зеркало из https://github.com/mozilla/gecko-dev.git
537 строки
20 KiB
C++
537 строки
20 KiB
C++
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "PositionedEventTargeting.h"
|
|
|
|
#include "mozilla/EventListenerManager.h"
|
|
#include "mozilla/EventStates.h"
|
|
#include "mozilla/MouseEvents.h"
|
|
#include "mozilla/Preferences.h"
|
|
#include "nsLayoutUtils.h"
|
|
#include "nsGkAtoms.h"
|
|
#include "nsFontMetrics.h"
|
|
#include "nsPrintfCString.h"
|
|
#include "mozilla/dom/Element.h"
|
|
#include "nsRegion.h"
|
|
#include "nsDeviceContext.h"
|
|
#include "nsIFrame.h"
|
|
#include <algorithm>
|
|
#include "LayersLogging.h"
|
|
|
|
// If debugging this code you may wish to enable this logging, and also
|
|
// uncomment the DumpFrameTree call near the bottom of the file.
|
|
#define PET_LOG(...)
|
|
// #define PET_LOG(...) printf_stderr("PET: " __VA_ARGS__);
|
|
|
|
namespace mozilla {
|
|
|
|
/*
|
|
* The basic goal of FindFrameTargetedByInputEvent() is to find a good
|
|
* target element that can respond to mouse events. Both mouse events and touch
|
|
* events are targeted at this element. Note that even for touch events, we
|
|
* check responsiveness to mouse events. We assume Web authors
|
|
* designing for touch events will take their own steps to account for
|
|
* inaccurate touch events.
|
|
*
|
|
* IsElementClickable() encapsulates the heuristic that determines whether an
|
|
* element is expected to respond to mouse events. An element is deemed
|
|
* "clickable" if it has registered listeners for "click", "mousedown" or
|
|
* "mouseup", or is on a whitelist of element tags (<a>, <button>, <input>,
|
|
* <select>, <textarea>, <label>), or has role="button", or is a link, or
|
|
* is a suitable XUL element.
|
|
* Any descendant (in the same document) of a clickable element is also
|
|
* deemed clickable since events will propagate to the clickable element from its
|
|
* descendant.
|
|
*
|
|
* If the element directly under the event position is clickable (or
|
|
* event radii are disabled), we always use that element. Otherwise we collect
|
|
* all frames intersecting a rectangle around the event position (taking CSS
|
|
* transforms into account) and choose the best candidate in GetClosest().
|
|
* Only IsElementClickable() candidates are considered; if none are found,
|
|
* then we revert to targeting the element under the event position.
|
|
* We ignore candidates outside the document subtree rooted by the
|
|
* document of the element directly under the event position. This ensures that
|
|
* event listeners in ancestor documents don't make it completely impossible
|
|
* to target a non-clickable element in a child document.
|
|
*
|
|
* When both a frame and its ancestor are in the candidate list, we ignore
|
|
* the ancestor. Otherwise a large ancestor element with a mouse event listener
|
|
* and some descendant elements that need to be individually targetable would
|
|
* disable intelligent targeting of those descendants within its bounds.
|
|
*
|
|
* GetClosest() computes the transformed axis-aligned bounds of each
|
|
* candidate frame, then computes the Manhattan distance from the event point
|
|
* to the bounds rect (which can be zero). The frame with the
|
|
* shortest distance is chosen. For visited links we multiply the distance
|
|
* by a specified constant weight; this can be used to make visited links
|
|
* more or less likely to be targeted than non-visited links.
|
|
*/
|
|
|
|
struct EventRadiusPrefs
|
|
{
|
|
uint32_t mVisitedWeight; // in percent, i.e. default is 100
|
|
uint32_t mSideRadii[4]; // TRBL order, in millimetres
|
|
bool mEnabled;
|
|
bool mRegistered;
|
|
bool mTouchOnly;
|
|
bool mRepositionEventCoords;
|
|
bool mTouchClusterDetection;
|
|
uint32_t mLimitReadableSize;
|
|
};
|
|
|
|
static EventRadiusPrefs sMouseEventRadiusPrefs;
|
|
static EventRadiusPrefs sTouchEventRadiusPrefs;
|
|
|
|
static const EventRadiusPrefs*
|
|
GetPrefsFor(EventClassID aEventClassID)
|
|
{
|
|
EventRadiusPrefs* prefs = nullptr;
|
|
const char* prefBranch = nullptr;
|
|
if (aEventClassID == eTouchEventClass) {
|
|
prefBranch = "touch";
|
|
prefs = &sTouchEventRadiusPrefs;
|
|
} else if (aEventClassID == eMouseEventClass) {
|
|
// Mostly for testing purposes
|
|
prefBranch = "mouse";
|
|
prefs = &sMouseEventRadiusPrefs;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
if (!prefs->mRegistered) {
|
|
prefs->mRegistered = true;
|
|
|
|
nsPrintfCString enabledPref("ui.%s.radius.enabled", prefBranch);
|
|
Preferences::AddBoolVarCache(&prefs->mEnabled, enabledPref.get(), false);
|
|
|
|
nsPrintfCString visitedWeightPref("ui.%s.radius.visitedWeight", prefBranch);
|
|
Preferences::AddUintVarCache(&prefs->mVisitedWeight, visitedWeightPref.get(), 100);
|
|
|
|
static const char prefNames[4][9] =
|
|
{ "topmm", "rightmm", "bottommm", "leftmm" };
|
|
for (int32_t i = 0; i < 4; ++i) {
|
|
nsPrintfCString radiusPref("ui.%s.radius.%s", prefBranch, prefNames[i]);
|
|
Preferences::AddUintVarCache(&prefs->mSideRadii[i], radiusPref.get(), 0);
|
|
}
|
|
|
|
if (aEventClassID == eMouseEventClass) {
|
|
Preferences::AddBoolVarCache(&prefs->mTouchOnly,
|
|
"ui.mouse.radius.inputSource.touchOnly", true);
|
|
} else {
|
|
prefs->mTouchOnly = false;
|
|
}
|
|
|
|
nsPrintfCString repositionPref("ui.%s.radius.reposition", prefBranch);
|
|
Preferences::AddBoolVarCache(&prefs->mRepositionEventCoords, repositionPref.get(), false);
|
|
|
|
nsPrintfCString touchClusterPref("ui.zoomedview.enabled", prefBranch);
|
|
Preferences::AddBoolVarCache(&prefs->mTouchClusterDetection, touchClusterPref.get(), false);
|
|
|
|
nsPrintfCString limitReadableSizePref("ui.zoomedview.limitReadableSize", prefBranch);
|
|
Preferences::AddUintVarCache(&prefs->mLimitReadableSize, limitReadableSizePref.get(), 8);
|
|
}
|
|
|
|
return prefs;
|
|
}
|
|
|
|
static bool
|
|
HasMouseListener(nsIContent* aContent)
|
|
{
|
|
if (EventListenerManager* elm = aContent->GetExistingListenerManager()) {
|
|
return elm->HasListenersFor(nsGkAtoms::onclick) ||
|
|
elm->HasListenersFor(nsGkAtoms::onmousedown) ||
|
|
elm->HasListenersFor(nsGkAtoms::onmouseup);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool gTouchEventsRegistered = false;
|
|
static int32_t gTouchEventsEnabled = 0;
|
|
|
|
static bool
|
|
HasTouchListener(nsIContent* aContent)
|
|
{
|
|
EventListenerManager* elm = aContent->GetExistingListenerManager();
|
|
if (!elm) {
|
|
return false;
|
|
}
|
|
|
|
if (!gTouchEventsRegistered) {
|
|
Preferences::AddIntVarCache(&gTouchEventsEnabled,
|
|
"dom.w3c_touch_events.enabled", gTouchEventsEnabled);
|
|
gTouchEventsRegistered = true;
|
|
}
|
|
|
|
if (!gTouchEventsEnabled) {
|
|
return false;
|
|
}
|
|
|
|
return elm->HasListenersFor(nsGkAtoms::ontouchstart) ||
|
|
elm->HasListenersFor(nsGkAtoms::ontouchend);
|
|
}
|
|
|
|
static bool
|
|
IsElementClickable(nsIFrame* aFrame, nsIAtom* stopAt = nullptr)
|
|
{
|
|
// Input events propagate up the content tree so we'll follow the content
|
|
// ancestors to look for elements accepting the click.
|
|
for (nsIContent* content = aFrame->GetContent(); content;
|
|
content = content->GetFlattenedTreeParent()) {
|
|
if (stopAt && content->IsHTMLElement(stopAt)) {
|
|
break;
|
|
}
|
|
if (HasTouchListener(content) || HasMouseListener(content)) {
|
|
return true;
|
|
}
|
|
if (content->IsAnyOfHTMLElements(nsGkAtoms::button,
|
|
nsGkAtoms::input,
|
|
nsGkAtoms::select,
|
|
nsGkAtoms::textarea,
|
|
nsGkAtoms::label)) {
|
|
return true;
|
|
}
|
|
|
|
// Bug 921928: we don't have access to the content of remote iframe.
|
|
// So fluffing won't go there. We do an optimistic assumption here:
|
|
// that the content of the remote iframe needs to be a target.
|
|
if (content->IsHTMLElement(nsGkAtoms::iframe) &&
|
|
content->AttrValueIs(kNameSpaceID_None, nsGkAtoms::mozbrowser,
|
|
nsGkAtoms::_true, eIgnoreCase) &&
|
|
content->AttrValueIs(kNameSpaceID_None, nsGkAtoms::Remote,
|
|
nsGkAtoms::_true, eIgnoreCase)) {
|
|
return true;
|
|
}
|
|
|
|
// See nsCSSFrameConstructor::FindXULTagData. This code is not
|
|
// really intended to be used with XUL, though.
|
|
if (content->IsAnyOfXULElements(nsGkAtoms::button,
|
|
nsGkAtoms::checkbox,
|
|
nsGkAtoms::radio,
|
|
nsGkAtoms::autorepeatbutton,
|
|
nsGkAtoms::menu,
|
|
nsGkAtoms::menubutton,
|
|
nsGkAtoms::menuitem,
|
|
nsGkAtoms::menulist,
|
|
nsGkAtoms::scrollbarbutton,
|
|
nsGkAtoms::resizer)) {
|
|
return true;
|
|
}
|
|
|
|
static nsIContent::AttrValuesArray clickableRoles[] =
|
|
{ &nsGkAtoms::button, &nsGkAtoms::key, nullptr };
|
|
if (content->FindAttrValueIn(kNameSpaceID_None, nsGkAtoms::role,
|
|
clickableRoles, eIgnoreCase) >= 0) {
|
|
return true;
|
|
}
|
|
if (content->IsEditable()) {
|
|
return true;
|
|
}
|
|
nsCOMPtr<nsIURI> linkURI;
|
|
if (content->IsLink(getter_AddRefs(linkURI))) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static nscoord
|
|
AppUnitsFromMM(nsIFrame* aFrame, uint32_t aMM, bool aVertical)
|
|
{
|
|
nsPresContext* pc = aFrame->PresContext();
|
|
float result = float(aMM) *
|
|
(pc->DeviceContext()->AppUnitsPerPhysicalInch() / MM_PER_INCH_FLOAT);
|
|
return NSToCoordRound(result);
|
|
}
|
|
|
|
/**
|
|
* Clip aRect with the bounds of aFrame in the coordinate system of
|
|
* aRootFrame. aRootFrame is an ancestor of aFrame.
|
|
*/
|
|
static nsRect
|
|
ClipToFrame(nsIFrame* aRootFrame, nsIFrame* aFrame, nsRect& aRect)
|
|
{
|
|
nsRect bound = nsLayoutUtils::TransformFrameRectToAncestor(
|
|
aFrame, nsRect(nsPoint(0, 0), aFrame->GetSize()), aRootFrame);
|
|
nsRect result = bound.Intersect(aRect);
|
|
return result;
|
|
}
|
|
|
|
static nsRect
|
|
GetTargetRect(nsIFrame* aRootFrame, const nsPoint& aPointRelativeToRootFrame,
|
|
nsIFrame* aRestrictToDescendants, const EventRadiusPrefs* aPrefs,
|
|
uint32_t aFlags)
|
|
{
|
|
nsMargin m(AppUnitsFromMM(aRootFrame, aPrefs->mSideRadii[0], true),
|
|
AppUnitsFromMM(aRootFrame, aPrefs->mSideRadii[1], false),
|
|
AppUnitsFromMM(aRootFrame, aPrefs->mSideRadii[2], true),
|
|
AppUnitsFromMM(aRootFrame, aPrefs->mSideRadii[3], false));
|
|
nsRect r(aPointRelativeToRootFrame, nsSize(0,0));
|
|
r.Inflate(m);
|
|
if (!(aFlags & INPUT_IGNORE_ROOT_SCROLL_FRAME)) {
|
|
// Don't clip this rect to the root scroll frame if the flag to ignore the
|
|
// root scroll frame is set. Note that the GetClosest code will still enforce
|
|
// that the target found is a descendant of aRestrictToDescendants.
|
|
r = ClipToFrame(aRootFrame, aRestrictToDescendants, r);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static float
|
|
ComputeDistanceFromRect(const nsPoint& aPoint, const nsRect& aRect)
|
|
{
|
|
nscoord dx = std::max(0, std::max(aRect.x - aPoint.x, aPoint.x - aRect.XMost()));
|
|
nscoord dy = std::max(0, std::max(aRect.y - aPoint.y, aPoint.y - aRect.YMost()));
|
|
return float(NS_hypot(dx, dy));
|
|
}
|
|
|
|
static float
|
|
ComputeDistanceFromRegion(const nsPoint& aPoint, const nsRegion& aRegion)
|
|
{
|
|
MOZ_ASSERT(!aRegion.IsEmpty(), "can't compute distance between point and empty region");
|
|
nsRegionRectIterator iter(aRegion);
|
|
const nsRect* r;
|
|
float minDist = -1;
|
|
while ((r = iter.Next()) != nullptr) {
|
|
float dist = ComputeDistanceFromRect(aPoint, *r);
|
|
if (dist < minDist || minDist < 0) {
|
|
minDist = dist;
|
|
}
|
|
}
|
|
return minDist;
|
|
}
|
|
|
|
// Subtract aRegion from aExposedRegion as long as that doesn't make the
|
|
// exposed region get too complex or removes a big chunk of the exposed region.
|
|
static void
|
|
SubtractFromExposedRegion(nsRegion* aExposedRegion, const nsRegion& aRegion)
|
|
{
|
|
if (aRegion.IsEmpty())
|
|
return;
|
|
|
|
nsRegion tmp;
|
|
tmp.Sub(*aExposedRegion, aRegion);
|
|
// Don't let *aExposedRegion get too complex, but don't let it fluff out to
|
|
// its bounds either. Do let aExposedRegion get more complex if by doing so
|
|
// we reduce its area by at least half.
|
|
if (tmp.GetNumRects() <= 15 || tmp.Area() <= aExposedRegion->Area()/2) {
|
|
*aExposedRegion = tmp;
|
|
}
|
|
}
|
|
|
|
static nsIFrame*
|
|
GetClosest(nsIFrame* aRoot, const nsPoint& aPointRelativeToRootFrame,
|
|
const nsRect& aTargetRect, const EventRadiusPrefs* aPrefs,
|
|
nsIFrame* aRestrictToDescendants, nsTArray<nsIFrame*>& aCandidates,
|
|
int32_t* aElementsInCluster)
|
|
{
|
|
nsIFrame* bestTarget = nullptr;
|
|
// Lower is better; distance is in appunits
|
|
float bestDistance = 1e6f;
|
|
nsRegion exposedRegion(aTargetRect);
|
|
for (uint32_t i = 0; i < aCandidates.Length(); ++i) {
|
|
nsIFrame* f = aCandidates[i];
|
|
PET_LOG("Checking candidate %p\n", f);
|
|
|
|
bool preservesAxisAlignedRectangles = false;
|
|
nsRect borderBox = nsLayoutUtils::TransformFrameRectToAncestor(f,
|
|
nsRect(nsPoint(0, 0), f->GetSize()), aRoot, &preservesAxisAlignedRectangles);
|
|
nsRegion region;
|
|
region.And(exposedRegion, borderBox);
|
|
|
|
if (region.IsEmpty()) {
|
|
PET_LOG(" candidate %p had empty hit region\n", f);
|
|
continue;
|
|
}
|
|
|
|
if (preservesAxisAlignedRectangles) {
|
|
// Subtract from the exposed region if we have a transform that won't make
|
|
// the bounds include a bunch of area that we don't actually cover.
|
|
SubtractFromExposedRegion(&exposedRegion, region);
|
|
}
|
|
|
|
if (!IsElementClickable(f, nsGkAtoms::body)) {
|
|
PET_LOG(" candidate %p was not clickable\n", f);
|
|
continue;
|
|
}
|
|
// If our current closest frame is a descendant of 'f', skip 'f' (prefer
|
|
// the nested frame).
|
|
if (bestTarget && nsLayoutUtils::IsProperAncestorFrameCrossDoc(f, bestTarget, aRoot)) {
|
|
PET_LOG(" candidate %p was ancestor for bestTarget %p\n", f, bestTarget);
|
|
continue;
|
|
}
|
|
if (!nsLayoutUtils::IsAncestorFrameCrossDoc(aRestrictToDescendants, f, aRoot)) {
|
|
PET_LOG(" candidate %p was not descendant of restrictroot %p\n", f, aRestrictToDescendants);
|
|
continue;
|
|
}
|
|
|
|
(*aElementsInCluster)++;
|
|
|
|
// distance is in appunits
|
|
float distance = ComputeDistanceFromRegion(aPointRelativeToRootFrame, region);
|
|
nsIContent* content = f->GetContent();
|
|
if (content && content->IsElement() &&
|
|
content->AsElement()->State().HasState(
|
|
EventStates(NS_EVENT_STATE_VISITED))) {
|
|
distance *= aPrefs->mVisitedWeight / 100.0f;
|
|
}
|
|
if (distance < bestDistance) {
|
|
PET_LOG(" candidate %p is the new best\n", f);
|
|
bestDistance = distance;
|
|
bestTarget = f;
|
|
}
|
|
}
|
|
return bestTarget;
|
|
}
|
|
|
|
/*
|
|
* Return always true when touch cluster detection is OFF.
|
|
* When cluster detection is ON, return true if the text inside
|
|
* the frame is readable (by human eyes):
|
|
* in this case, the frame is really clickable.
|
|
* Frames with a too small size will return false:
|
|
* in this case, the frame is considered not clickable.
|
|
*/
|
|
static bool
|
|
IsElementClickableAndReadable(nsIFrame* aFrame, WidgetGUIEvent* aEvent, const EventRadiusPrefs* aPrefs)
|
|
{
|
|
if (!aPrefs->mTouchClusterDetection) {
|
|
return true;
|
|
}
|
|
|
|
if (aEvent->mClass != eMouseEventClass) {
|
|
return true;
|
|
}
|
|
|
|
uint32_t limitReadableSize = aPrefs->mLimitReadableSize;
|
|
nsSize frameSize = aFrame->GetSize();
|
|
nsPresContext* pc = aFrame->PresContext();
|
|
nsIPresShell* presShell = pc->PresShell();
|
|
float cumulativeResolution = presShell->GetCumulativeResolution();
|
|
if ((pc->AppUnitsToGfxUnits(frameSize.height) * cumulativeResolution) < limitReadableSize ||
|
|
(pc->AppUnitsToGfxUnits(frameSize.width) * cumulativeResolution) < limitReadableSize) {
|
|
return false;
|
|
}
|
|
nsRefPtr<nsFontMetrics> fm;
|
|
nsLayoutUtils::GetFontMetricsForFrame(aFrame, getter_AddRefs(fm),
|
|
nsLayoutUtils::FontSizeInflationFor(aFrame));
|
|
if (fm) {
|
|
if ((pc->AppUnitsToGfxUnits(fm->EmHeight()) * cumulativeResolution) < limitReadableSize) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
nsIFrame*
|
|
FindFrameTargetedByInputEvent(WidgetGUIEvent* aEvent,
|
|
nsIFrame* aRootFrame,
|
|
const nsPoint& aPointRelativeToRootFrame,
|
|
uint32_t aFlags)
|
|
{
|
|
uint32_t flags = (aFlags & INPUT_IGNORE_ROOT_SCROLL_FRAME) ?
|
|
nsLayoutUtils::IGNORE_ROOT_SCROLL_FRAME : 0;
|
|
nsIFrame* target =
|
|
nsLayoutUtils::GetFrameForPoint(aRootFrame, aPointRelativeToRootFrame, flags);
|
|
PET_LOG("Found initial target %p for event class %s point %s relative to root frame %p\n",
|
|
target, (aEvent->mClass == eMouseEventClass ? "mouse" :
|
|
(aEvent->mClass == eTouchEventClass ? "touch" : "other")),
|
|
mozilla::layers::Stringify(aPointRelativeToRootFrame).c_str(), aRootFrame);
|
|
|
|
const EventRadiusPrefs* prefs = GetPrefsFor(aEvent->mClass);
|
|
if (!prefs || !prefs->mEnabled) {
|
|
PET_LOG("Retargeting disabled\n");
|
|
return target;
|
|
}
|
|
if (target && IsElementClickable(target, nsGkAtoms::body)) {
|
|
if (!IsElementClickableAndReadable(target, aEvent, prefs)) {
|
|
aEvent->AsMouseEventBase()->hitCluster = true;
|
|
}
|
|
PET_LOG("Target %p is clickable\n", target);
|
|
return target;
|
|
}
|
|
|
|
// Do not modify targeting for actual mouse hardware; only for mouse
|
|
// events generated by touch-screen hardware.
|
|
if (aEvent->mClass == eMouseEventClass &&
|
|
prefs->mTouchOnly &&
|
|
aEvent->AsMouseEvent()->inputSource !=
|
|
nsIDOMMouseEvent::MOZ_SOURCE_TOUCH) {
|
|
PET_LOG("Mouse input event is not from a touch source\n");
|
|
return target;
|
|
}
|
|
|
|
// If the exact target is non-null, only consider candidate targets in the same
|
|
// document as the exact target. Otherwise, if an ancestor document has
|
|
// a mouse event handler for example, targets that are !IsElementClickable can
|
|
// never be targeted --- something nsSubDocumentFrame in an ancestor document
|
|
// would be targeted instead.
|
|
nsIFrame* restrictToDescendants = target ?
|
|
target->PresContext()->PresShell()->GetRootFrame() : aRootFrame;
|
|
|
|
nsRect targetRect = GetTargetRect(aRootFrame, aPointRelativeToRootFrame,
|
|
restrictToDescendants, prefs, aFlags);
|
|
PET_LOG("Expanded point to target rect %s\n",
|
|
mozilla::layers::Stringify(targetRect).c_str());
|
|
nsAutoTArray<nsIFrame*,8> candidates;
|
|
nsresult rv = nsLayoutUtils::GetFramesForArea(aRootFrame, targetRect, candidates, flags);
|
|
if (NS_FAILED(rv)) {
|
|
return target;
|
|
}
|
|
|
|
int32_t elementsInCluster = 0;
|
|
|
|
nsIFrame* closestClickable =
|
|
GetClosest(aRootFrame, aPointRelativeToRootFrame, targetRect, prefs,
|
|
restrictToDescendants, candidates, &elementsInCluster);
|
|
if (closestClickable) {
|
|
if ((prefs->mTouchClusterDetection && elementsInCluster > 1) ||
|
|
(!IsElementClickableAndReadable(closestClickable, aEvent, prefs))) {
|
|
if (aEvent->mClass == eMouseEventClass) {
|
|
WidgetMouseEventBase* mouseEventBase = aEvent->AsMouseEventBase();
|
|
mouseEventBase->hitCluster = true;
|
|
}
|
|
}
|
|
target = closestClickable;
|
|
}
|
|
PET_LOG("Final target is %p\n", target);
|
|
|
|
// Uncomment this to dump the frame tree to help with debugging.
|
|
// Note that dumping the frame tree at the top of the function may flood
|
|
// logcat on Android devices and cause the PET_LOGs to get dropped.
|
|
// aRootFrame->DumpFrameTree();
|
|
|
|
if (!target || !prefs->mRepositionEventCoords) {
|
|
// No repositioning required for this event
|
|
return target;
|
|
}
|
|
|
|
// Take the point relative to the root frame, make it relative to the target,
|
|
// clamp it to the bounds, and then make it relative to the root frame again.
|
|
nsPoint point = aPointRelativeToRootFrame;
|
|
if (nsLayoutUtils::TRANSFORM_SUCCEEDED != nsLayoutUtils::TransformPoint(aRootFrame, target, point)) {
|
|
return target;
|
|
}
|
|
point = target->GetRectRelativeToSelf().ClampPoint(point);
|
|
if (nsLayoutUtils::TRANSFORM_SUCCEEDED != nsLayoutUtils::TransformPoint(target, aRootFrame, point)) {
|
|
return target;
|
|
}
|
|
// Now we basically undo the operations in GetEventCoordinatesRelativeTo, to
|
|
// get back the (now-clamped) coordinates in the event's widget's space.
|
|
nsView* view = aRootFrame->GetView();
|
|
if (!view) {
|
|
return target;
|
|
}
|
|
LayoutDeviceIntPoint widgetPoint = nsLayoutUtils::TranslateViewToWidget(
|
|
aRootFrame->PresContext(), view, point, aEvent->widget);
|
|
if (widgetPoint.x != NS_UNCONSTRAINEDSIZE) {
|
|
// If that succeeded, we update the point in the event
|
|
aEvent->refPoint = widgetPoint;
|
|
}
|
|
return target;
|
|
}
|
|
|
|
}
|