTED);
|
|
|
|
hb_blob_t* nameBlob =
|
|
hb_blob_create((const char*)aFontData + dirEntry->offset, len,
|
|
HB_MEMORY_MODE_READONLY, nullptr, nullptr);
|
|
nsresult rv = GetFullNameFromTable(nameBlob, aFullName);
|
|
hb_blob_destroy(nameBlob);
|
|
|
|
return rv;
|
|
}
|
|
|
|
nsresult gfxFontUtils::GetFullNameFromTable(hb_blob_t* aNameTable,
|
|
nsACString& aFullName) {
|
|
nsAutoCString name;
|
|
nsresult rv = gfxFontUtils::ReadCanonicalName(
|
|
aNameTable, gfxFontUtils::NAME_ID_FULL, name);
|
|
if (NS_SUCCEEDED(rv) && !name.IsEmpty()) {
|
|
aFullName = name;
|
|
return NS_OK;
|
|
}
|
|
rv = gfxFontUtils::ReadCanonicalName(aNameTable, gfxFontUtils::NAME_ID_FAMILY,
|
|
name);
|
|
if (NS_SUCCEEDED(rv) && !name.IsEmpty()) {
|
|
nsAutoCString styleName;
|
|
rv = gfxFontUtils::ReadCanonicalName(
|
|
aNameTable, gfxFontUtils::NAME_ID_STYLE, styleName);
|
|
if (NS_SUCCEEDED(rv) && !styleName.IsEmpty()) {
|
|
name.Append(' ');
|
|
name.Append(styleName);
|
|
aFullName = name;
|
|
}
|
|
return NS_OK;
|
|
}
|
|
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
nsresult gfxFontUtils::GetFamilyNameFromTable(hb_blob_t* aNameTable,
|
|
nsACString& aFamilyName) {
|
|
nsAutoCString name;
|
|
nsresult rv = gfxFontUtils::ReadCanonicalName(
|
|
aNameTable, gfxFontUtils::NAME_ID_FAMILY, name);
|
|
if (NS_SUCCEEDED(rv) && !name.IsEmpty()) {
|
|
aFamilyName = name;
|
|
return NS_OK;
|
|
}
|
|
return NS_ERROR_NOT_AVAILABLE;
|
|
}
|
|
|
|
enum {
|
|
#if defined(XP_MACOSX)
|
|
CANONICAL_LANG_ID = gfxFontUtils::LANG_ID_MAC_ENGLISH,
|
|
PLATFORM_ID = gfxFontUtils::PLATFORM_ID_MAC
|
|
#else
|
|
CANONICAL_LANG_ID = gfxFontUtils::LANG_ID_MICROSOFT_EN_US,
|
|
PLATFORM_ID = gfxFontUtils::PLATFORM_ID_MICROSOFT
|
|
#endif
|
|
};
|
|
|
|
nsresult gfxFontUtils::ReadNames(const char* aNameData, uint32_t aDataLen,
|
|
uint32_t aNameID, int32_t aPlatformID,
|
|
nsTArray<nsCString>& aNames) {
|
|
return ReadNames(aNameData, aDataLen, aNameID, LANG_ALL, aPlatformID, aNames);
|
|
}
|
|
|
|
nsresult gfxFontUtils::ReadCanonicalName(hb_blob_t* aNameTable,
|
|
uint32_t aNameID, nsCString& aName) {
|
|
uint32_t nameTableLen;
|
|
const char* nameTable = hb_blob_get_data(aNameTable, &nameTableLen);
|
|
return ReadCanonicalName(nameTable, nameTableLen, aNameID, aName);
|
|
}
|
|
|
|
nsresult gfxFontUtils::ReadCanonicalName(const char* aNameData,
|
|
uint32_t aDataLen, uint32_t aNameID,
|
|
nsCString& aName) {
|
|
nsresult rv;
|
|
|
|
nsTArray<nsCString> names;
|
|
|
|
// first, look for the English name (this will succeed 99% of the time)
|
|
rv = ReadNames(aNameData, aDataLen, aNameID, CANONICAL_LANG_ID, PLATFORM_ID,
|
|
names);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// otherwise, grab names for all languages
|
|
if (names.Length() == 0) {
|
|
rv = ReadNames(aNameData, aDataLen, aNameID, LANG_ALL, PLATFORM_ID, names);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
}
|
|
|
|
#if defined(XP_MACOSX)
|
|
// may be dealing with font that only has Microsoft name entries
|
|
if (names.Length() == 0) {
|
|
rv = ReadNames(aNameData, aDataLen, aNameID, LANG_ID_MICROSOFT_EN_US,
|
|
PLATFORM_ID_MICROSOFT, names);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
|
|
// getting really desperate now, take anything!
|
|
if (names.Length() == 0) {
|
|
rv = ReadNames(aNameData, aDataLen, aNameID, LANG_ALL,
|
|
PLATFORM_ID_MICROSOFT, names);
|
|
NS_ENSURE_SUCCESS(rv, rv);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// return the first name (99.9% of the time names will
|
|
// contain a single English name)
|
|
if (names.Length()) {
|
|
aName.Assign(names[0]);
|
|
return NS_OK;
|
|
}
|
|
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// Charsets to use for decoding Mac platform font names.
|
|
// This table is sorted by {encoding, language}, with the wildcard "ANY" being
|
|
// greater than any defined values for each field; we use a binary search on
|
|
// both fields, and fall back to matching only encoding if necessary
|
|
|
|
// Some "redundant" entries for specific combinations are included such as
|
|
// encoding=roman, lang=english, in order that common entries will be found
|
|
// on the first search.
|
|
|
|
const uint16_t ANY = 0xffff;
|
|
const gfxFontUtils::MacFontNameCharsetMapping
|
|
gfxFontUtils::gMacFontNameCharsets[] = {
|
|
{ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_ENGLISH, MACINTOSH_ENCODING},
|
|
{ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_ICELANDIC, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_TURKISH, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_POLISH, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_ROMANIAN, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_CZECH, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_ROMAN, LANG_ID_MAC_SLOVAK, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_ROMAN, ANY, MACINTOSH_ENCODING},
|
|
{ENCODING_ID_MAC_JAPANESE, LANG_ID_MAC_JAPANESE, SHIFT_JIS_ENCODING},
|
|
{ENCODING_ID_MAC_JAPANESE, ANY, SHIFT_JIS_ENCODING},
|
|
{ENCODING_ID_MAC_TRAD_CHINESE, LANG_ID_MAC_TRAD_CHINESE, BIG5_ENCODING},
|
|
{ENCODING_ID_MAC_TRAD_CHINESE, ANY, BIG5_ENCODING},
|
|
{ENCODING_ID_MAC_KOREAN, LANG_ID_MAC_KOREAN, EUC_KR_ENCODING},
|
|
{ENCODING_ID_MAC_KOREAN, ANY, EUC_KR_ENCODING},
|
|
{ENCODING_ID_MAC_ARABIC, LANG_ID_MAC_ARABIC, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_ARABIC, LANG_ID_MAC_URDU, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_ARABIC, LANG_ID_MAC_FARSI, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_ARABIC, ANY, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_HEBREW, LANG_ID_MAC_HEBREW, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_HEBREW, ANY, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_GREEK, ANY, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_CYRILLIC, ANY, X_MAC_CYRILLIC_ENCODING},
|
|
{ENCODING_ID_MAC_DEVANAGARI, ANY, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_GURMUKHI, ANY, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_GUJARATI, ANY, X_USER_DEFINED_ENCODING},
|
|
{ENCODING_ID_MAC_SIMP_CHINESE, LANG_ID_MAC_SIMP_CHINESE,
|
|
GB18030_ENCODING},
|
|
{ENCODING_ID_MAC_SIMP_CHINESE, ANY, GB18030_ENCODING}};
|
|
|
|
const Encoding* gfxFontUtils::gISOFontNameCharsets[] = {
|
|
/* 0 */ WINDOWS_1252_ENCODING, /* US-ASCII */
|
|
/* 1 */ nullptr, /* spec says "ISO 10646" but does not specify encoding
|
|
form! */
|
|
/* 2 */ WINDOWS_1252_ENCODING /* ISO-8859-1 */
|
|
};
|
|
|
|
const Encoding* gfxFontUtils::gMSFontNameCharsets[] = {
|
|
/* [0] ENCODING_ID_MICROSOFT_SYMBOL */ UTF_16BE_ENCODING,
|
|
/* [1] ENCODING_ID_MICROSOFT_UNICODEBMP */ UTF_16BE_ENCODING,
|
|
/* [2] ENCODING_ID_MICROSOFT_SHIFTJIS */ SHIFT_JIS_ENCODING,
|
|
/* [3] ENCODING_ID_MICROSOFT_PRC */ nullptr,
|
|
/* [4] ENCODING_ID_MICROSOFT_BIG5 */ BIG5_ENCODING,
|
|
/* [5] ENCODING_ID_MICROSOFT_WANSUNG */ nullptr,
|
|
/* [6] ENCODING_ID_MICROSOFT_JOHAB */ nullptr,
|
|
/* [7] reserved */ nullptr,
|
|
/* [8] reserved */ nullptr,
|
|
/* [9] reserved */ nullptr,
|
|
/*[10] ENCODING_ID_MICROSOFT_UNICODEFULL */ UTF_16BE_ENCODING};
|
|
|
|
struct MacCharsetMappingComparator {
|
|
typedef gfxFontUtils::MacFontNameCharsetMapping MacFontNameCharsetMapping;
|
|
const MacFontNameCharsetMapping& mSearchValue;
|
|
explicit MacCharsetMappingComparator(
|
|
const MacFontNameCharsetMapping& aSearchValue)
|
|
: mSearchValue(aSearchValue) {}
|
|
int operator()(const MacFontNameCharsetMapping& aEntry) const {
|
|
if (mSearchValue < aEntry) {
|
|
return -1;
|
|
}
|
|
if (aEntry < mSearchValue) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
// Return the Encoding object we should use to decode a font name
|
|
// given the name table attributes.
|
|
// Special return values:
|
|
// X_USER_DEFINED_ENCODING One of Mac legacy encodings that is not a part
|
|
// of Encoding Standard
|
|
// nullptr unknown charset, do not attempt conversion
|
|
const Encoding* gfxFontUtils::GetCharsetForFontName(uint16_t aPlatform,
|
|
uint16_t aScript,
|
|
uint16_t aLanguage) {
|
|
switch (aPlatform) {
|
|
case PLATFORM_ID_UNICODE:
|
|
return UTF_16BE_ENCODING;
|
|
|
|
case PLATFORM_ID_MAC: {
|
|
MacFontNameCharsetMapping searchValue = {aScript, aLanguage, nullptr};
|
|
for (uint32_t i = 0; i < 2; ++i) {
|
|
size_t idx;
|
|
if (BinarySearchIf(gMacFontNameCharsets, 0,
|
|
ArrayLength(gMacFontNameCharsets),
|
|
MacCharsetMappingComparator(searchValue), &idx)) {
|
|
return gMacFontNameCharsets[idx].mEncoding;
|
|
}
|
|
|
|
// no match, so try again finding one in any language
|
|
searchValue.mLanguage = ANY;
|
|
}
|
|
} break;
|
|
|
|
case PLATFORM_ID_ISO:
|
|
if (aScript < ArrayLength(gISOFontNameCharsets)) {
|
|
return gISOFontNameCharsets[aScript];
|
|
}
|
|
break;
|
|
|
|
case PLATFORM_ID_MICROSOFT:
|
|
if (aScript < ArrayLength(gMSFontNameCharsets)) {
|
|
return gMSFontNameCharsets[aScript];
|
|
}
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
template <int N>
|
|
static bool StartsWith(const nsACString& string, const char (&prefix)[N]) {
|
|
if (N - 1 > string.Length()) {
|
|
return false;
|
|
}
|
|
return memcmp(string.Data(), prefix, N - 1) == 0;
|
|
}
|
|
|
|
// convert a raw name from the name table to an nsString, if possible;
|
|
// return value indicates whether conversion succeeded
|
|
bool gfxFontUtils::DecodeFontName(const char* aNameData, int32_t aByteLen,
|
|
uint32_t aPlatformCode, uint32_t aScriptCode,
|
|
uint32_t aLangCode, nsACString& aName) {
|
|
if (aByteLen <= 0) {
|
|
NS_WARNING("empty font name");
|
|
aName.SetLength(0);
|
|
return true;
|
|
}
|
|
|
|
auto encoding = GetCharsetForFontName(aPlatformCode, aScriptCode, aLangCode);
|
|
|
|
if (!encoding) {
|
|
// nullptr -> unknown charset
|
|
#ifdef DEBUG
|
|
char warnBuf[128];
|
|
if (aByteLen > 64) aByteLen = 64;
|
|
SprintfLiteral(warnBuf,
|
|
"skipping font name, unknown charset %d:%d:%d for <%.*s>",
|
|
aPlatformCode, aScriptCode, aLangCode, aByteLen, aNameData);
|
|
NS_WARNING(warnBuf);
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
if (encoding == X_USER_DEFINED_ENCODING) {
|
|
#ifdef XP_MACOSX
|
|
// Special case for macOS only: support legacy Mac encodings
|
|
// that aren't part of the Encoding Standard.
|
|
if (aPlatformCode == PLATFORM_ID_MAC) {
|
|
CFStringRef str =
|
|
CFStringCreateWithBytes(kCFAllocatorDefault, (const UInt8*)aNameData,
|
|
aByteLen, aScriptCode, false);
|
|
if (str) {
|
|
CFIndex length = CFStringGetLength(str);
|
|
nsAutoString name16;
|
|
name16.SetLength(length);
|
|
CFStringGetCharacters(str, CFRangeMake(0, length),
|
|
(UniChar*)name16.BeginWriting());
|
|
CFRelease(str);
|
|
CopyUTF16toUTF8(name16, aName);
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
NS_WARNING("failed to get the decoder for a font name string");
|
|
return false;
|
|
}
|
|
|
|
auto rv = encoding->DecodeWithoutBOMHandling(
|
|
nsDependentCSubstring(aNameData, aByteLen), aName);
|
|
return NS_SUCCEEDED(rv);
|
|
}
|
|
|
|
nsresult gfxFontUtils::ReadNames(const char* aNameData, uint32_t aDataLen,
|
|
uint32_t aNameID, int32_t aLangID,
|
|
int32_t aPlatformID,
|
|
nsTArray<nsCString>& aNames) {
|
|
NS_ASSERTION(aDataLen != 0, "null name table");
|
|
|
|
if (!aDataLen) {
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// -- name table data
|
|
const NameHeader* nameHeader = reinterpret_cast<const NameHeader*>(aNameData);
|
|
|
|
uint32_t nameCount = nameHeader->count;
|
|
|
|
// -- sanity check the number of name records
|
|
if (uint64_t(nameCount) * sizeof(NameRecord) > aDataLen) {
|
|
NS_WARNING("invalid font (name table data)");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// -- iterate through name records
|
|
const NameRecord* nameRecord =
|
|
reinterpret_cast<const NameRecord*>(aNameData + sizeof(NameHeader));
|
|
uint64_t nameStringsBase = uint64_t(nameHeader->stringOffset);
|
|
|
|
uint32_t i;
|
|
for (i = 0; i < nameCount; i++, nameRecord++) {
|
|
uint32_t platformID;
|
|
|
|
// skip over unwanted nameID's
|
|
if (uint32_t(nameRecord->nameID) != aNameID) {
|
|
continue;
|
|
}
|
|
|
|
// skip over unwanted platform data
|
|
platformID = nameRecord->platformID;
|
|
if (aPlatformID != PLATFORM_ALL && platformID != uint32_t(aPlatformID)) {
|
|
continue;
|
|
}
|
|
|
|
// skip over unwanted languages
|
|
if (aLangID != LANG_ALL &&
|
|
uint32_t(nameRecord->languageID) != uint32_t(aLangID)) {
|
|
continue;
|
|
}
|
|
|
|
// add name to names array
|
|
|
|
// -- calculate string location
|
|
uint32_t namelen = nameRecord->length;
|
|
uint32_t nameoff =
|
|
nameRecord->offset; // offset from base of string storage
|
|
|
|
if (nameStringsBase + uint64_t(nameoff) + uint64_t(namelen) > aDataLen) {
|
|
NS_WARNING("invalid font (name table strings)");
|
|
return NS_ERROR_FAILURE;
|
|
}
|
|
|
|
// -- decode if necessary and make nsString
|
|
nsAutoCString name;
|
|
|
|
DecodeFontName(aNameData + nameStringsBase + nameoff, namelen, platformID,
|
|
uint32_t(nameRecord->encodingID),
|
|
uint32_t(nameRecord->languageID), name);
|
|
|
|
uint32_t k, numNames;
|
|
bool foundName = false;
|
|
|
|
numNames = aNames.Length();
|
|
for (k = 0; k < numNames; k++) {
|
|
if (name.Equals(aNames[k])) {
|
|
foundName = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!foundName) aNames.AppendElement(name);
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|
|
|
|
#pragma pack(1)
|
|
|
|
struct COLRBaseGlyphRecord {
|
|
AutoSwap_PRUint16 glyphId;
|
|
AutoSwap_PRUint16 firstLayerIndex;
|
|
AutoSwap_PRUint16 numLayers;
|
|
};
|
|
|
|
struct COLRLayerRecord {
|
|
AutoSwap_PRUint16 glyphId;
|
|
AutoSwap_PRUint16 paletteEntryIndex;
|
|
};
|
|
|
|
struct CPALColorRecord {
|
|
uint8_t blue;
|
|
uint8_t green;
|
|
uint8_t red;
|
|
uint8_t alpha;
|
|
};
|
|
|
|
#pragma pack()
|
|
|
|
bool gfxFontUtils::ValidateColorGlyphs(hb_blob_t* aCOLR, hb_blob_t* aCPAL) {
|
|
unsigned int colrLength;
|
|
const COLRHeader* colr =
|
|
reinterpret_cast<const COLRHeader*>(hb_blob_get_data(aCOLR, &colrLength));
|
|
unsigned int cpalLength;
|
|
const CPALHeaderVersion0* cpal = reinterpret_cast<const CPALHeaderVersion0*>(
|
|
hb_blob_get_data(aCPAL, &cpalLength));
|
|
|
|
if (!colr || !cpal || !colrLength || !cpalLength) {
|
|
return false;
|
|
}
|
|
|
|
if (uint16_t(colr->version) != 0 || uint16_t(cpal->version) != 0) {
|
|
// We only support version 0 headers.
|
|
return false;
|
|
}
|
|
|
|
const uint32_t offsetBaseGlyphRecord = colr->offsetBaseGlyphRecord;
|
|
const uint16_t numBaseGlyphRecord = colr->numBaseGlyphRecord;
|
|
const uint32_t offsetLayerRecord = colr->offsetLayerRecord;
|
|
const uint16_t numLayerRecords = colr->numLayerRecords;
|
|
|
|
const uint32_t offsetFirstColorRecord = cpal->offsetFirstColorRecord;
|
|
const uint16_t numColorRecords = cpal->numColorRecords;
|
|
const uint32_t numPaletteEntries = cpal->numPaletteEntries;
|
|
|
|
if (offsetBaseGlyphRecord >= colrLength) {
|
|
return false;
|
|
}
|
|
|
|
if (offsetLayerRecord >= colrLength) {
|
|
return false;
|
|
}
|
|
|
|
if (offsetFirstColorRecord >= cpalLength) {
|
|
return false;
|
|
}
|
|
|
|
if (!numPaletteEntries) {
|
|
return false;
|
|
}
|
|
|
|
if (sizeof(COLRBaseGlyphRecord) * numBaseGlyphRecord >
|
|
colrLength - offsetBaseGlyphRecord) {
|
|
// COLR base glyph record will be overflow
|
|
return false;
|
|
}
|
|
|
|
if (sizeof(COLRLayerRecord) * numLayerRecords >
|
|
colrLength - offsetLayerRecord) {
|
|
// COLR layer record will be overflow
|
|
return false;
|
|
}
|
|
|
|
if (sizeof(CPALColorRecord) * numColorRecords >
|
|
cpalLength - offsetFirstColorRecord) {
|
|
// CPAL color record will be overflow
|
|
return false;
|
|
}
|
|
|
|
if (numPaletteEntries * uint16_t(cpal->numPalettes) != numColorRecords) {
|
|
// palette of CPAL color record will be overflow.
|
|
return false;
|
|
}
|
|
|
|
uint16_t lastGlyphId = 0;
|
|
const COLRBaseGlyphRecord* baseGlyph =
|
|
reinterpret_cast<const COLRBaseGlyphRecord*>(
|
|
reinterpret_cast<const uint8_t*>(colr) + offsetBaseGlyphRecord);
|
|
|
|
for (uint16_t i = 0; i < numBaseGlyphRecord; i++, baseGlyph++) {
|
|
const uint32_t firstLayerIndex = baseGlyph->firstLayerIndex;
|
|
const uint16_t numLayers = baseGlyph->numLayers;
|
|
const uint16_t glyphId = baseGlyph->glyphId;
|
|
|
|
if (lastGlyphId && lastGlyphId >= glyphId) {
|
|
// glyphId must be sorted
|
|
return false;
|
|
}
|
|
lastGlyphId = glyphId;
|
|
|
|
if (!numLayers) {
|
|
// no layer
|
|
return false;
|
|
}
|
|
if (firstLayerIndex + numLayers > numLayerRecords) {
|
|
// layer length of target glyph is overflow
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const COLRLayerRecord* layer = reinterpret_cast<const COLRLayerRecord*>(
|
|
reinterpret_cast<const uint8_t*>(colr) + offsetLayerRecord);
|
|
|
|
for (uint16_t i = 0; i < numLayerRecords; i++, layer++) {
|
|
if (uint16_t(layer->paletteEntryIndex) >= numPaletteEntries &&
|
|
uint16_t(layer->paletteEntryIndex) != 0xFFFF) {
|
|
// CPAL palette entry record is overflow
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int CompareBaseGlyph(const void* key, const void* data) {
|
|
uint32_t glyphId = (uint32_t)(uintptr_t)key;
|
|
const COLRBaseGlyphRecord* baseGlyph =
|
|
reinterpret_cast<const COLRBaseGlyphRecord*>(data);
|
|
uint32_t baseGlyphId = uint16_t(baseGlyph->glyphId);
|
|
|
|
if (baseGlyphId == glyphId) {
|
|
return 0;
|
|
}
|
|
|
|
return baseGlyphId > glyphId ? -1 : 1;
|
|
}
|
|
|
|
static COLRBaseGlyphRecord* LookForBaseGlyphRecord(const COLRHeader* aCOLR,
|
|
uint32_t aGlyphId) {
|
|
const uint8_t* baseGlyphRecords = reinterpret_cast<const uint8_t*>(aCOLR) +
|
|
uint32_t(aCOLR->offsetBaseGlyphRecord);
|
|
// BaseGlyphRecord is sorted by glyphId
|
|
return reinterpret_cast<COLRBaseGlyphRecord*>(
|
|
bsearch((void*)(uintptr_t)aGlyphId, baseGlyphRecords,
|
|
uint16_t(aCOLR->numBaseGlyphRecord), sizeof(COLRBaseGlyphRecord),
|
|
CompareBaseGlyph));
|
|
}
|
|
|
|
bool gfxFontUtils::GetColorGlyphLayers(hb_blob_t* aCOLR, hb_blob_t* aCPAL,
|
|
uint32_t aGlyphId,
|
|
const mozilla::gfx::Color& aDefaultColor,
|
|
nsTArray<uint16_t>& aGlyphs,
|
|
nsTArray<mozilla::gfx::Color>& aColors) {
|
|
unsigned int blobLength;
|
|
const COLRHeader* colr =
|
|
reinterpret_cast<const COLRHeader*>(hb_blob_get_data(aCOLR, &blobLength));
|
|
MOZ_ASSERT(colr, "Cannot get COLR raw data");
|
|
MOZ_ASSERT(blobLength, "Found COLR data, but length is 0");
|
|
|
|
COLRBaseGlyphRecord* baseGlyph = LookForBaseGlyphRecord(colr, aGlyphId);
|
|
if (!baseGlyph) {
|
|
return false;
|
|
}
|
|
|
|
const CPALHeaderVersion0* cpal = reinterpret_cast<const CPALHeaderVersion0*>(
|
|
hb_blob_get_data(aCPAL, &blobLength));
|
|
MOZ_ASSERT(cpal, "Cannot get CPAL raw data");
|
|
MOZ_ASSERT(blobLength, "Found CPAL data, but length is 0");
|
|
|
|
const COLRLayerRecord* layer = reinterpret_cast<const COLRLayerRecord*>(
|
|
reinterpret_cast<const uint8_t*>(colr) +
|
|
uint32_t(colr->offsetLayerRecord) +
|
|
sizeof(COLRLayerRecord) * uint16_t(baseGlyph->firstLayerIndex));
|
|
const uint16_t numLayers = baseGlyph->numLayers;
|
|
const uint32_t offsetFirstColorRecord = cpal->offsetFirstColorRecord;
|
|
|
|
for (uint16_t layerIndex = 0; layerIndex < numLayers; layerIndex++) {
|
|
aGlyphs.AppendElement(uint16_t(layer->glyphId));
|
|
if (uint16_t(layer->paletteEntryIndex) == 0xFFFF) {
|
|
aColors.AppendElement(aDefaultColor);
|
|
} else {
|
|
const CPALColorRecord* color = reinterpret_cast<const CPALColorRecord*>(
|
|
reinterpret_cast<const uint8_t*>(cpal) + offsetFirstColorRecord +
|
|
sizeof(CPALColorRecord) * uint16_t(layer->paletteEntryIndex));
|
|
aColors.AppendElement(
|
|
mozilla::gfx::Color(color->red / 255.0, color->green / 255.0,
|
|
color->blue / 255.0, color->alpha / 255.0));
|
|
}
|
|
layer++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void gfxFontUtils::GetVariationInstances(
|
|
gfxFontEntry* aFontEntry, nsTArray<gfxFontVariationInstance>& aInstances) {
|
|
MOZ_ASSERT(aInstances.IsEmpty());
|
|
|
|
if (!aFontEntry->HasVariations()) {
|
|
return;
|
|
}
|
|
|
|
// Some platforms don't offer a simple API to return the list of instances,
|
|
// so we have to interpret the 'fvar' table ourselves.
|
|
|
|
// https://www.microsoft.com/typography/otspec/fvar.htm#fvarHeader
|
|
struct FvarHeader {
|
|
AutoSwap_PRUint16 majorVersion;
|
|
AutoSwap_PRUint16 minorVersion;
|
|
AutoSwap_PRUint16 axesArrayOffset;
|
|
AutoSwap_PRUint16 reserved;
|
|
AutoSwap_PRUint16 axisCount;
|
|
AutoSwap_PRUint16 axisSize;
|
|
AutoSwap_PRUint16 instanceCount;
|
|
AutoSwap_PRUint16 instanceSize;
|
|
};
|
|
|
|
// https://www.microsoft.com/typography/otspec/fvar.htm#variationAxisRecord
|
|
struct AxisRecord {
|
|
AutoSwap_PRUint32 axisTag;
|
|
AutoSwap_PRInt32 minValue;
|
|
AutoSwap_PRInt32 defaultValue;
|
|
AutoSwap_PRInt32 maxValue;
|
|
AutoSwap_PRUint16 flags;
|
|
AutoSwap_PRUint16 axisNameID;
|
|
};
|
|
|
|
// https://www.microsoft.com/typography/otspec/fvar.htm#instanceRecord
|
|
struct InstanceRecord {
|
|
AutoSwap_PRUint16 subfamilyNameID;
|
|
AutoSwap_PRUint16 flags;
|
|
AutoSwap_PRInt32 coordinates[1]; // variable-size array [axisCount]
|
|
// The variable-length 'coordinates' array may be followed by an
|
|
// optional extra field 'postScriptNameID'. We can't directly
|
|
// represent this in the struct, because its offset varies depending
|
|
// on the number of axes present.
|
|
// (Not currently used by our code here anyhow.)
|
|
// AutoSwap_PRUint16 postScriptNameID;
|
|
};
|
|
|
|
// Helper to ensure we free a font table when we return.
|
|
class AutoHBBlob {
|
|
public:
|
|
explicit AutoHBBlob(hb_blob_t* aBlob) : mBlob(aBlob) {}
|
|
|
|
~AutoHBBlob() { hb_blob_destroy(mBlob); }
|
|
|
|
operator hb_blob_t*() { return mBlob; }
|
|
|
|
private:
|
|
hb_blob_t* const mBlob;
|
|
};
|
|
|
|
// Load the two font tables we need as harfbuzz blobs; if either is absent,
|
|
// just bail out.
|
|
AutoHBBlob fvarTable(
|
|
aFontEntry->GetFontTable(TRUETYPE_TAG('f', 'v', 'a', 'r')));
|
|
AutoHBBlob nameTable(
|
|
aFontEntry->GetFontTable(TRUETYPE_TAG('n', 'a', 'm', 'e')));
|
|
if (!fvarTable || !nameTable) {
|
|
return;
|
|
}
|
|
unsigned int len;
|
|
const char* data = hb_blob_get_data(fvarTable, &len);
|
|
if (len < sizeof(FvarHeader)) {
|
|
return;
|
|
}
|
|
// Read the fields of the table header; bail out if it looks broken.
|
|
auto fvar = reinterpret_cast<const FvarHeader*>(data);
|
|
if (uint16_t(fvar->majorVersion) != 1 || uint16_t(fvar->minorVersion) != 0 ||
|
|
uint16_t(fvar->reserved) != 2) {
|
|
return;
|
|
}
|
|
uint16_t axisCount = fvar->axisCount;
|
|
uint16_t axisSize = fvar->axisSize;
|
|
uint16_t instanceCount = fvar->instanceCount;
|
|
uint16_t instanceSize = fvar->instanceSize;
|
|
if (axisCount ==
|
|
0 || // no axes?
|
|
// https://www.microsoft.com/typography/otspec/fvar.htm#axisSize
|
|
axisSize != 20 || // required value for current table version
|
|
instanceCount == 0 || // no instances?
|
|
// https://www.microsoft.com/typography/otspec/fvar.htm#instanceSize
|
|
(instanceSize != axisCount * sizeof(int32_t) + 4 &&
|
|
instanceSize != axisCount * sizeof(int32_t) + 6)) {
|
|
return;
|
|
}
|
|
// Check that axis array will not exceed table size
|
|
uint16_t axesOffset = fvar->axesArrayOffset;
|
|
if (axesOffset + uint32_t(axisCount) * axisSize > len) {
|
|
return;
|
|
}
|
|
// Get pointer to the array of axis records
|
|
auto axes = reinterpret_cast<const AxisRecord*>(data + axesOffset);
|
|
// Get address of instance array, and check it doesn't overflow table size.
|
|
// https://www.microsoft.com/typography/otspec/fvar.htm#axisAndInstanceArrays
|
|
auto instData = data + axesOffset + axisCount * axisSize;
|
|
if (instData + uint32_t(instanceCount) * instanceSize > data + len) {
|
|
return;
|
|
}
|
|
aInstances.SetCapacity(instanceCount);
|
|
for (unsigned i = 0; i < instanceCount; ++i, instData += instanceSize) {
|
|
// Typed pointer to the current instance record, to read its fields.
|
|
auto inst = reinterpret_cast<const InstanceRecord*>(instData);
|
|
// Pointer to the coordinates array within the instance record.
|
|
// This array has axisCount elements, and is included in instanceSize
|
|
// (which depends on axisCount, and was validated above) so we know
|
|
// access to coords[j] below will not be outside the table bounds.
|
|
auto coords = &inst->coordinates[0];
|
|
gfxFontVariationInstance instance;
|
|
uint16_t nameID = inst->subfamilyNameID;
|
|
nsresult rv = ReadCanonicalName(nameTable, nameID, instance.mName);
|
|
if (NS_FAILED(rv)) {
|
|
// If no name was available for the instance, ignore it.
|
|
continue;
|
|
}
|
|
instance.mValues.SetCapacity(axisCount);
|
|
for (unsigned j = 0; j < axisCount; ++j) {
|
|
gfxFontVariationValue value;
|
|
value.mAxis = axes[j].axisTag;
|
|
value.mValue = int32_t(coords[j]) / 65536.0;
|
|
instance.mValues.AppendElement(value);
|
|
}
|
|
aInstances.AppendElement(instance);
|
|
}
|
|
}
|
|
|
|
void gfxFontUtils::ReadOtherFamilyNamesForFace(
|
|
const nsACString& aFamilyName, const char* aNameData, uint32_t aDataLength,
|
|
nsTArray<nsCString>& aOtherFamilyNames, bool useFullName) {
|
|
const NameHeader* nameHeader = reinterpret_cast<const NameHeader*>(aNameData);
|
|
|
|
uint32_t nameCount = nameHeader->count;
|
|
if (nameCount * sizeof(NameRecord) > aDataLength) {
|
|
NS_WARNING("invalid font (name records)");
|
|
return;
|
|
}
|
|
|
|
const NameRecord* nameRecord =
|
|
reinterpret_cast<const NameRecord*>(aNameData + sizeof(NameHeader));
|
|
uint32_t stringsBase = uint32_t(nameHeader->stringOffset);
|
|
|
|
for (uint32_t i = 0; i < nameCount; i++, nameRecord++) {
|
|
uint32_t nameLen = nameRecord->length;
|
|
uint32_t nameOff =
|
|
nameRecord->offset; // offset from base of string storage
|
|
|
|
if (stringsBase + nameOff + nameLen > aDataLength) {
|
|
NS_WARNING("invalid font (name table strings)");
|
|
return;
|
|
}
|
|
|
|
uint16_t nameID = nameRecord->nameID;
|
|
if ((useFullName && nameID == NAME_ID_FULL) ||
|
|
(!useFullName &&
|
|
(nameID == NAME_ID_FAMILY || nameID == NAME_ID_PREFERRED_FAMILY))) {
|
|
nsAutoCString otherFamilyName;
|
|
bool ok = DecodeFontName(
|
|
aNameData + stringsBase + nameOff, nameLen,
|
|
uint32_t(nameRecord->platformID), uint32_t(nameRecord->encodingID),
|
|
uint32_t(nameRecord->languageID), otherFamilyName);
|
|
// add if not same as canonical family name
|
|
if (ok && otherFamilyName != aFamilyName &&
|
|
!aOtherFamilyNames.Contains(otherFamilyName)) {
|
|
aOtherFamilyNames.AppendElement(otherFamilyName);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef XP_WIN
|
|
|
|
/* static */
|
|
bool gfxFontUtils::IsCffFont(const uint8_t* aFontData) {
|
|
// this is only called after aFontData has passed basic validation,
|
|
// so we know there is enough data present to allow us to read the version!
|
|
const SFNTHeader* sfntHeader = reinterpret_cast<const SFNTHeader*>(aFontData);
|
|
return (sfntHeader->sfntVersion == TRUETYPE_TAG('O', 'T', 'T', 'O'));
|
|
}
|
|
|
|
#endif
|
|
|
|
#undef acceptablePlatform
|
|
#undef isSymbol
|
|
#undef isUVSEncoding
|
|
#undef LOG
|
|
#undef LOG_ENABLED
|