gecko-dev/mfbt/Atomics.h

1179 строки
36 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Implements (almost always) lock-free atomic operations. The operations here
* are a subset of that which can be found in C++11's <atomic> header, with a
* different API to enforce consistent memory ordering constraints.
*
* Anyone caught using |volatile| for inter-thread memory safety needs to be
* sent a copy of this header and the C++11 standard.
*/
#ifndef mozilla_Atomics_h
#define mozilla_Atomics_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Compiler.h"
#include "mozilla/TypeTraits.h"
#include <stdint.h>
/*
* Our minimum deployment target on clang/OS X is OS X 10.6, whose SDK
* does not have <atomic>. So be sure to check for <atomic> support
* along with C++0x support.
*/
#if defined(__clang__) || defined(__GNUC__)
/*
* Clang doesn't like <atomic> from libstdc++ before 4.7 due to the
* loose typing of the atomic builtins. GCC 4.5 and 4.6 lacks inline
* definitions for unspecialized std::atomic and causes linking errors.
* Therefore, we require at least 4.7.0 for using libstdc++.
*/
# if MOZ_USING_LIBSTDCXX && MOZ_LIBSTDCXX_VERSION_AT_LEAST(4, 7, 0)
# define MOZ_HAVE_CXX11_ATOMICS
# elif MOZ_USING_LIBCXX
# define MOZ_HAVE_CXX11_ATOMICS
# endif
/*
* Although Visual Studio 2012's CRT supports <atomic>, its atomic load
* implementation unnecessarily uses an atomic intrinsic for the less
* restrictive memory orderings, which can be prohibitively expensive.
* Therefore, we require at least Visual Studio 2013 for using the CRT
* (bug 1061764).
*/
#elif defined(_MSC_VER) && _MSC_VER >= 1800
# if defined(DEBUG)
/*
* Provide our own failure code since we're having trouble linking to
* std::_Debug_message (bug 982310).
*/
# define _INVALID_MEMORY_ORDER MOZ_CRASH("Invalid memory order")
# endif
# define MOZ_HAVE_CXX11_ATOMICS
#endif
namespace mozilla {
/**
* An enum of memory ordering possibilities for atomics.
*
* Memory ordering is the observable state of distinct values in memory.
* (It's a separate concept from atomicity, which concerns whether an
* operation can ever be observed in an intermediate state. Don't
* conflate the two!) Given a sequence of operations in source code on
* memory, it is *not* always the case that, at all times and on all
* cores, those operations will appear to have occurred in that exact
* sequence. First, the compiler might reorder that sequence, if it
* thinks another ordering will be more efficient. Second, the CPU may
* not expose so consistent a view of memory. CPUs will often perform
* their own instruction reordering, above and beyond that performed by
* the compiler. And each core has its own memory caches, and accesses
* (reads and writes both) to "memory" may only resolve to out-of-date
* cache entries -- not to the "most recently" performed operation in
* some global sense. Any access to a value that may be used by
* multiple threads, potentially across multiple cores, must therefore
* have a memory ordering imposed on it, for all code on all
* threads/cores to have a sufficiently coherent worldview.
*
* http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync and
* http://en.cppreference.com/w/cpp/atomic/memory_order go into more
* detail on all this, including examples of how each mode works.
*
* Note that for simplicity and practicality, not all of the modes in
* C++11 are supported. The missing C++11 modes are either subsumed by
* the modes we provide below, or not relevant for the CPUs we support
* in Gecko. These three modes are confusing enough as it is!
*/
enum MemoryOrdering {
/*
* Relaxed ordering is the simplest memory ordering: none at all.
* When the result of a write is observed, nothing may be inferred
* about other memory. Writes ostensibly performed "before" on the
* writing thread may not yet be visible. Writes performed "after" on
* the writing thread may already be visible, if the compiler or CPU
* reordered them. (The latter can happen if reads and/or writes get
* held up in per-processor caches.) Relaxed ordering means
* operations can always use cached values (as long as the actual
* updates to atomic values actually occur, correctly, eventually), so
* it's usually the fastest sort of atomic access. For this reason,
* *it's also the most dangerous kind of access*.
*
* Relaxed ordering is good for things like process-wide statistics
* counters that don't need to be consistent with anything else, so
* long as updates themselves are atomic. (And so long as any
* observations of that value can tolerate being out-of-date -- if you
* need some sort of up-to-date value, you need some sort of other
* synchronizing operation.) It's *not* good for locks, mutexes,
* reference counts, etc. that mediate access to other memory, or must
* be observably consistent with other memory.
*
* x86 architectures don't take advantage of the optimization
* opportunities that relaxed ordering permits. Thus it's possible
* that using relaxed ordering will "work" on x86 but fail elsewhere
* (ARM, say, which *does* implement non-sequentially-consistent
* relaxed ordering semantics). Be extra-careful using relaxed
* ordering if you can't easily test non-x86 architectures!
*/
Relaxed,
/*
* When an atomic value is updated with ReleaseAcquire ordering, and
* that new value is observed with ReleaseAcquire ordering, prior
* writes (atomic or not) are also observable. What ReleaseAcquire
* *doesn't* give you is any observable ordering guarantees for
* ReleaseAcquire-ordered operations on different objects. For
* example, if there are two cores that each perform ReleaseAcquire
* operations on separate objects, each core may or may not observe
* the operations made by the other core. The only way the cores can
* be synchronized with ReleaseAcquire is if they both
* ReleaseAcquire-access the same object. This implies that you can't
* necessarily describe some global total ordering of ReleaseAcquire
* operations.
*
* ReleaseAcquire ordering is good for (as the name implies) atomic
* operations on values controlling ownership of things: reference
* counts, mutexes, and the like. However, if you are thinking about
* using these to implement your own locks or mutexes, you should take
* a good, hard look at actual lock or mutex primitives first.
*/
ReleaseAcquire,
/*
* When an atomic value is updated with SequentiallyConsistent
* ordering, all writes observable when the update is observed, just
* as with ReleaseAcquire ordering. But, furthermore, a global total
* ordering of SequentiallyConsistent operations *can* be described.
* For example, if two cores perform SequentiallyConsistent operations
* on separate objects, one core will observably perform its update
* (and all previous operations will have completed), then the other
* core will observably perform its update (and all previous
* operations will have completed). (Although those previous
* operations aren't themselves ordered -- they could be intermixed,
* or ordered if they occur on atomic values with ordering
* requirements.) SequentiallyConsistent is the *simplest and safest*
* ordering of atomic operations -- it's always as if one operation
* happens, then another, then another, in some order -- and every
* core observes updates to happen in that single order. Because it
* has the most synchronization requirements, operations ordered this
* way also tend to be slowest.
*
* SequentiallyConsistent ordering can be desirable when multiple
* threads observe objects, and they all have to agree on the
* observable order of changes to them. People expect
* SequentiallyConsistent ordering, even if they shouldn't, when
* writing code, atomic or otherwise. SequentiallyConsistent is also
* the ordering of choice when designing lockless data structures. If
* you don't know what order to use, use this one.
*/
SequentiallyConsistent,
};
} // namespace mozilla
// Build up the underlying intrinsics.
#ifdef MOZ_HAVE_CXX11_ATOMICS
# include <atomic>
namespace mozilla {
namespace detail {
/*
* We provide CompareExchangeFailureOrder to work around a bug in some
* versions of GCC's <atomic> header. See bug 898491.
*/
template<MemoryOrdering Order> struct AtomicOrderConstraints;
template<>
struct AtomicOrderConstraints<Relaxed>
{
static const std::memory_order AtomicRMWOrder = std::memory_order_relaxed;
static const std::memory_order LoadOrder = std::memory_order_relaxed;
static const std::memory_order StoreOrder = std::memory_order_relaxed;
static const std::memory_order CompareExchangeFailureOrder =
std::memory_order_relaxed;
};
template<>
struct AtomicOrderConstraints<ReleaseAcquire>
{
static const std::memory_order AtomicRMWOrder = std::memory_order_acq_rel;
static const std::memory_order LoadOrder = std::memory_order_acquire;
static const std::memory_order StoreOrder = std::memory_order_release;
static const std::memory_order CompareExchangeFailureOrder =
std::memory_order_acquire;
};
template<>
struct AtomicOrderConstraints<SequentiallyConsistent>
{
static const std::memory_order AtomicRMWOrder = std::memory_order_seq_cst;
static const std::memory_order LoadOrder = std::memory_order_seq_cst;
static const std::memory_order StoreOrder = std::memory_order_seq_cst;
static const std::memory_order CompareExchangeFailureOrder =
std::memory_order_seq_cst;
};
template<typename T, MemoryOrdering Order>
struct IntrinsicBase
{
typedef std::atomic<T> ValueType;
typedef AtomicOrderConstraints<Order> OrderedOp;
};
template<typename T, MemoryOrdering Order>
struct IntrinsicMemoryOps : public IntrinsicBase<T, Order>
{
typedef IntrinsicBase<T, Order> Base;
static T load(const typename Base::ValueType& aPtr)
{
return aPtr.load(Base::OrderedOp::LoadOrder);
}
static void store(typename Base::ValueType& aPtr, T aVal)
{
aPtr.store(aVal, Base::OrderedOp::StoreOrder);
}
static T exchange(typename Base::ValueType& aPtr, T aVal)
{
return aPtr.exchange(aVal, Base::OrderedOp::AtomicRMWOrder);
}
static bool compareExchange(typename Base::ValueType& aPtr,
T aOldVal, T aNewVal)
{
return aPtr.compare_exchange_strong(aOldVal, aNewVal,
Base::OrderedOp::AtomicRMWOrder,
Base::OrderedOp::CompareExchangeFailureOrder);
}
};
template<typename T, MemoryOrdering Order>
struct IntrinsicAddSub : public IntrinsicBase<T, Order>
{
typedef IntrinsicBase<T, Order> Base;
static T add(typename Base::ValueType& aPtr, T aVal)
{
return aPtr.fetch_add(aVal, Base::OrderedOp::AtomicRMWOrder);
}
static T sub(typename Base::ValueType& aPtr, T aVal)
{
return aPtr.fetch_sub(aVal, Base::OrderedOp::AtomicRMWOrder);
}
};
template<typename T, MemoryOrdering Order>
struct IntrinsicAddSub<T*, Order> : public IntrinsicBase<T*, Order>
{
typedef IntrinsicBase<T*, Order> Base;
static T* add(typename Base::ValueType& aPtr, ptrdiff_t aVal)
{
return aPtr.fetch_add(fixupAddend(aVal), Base::OrderedOp::AtomicRMWOrder);
}
static T* sub(typename Base::ValueType& aPtr, ptrdiff_t aVal)
{
return aPtr.fetch_sub(fixupAddend(aVal), Base::OrderedOp::AtomicRMWOrder);
}
private:
/*
* GCC 4.6's <atomic> header has a bug where adding X to an
* atomic<T*> is not the same as adding X to a T*. Hence the need
* for this function to provide the correct addend.
*/
static ptrdiff_t fixupAddend(ptrdiff_t aVal)
{
#if defined(__clang__) || defined(_MSC_VER)
return aVal;
#elif defined(__GNUC__) && MOZ_GCC_VERSION_AT_LEAST(4, 6, 0) && \
!MOZ_GCC_VERSION_AT_LEAST(4, 7, 0)
return aVal * sizeof(T);
#else
return aVal;
#endif
}
};
template<typename T, MemoryOrdering Order>
struct IntrinsicIncDec : public IntrinsicAddSub<T, Order>
{
typedef IntrinsicBase<T, Order> Base;
static T inc(typename Base::ValueType& aPtr)
{
return IntrinsicAddSub<T, Order>::add(aPtr, 1);
}
static T dec(typename Base::ValueType& aPtr)
{
return IntrinsicAddSub<T, Order>::sub(aPtr, 1);
}
};
template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
public IntrinsicIncDec<T, Order>
{
typedef IntrinsicBase<T, Order> Base;
static T or_(typename Base::ValueType& aPtr, T aVal)
{
return aPtr.fetch_or(aVal, Base::OrderedOp::AtomicRMWOrder);
}
static T xor_(typename Base::ValueType& aPtr, T aVal)
{
return aPtr.fetch_xor(aVal, Base::OrderedOp::AtomicRMWOrder);
}
static T and_(typename Base::ValueType& aPtr, T aVal)
{
return aPtr.fetch_and(aVal, Base::OrderedOp::AtomicRMWOrder);
}
};
template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics<T*, Order>
: public IntrinsicMemoryOps<T*, Order>, public IntrinsicIncDec<T*, Order>
{
};
} // namespace detail
} // namespace mozilla
#elif defined(__GNUC__)
namespace mozilla {
namespace detail {
/*
* The __sync_* family of intrinsics is documented here:
*
* http://gcc.gnu.org/onlinedocs/gcc-4.6.4/gcc/Atomic-Builtins.html
*
* While these intrinsics are deprecated in favor of the newer __atomic_*
* family of intrincs:
*
* http://gcc.gnu.org/onlinedocs/gcc-4.7.3/gcc/_005f_005fatomic-Builtins.html
*
* any GCC version that supports the __atomic_* intrinsics will also support
* the <atomic> header and so will be handled above. We provide a version of
* atomics using the __sync_* intrinsics to support older versions of GCC.
*
* All __sync_* intrinsics that we use below act as full memory barriers, for
* both compiler and hardware reordering, except for __sync_lock_test_and_set,
* which is a only an acquire barrier. When we call __sync_lock_test_and_set,
* we add a barrier above it as appropriate.
*/
template<MemoryOrdering Order> struct Barrier;
/*
* Some processors (in particular, x86) don't require quite so many calls to
* __sync_sychronize as our specializations of Barrier produce. If
* performance turns out to be an issue, defining these specializations
* on a per-processor basis would be a good first tuning step.
*/
template<>
struct Barrier<Relaxed>
{
static void beforeLoad() {}
static void afterLoad() {}
static void beforeStore() {}
static void afterStore() {}
};
template<>
struct Barrier<ReleaseAcquire>
{
static void beforeLoad() {}
static void afterLoad() { __sync_synchronize(); }
static void beforeStore() { __sync_synchronize(); }
static void afterStore() {}
};
template<>
struct Barrier<SequentiallyConsistent>
{
static void beforeLoad() { __sync_synchronize(); }
static void afterLoad() { __sync_synchronize(); }
static void beforeStore() { __sync_synchronize(); }
static void afterStore() { __sync_synchronize(); }
};
template<typename T, MemoryOrdering Order>
struct IntrinsicMemoryOps
{
static T load(const T& aPtr)
{
Barrier<Order>::beforeLoad();
T val = aPtr;
Barrier<Order>::afterLoad();
return val;
}
static void store(T& aPtr, T aVal)
{
Barrier<Order>::beforeStore();
aPtr = aVal;
Barrier<Order>::afterStore();
}
static T exchange(T& aPtr, T aVal)
{
// __sync_lock_test_and_set is only an acquire barrier; loads and stores
// can't be moved up from after to before it, but they can be moved down
// from before to after it. We may want a stricter ordering, so we need
// an explicit barrier.
Barrier<Order>::beforeStore();
return __sync_lock_test_and_set(&aPtr, aVal);
}
static bool compareExchange(T& aPtr, T aOldVal, T aNewVal)
{
return __sync_bool_compare_and_swap(&aPtr, aOldVal, aNewVal);
}
};
template<typename T>
struct IntrinsicAddSub
{
typedef T ValueType;
static T add(T& aPtr, T aVal)
{
return __sync_fetch_and_add(&aPtr, aVal);
}
static T sub(T& aPtr, T aVal)
{
return __sync_fetch_and_sub(&aPtr, aVal);
}
};
template<typename T>
struct IntrinsicAddSub<T*>
{
typedef T* ValueType;
/*
* The reinterpret_casts are needed so that
* __sync_fetch_and_{add,sub} will properly type-check.
*
* Also, these functions do not provide standard semantics for
* pointer types, so we need to adjust the addend.
*/
static ValueType add(ValueType& aPtr, ptrdiff_t aVal)
{
ValueType amount = reinterpret_cast<ValueType>(aVal * sizeof(T));
return __sync_fetch_and_add(&aPtr, amount);
}
static ValueType sub(ValueType& aPtr, ptrdiff_t aVal)
{
ValueType amount = reinterpret_cast<ValueType>(aVal * sizeof(T));
return __sync_fetch_and_sub(&aPtr, amount);
}
};
template<typename T>
struct IntrinsicIncDec : public IntrinsicAddSub<T>
{
static T inc(T& aPtr) { return IntrinsicAddSub<T>::add(aPtr, 1); }
static T dec(T& aPtr) { return IntrinsicAddSub<T>::sub(aPtr, 1); }
};
template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
public IntrinsicIncDec<T>
{
static T or_( T& aPtr, T aVal) { return __sync_fetch_and_or(&aPtr, aVal); }
static T xor_(T& aPtr, T aVal) { return __sync_fetch_and_xor(&aPtr, aVal); }
static T and_(T& aPtr, T aVal) { return __sync_fetch_and_and(&aPtr, aVal); }
};
template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics<T*, Order> : public IntrinsicMemoryOps<T*, Order>,
public IntrinsicIncDec<T*>
{
};
} // namespace detail
} // namespace mozilla
#elif defined(_MSC_VER)
/*
* Windows comes with a full complement of atomic operations.
* Unfortunately, most of those aren't available for Windows XP (even if
* the compiler supports intrinsics for them), which is the oldest
* version of Windows we support. Therefore, we only provide operations
* on 32-bit datatypes for 32-bit Windows versions; for 64-bit Windows
* versions, we support 64-bit datatypes as well.
*/
# include <intrin.h>
# pragma intrinsic(_InterlockedExchangeAdd)
# pragma intrinsic(_InterlockedOr)
# pragma intrinsic(_InterlockedXor)
# pragma intrinsic(_InterlockedAnd)
# pragma intrinsic(_InterlockedExchange)
# pragma intrinsic(_InterlockedCompareExchange)
namespace mozilla {
namespace detail {
# if !defined(_M_IX86) && !defined(_M_X64)
/*
* The implementations below are optimized for x86ish systems. You
* will have to modify them if you are porting to Windows on a
* different architecture.
*/
# error "Unknown CPU type"
# endif
/*
* The PrimitiveIntrinsics template should define |Type|, the datatype of size
* DataSize upon which we operate, and the following eight functions.
*
* static Type add(Type* aPtr, Type aVal);
* static Type sub(Type* aPtr, Type aVal);
* static Type or_(Type* aPtr, Type aVal);
* static Type xor_(Type* aPtr, Type aVal);
* static Type and_(Type* aPtr, Type aVal);
*
* These functions perform the obvious operation on the value contained in
* |*aPtr| combined with |aVal| and return the value previously stored in
* |*aPtr|.
*
* static void store(Type* aPtr, Type aVal);
*
* This function atomically stores |aVal| into |*aPtr| and must provide a full
* memory fence after the store to prevent compiler and hardware instruction
* reordering. It should also act as a compiler barrier to prevent reads and
* writes from moving to after the store.
*
* static Type exchange(Type* aPtr, Type aVal);
*
* This function atomically stores |aVal| into |*aPtr| and returns the
* previous contents of |*aPtr|;
*
* static bool compareExchange(Type* aPtr, Type aOldVal, Type aNewVal);
*
* This function atomically performs the following operation:
*
* if (*aPtr == aOldVal) {
* *aPtr = aNewVal;
* return true;
* } else {
* return false;
* }
*
*/
template<size_t DataSize> struct PrimitiveIntrinsics;
template<>
struct PrimitiveIntrinsics<4>
{
typedef long Type;
static Type add(Type* aPtr, Type aVal)
{
return _InterlockedExchangeAdd(aPtr, aVal);
}
static Type sub(Type* aPtr, Type aVal)
{
/*
* _InterlockedExchangeSubtract isn't available before Windows 7,
* and we must support Windows XP.
*/
return _InterlockedExchangeAdd(aPtr, -aVal);
}
static Type or_(Type* aPtr, Type aVal)
{
return _InterlockedOr(aPtr, aVal);
}
static Type xor_(Type* aPtr, Type aVal)
{
return _InterlockedXor(aPtr, aVal);
}
static Type and_(Type* aPtr, Type aVal)
{
return _InterlockedAnd(aPtr, aVal);
}
static void store(Type* aPtr, Type aVal)
{
_InterlockedExchange(aPtr, aVal);
}
static Type exchange(Type* aPtr, Type aVal)
{
return _InterlockedExchange(aPtr, aVal);
}
static bool compareExchange(Type* aPtr, Type aOldVal, Type aNewVal)
{
return _InterlockedCompareExchange(aPtr, aNewVal, aOldVal) == aOldVal;
}
};
# if defined(_M_X64)
# pragma intrinsic(_InterlockedExchangeAdd64)
# pragma intrinsic(_InterlockedOr64)
# pragma intrinsic(_InterlockedXor64)
# pragma intrinsic(_InterlockedAnd64)
# pragma intrinsic(_InterlockedExchange64)
# pragma intrinsic(_InterlockedCompareExchange64)
template <>
struct PrimitiveIntrinsics<8>
{
typedef __int64 Type;
static Type add(Type* aPtr, Type aVal)
{
return _InterlockedExchangeAdd64(aPtr, aVal);
}
static Type sub(Type* aPtr, Type aVal)
{
/*
* There is no _InterlockedExchangeSubtract64.
*/
return _InterlockedExchangeAdd64(aPtr, -aVal);
}
static Type or_(Type* aPtr, Type aVal)
{
return _InterlockedOr64(aPtr, aVal);
}
static Type xor_(Type* aPtr, Type aVal)
{
return _InterlockedXor64(aPtr, aVal);
}
static Type and_(Type* aPtr, Type aVal)
{
return _InterlockedAnd64(aPtr, aVal);
}
static void store(Type* aPtr, Type aVal)
{
_InterlockedExchange64(aPtr, aVal);
}
static Type exchange(Type* aPtr, Type aVal)
{
return _InterlockedExchange64(aPtr, aVal);
}
static bool compareExchange(Type* aPtr, Type aOldVal, Type aNewVal)
{
return _InterlockedCompareExchange64(aPtr, aNewVal, aOldVal) == aOldVal;
}
};
# endif
# pragma intrinsic(_ReadWriteBarrier)
template<MemoryOrdering Order> struct Barrier;
/*
* We do not provide an afterStore method in Barrier, as Relaxed and
* ReleaseAcquire orderings do not require one, and the required barrier
* for SequentiallyConsistent is handled by PrimitiveIntrinsics.
*/
template<>
struct Barrier<Relaxed>
{
static void beforeLoad() {}
static void afterLoad() {}
static void beforeStore() {}
};
template<>
struct Barrier<ReleaseAcquire>
{
static void beforeLoad() {}
static void afterLoad() { _ReadWriteBarrier(); }
static void beforeStore() { _ReadWriteBarrier(); }
};
template<>
struct Barrier<SequentiallyConsistent>
{
static void beforeLoad() { _ReadWriteBarrier(); }
static void afterLoad() { _ReadWriteBarrier(); }
static void beforeStore() { _ReadWriteBarrier(); }
};
template<typename PrimType, typename T>
struct CastHelper
{
static PrimType toPrimType(T aVal) { return static_cast<PrimType>(aVal); }
static T fromPrimType(PrimType aVal) { return static_cast<T>(aVal); }
};
template<typename PrimType, typename T>
struct CastHelper<PrimType, T*>
{
static PrimType toPrimType(T* aVal) { return reinterpret_cast<PrimType>(aVal); }
static T* fromPrimType(PrimType aVal) { return reinterpret_cast<T*>(aVal); }
};
template<typename T>
struct IntrinsicBase
{
typedef T ValueType;
typedef PrimitiveIntrinsics<sizeof(T)> Primitives;
typedef typename Primitives::Type PrimType;
static_assert(sizeof(PrimType) == sizeof(T),
"Selection of PrimitiveIntrinsics was wrong");
typedef CastHelper<PrimType, T> Cast;
};
template<typename T, MemoryOrdering Order>
struct IntrinsicMemoryOps : public IntrinsicBase<T>
{
typedef typename IntrinsicBase<T>::ValueType ValueType;
typedef typename IntrinsicBase<T>::Primitives Primitives;
typedef typename IntrinsicBase<T>::PrimType PrimType;
typedef typename IntrinsicBase<T>::Cast Cast;
static ValueType load(const ValueType& aPtr)
{
Barrier<Order>::beforeLoad();
ValueType val = aPtr;
Barrier<Order>::afterLoad();
return val;
}
static void store(ValueType& aPtr, ValueType aVal)
{
// For SequentiallyConsistent, Primitives::store() will generate the
// proper memory fence. Everything else just needs a barrier before
// the store.
if (Order == SequentiallyConsistent) {
Primitives::store(reinterpret_cast<PrimType*>(&aPtr),
Cast::toPrimType(aVal));
} else {
Barrier<Order>::beforeStore();
aPtr = aVal;
}
}
static ValueType exchange(ValueType& aPtr, ValueType aVal)
{
PrimType oldval =
Primitives::exchange(reinterpret_cast<PrimType*>(&aPtr),
Cast::toPrimType(aVal));
return Cast::fromPrimType(oldval);
}
static bool compareExchange(ValueType& aPtr, ValueType aOldVal,
ValueType aNewVal)
{
return Primitives::compareExchange(reinterpret_cast<PrimType*>(&aPtr),
Cast::toPrimType(aOldVal),
Cast::toPrimType(aNewVal));
}
};
template<typename T>
struct IntrinsicApplyHelper : public IntrinsicBase<T>
{
typedef typename IntrinsicBase<T>::ValueType ValueType;
typedef typename IntrinsicBase<T>::PrimType PrimType;
typedef typename IntrinsicBase<T>::Cast Cast;
typedef PrimType (*BinaryOp)(PrimType*, PrimType);
typedef PrimType (*UnaryOp)(PrimType*);
static ValueType applyBinaryFunction(BinaryOp aOp, ValueType& aPtr,
ValueType aVal)
{
PrimType* primTypePtr = reinterpret_cast<PrimType*>(&aPtr);
PrimType primTypeVal = Cast::toPrimType(aVal);
return Cast::fromPrimType(aOp(primTypePtr, primTypeVal));
}
static ValueType applyUnaryFunction(UnaryOp aOp, ValueType& aPtr)
{
PrimType* primTypePtr = reinterpret_cast<PrimType*>(&aPtr);
return Cast::fromPrimType(aOp(primTypePtr));
}
};
template<typename T>
struct IntrinsicAddSub : public IntrinsicApplyHelper<T>
{
typedef typename IntrinsicApplyHelper<T>::ValueType ValueType;
typedef typename IntrinsicBase<T>::Primitives Primitives;
static ValueType add(ValueType& aPtr, ValueType aVal)
{
return applyBinaryFunction(&Primitives::add, aPtr, aVal);
}
static ValueType sub(ValueType& aPtr, ValueType aVal)
{
return applyBinaryFunction(&Primitives::sub, aPtr, aVal);
}
};
template<typename T>
struct IntrinsicAddSub<T*> : public IntrinsicApplyHelper<T*>
{
typedef typename IntrinsicApplyHelper<T*>::ValueType ValueType;
typedef typename IntrinsicBase<T*>::Primitives Primitives;
static ValueType add(ValueType& aPtr, ptrdiff_t aAmount)
{
return applyBinaryFunction(&Primitives::add, aPtr,
(ValueType)(aAmount * sizeof(T)));
}
static ValueType sub(ValueType& aPtr, ptrdiff_t aAmount)
{
return applyBinaryFunction(&Primitives::sub, aPtr,
(ValueType)(aAmount * sizeof(T)));
}
};
template<typename T>
struct IntrinsicIncDec : public IntrinsicAddSub<T>
{
typedef typename IntrinsicAddSub<T>::ValueType ValueType;
static ValueType inc(ValueType& aPtr) { return add(aPtr, 1); }
static ValueType dec(ValueType& aPtr) { return sub(aPtr, 1); }
};
template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
public IntrinsicIncDec<T>
{
typedef typename IntrinsicIncDec<T>::ValueType ValueType;
typedef typename IntrinsicBase<T>::Primitives Primitives;
static ValueType or_(ValueType& aPtr, T aVal)
{
return applyBinaryFunction(&Primitives::or_, aPtr, aVal);
}
static ValueType xor_(ValueType& aPtr, T aVal)
{
return applyBinaryFunction(&Primitives::xor_, aPtr, aVal);
}
static ValueType and_(ValueType& aPtr, T aVal)
{
return applyBinaryFunction(&Primitives::and_, aPtr, aVal);
}
};
template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics<T*, Order> : public IntrinsicMemoryOps<T*, Order>,
public IntrinsicIncDec<T*>
{
typedef typename IntrinsicMemoryOps<T*, Order>::ValueType ValueType;
// This is required to make us be able to build with MSVC10, for unknown
// reasons.
typedef typename IntrinsicBase<T*>::Primitives Primitives;
};
} // namespace detail
} // namespace mozilla
#else
# error "Atomic compiler intrinsics are not supported on your platform"
#endif
namespace mozilla {
namespace detail {
template<typename T, MemoryOrdering Order>
class AtomicBase
{
// We only support 32-bit types on 32-bit Windows, which constrains our
// implementation elsewhere. But we support pointer-sized types everywhere.
static_assert(sizeof(T) == 4 || (sizeof(uintptr_t) == 8 && sizeof(T) == 8),
"mozilla/Atomics.h only supports 32-bit and pointer-sized types");
protected:
typedef typename detail::AtomicIntrinsics<T, Order> Intrinsics;
typename Intrinsics::ValueType mValue;
public:
MOZ_CONSTEXPR AtomicBase() : mValue() {}
explicit MOZ_CONSTEXPR AtomicBase(T aInit) : mValue(aInit) {}
// Note: we can't provide operator T() here because Atomic<bool> inherits
// from AtomcBase with T=uint32_t and not T=bool. If we implemented
// operator T() here, it would cause errors when comparing Atomic<bool> with
// a regular bool.
T operator=(T aVal)
{
Intrinsics::store(mValue, aVal);
return aVal;
}
/**
* Performs an atomic swap operation. aVal is stored and the previous
* value of this variable is returned.
*/
T exchange(T aVal)
{
return Intrinsics::exchange(mValue, aVal);
}
/**
* Performs an atomic compare-and-swap operation and returns true if it
* succeeded. This is equivalent to atomically doing
*
* if (mValue == aOldValue) {
* mValue = aNewValue;
* return true;
* } else {
* return false;
* }
*/
bool compareExchange(T aOldValue, T aNewValue)
{
return Intrinsics::compareExchange(mValue, aOldValue, aNewValue);
}
private:
template<MemoryOrdering AnyOrder>
AtomicBase(const AtomicBase<T, AnyOrder>& aCopy) MOZ_DELETE;
};
template<typename T, MemoryOrdering Order>
class AtomicBaseIncDec : public AtomicBase<T, Order>
{
typedef typename detail::AtomicBase<T, Order> Base;
public:
MOZ_CONSTEXPR AtomicBaseIncDec() : Base() {}
explicit MOZ_CONSTEXPR AtomicBaseIncDec(T aInit) : Base(aInit) {}
using Base::operator=;
operator T() const { return Base::Intrinsics::load(Base::mValue); }
T operator++(int) { return Base::Intrinsics::inc(Base::mValue); }
T operator--(int) { return Base::Intrinsics::dec(Base::mValue); }
T operator++() { return Base::Intrinsics::inc(Base::mValue) + 1; }
T operator--() { return Base::Intrinsics::dec(Base::mValue) - 1; }
private:
template<MemoryOrdering AnyOrder>
AtomicBaseIncDec(const AtomicBaseIncDec<T, AnyOrder>& aCopy) MOZ_DELETE;
};
} // namespace detail
/**
* A wrapper for a type that enforces that all memory accesses are atomic.
*
* In general, where a variable |T foo| exists, |Atomic<T> foo| can be used in
* its place. Implementations for integral and pointer types are provided
* below.
*
* Atomic accesses are sequentially consistent by default. You should
* use the default unless you are tall enough to ride the
* memory-ordering roller coaster (if you're not sure, you aren't) and
* you have a compelling reason to do otherwise.
*
* There is one exception to the case of atomic memory accesses: providing an
* initial value of the atomic value is not guaranteed to be atomic. This is a
* deliberate design choice that enables static atomic variables to be declared
* without introducing extra static constructors.
*/
template<typename T,
MemoryOrdering Order = SequentiallyConsistent,
typename Enable = void>
class Atomic;
/**
* Atomic<T> implementation for integral types.
*
* In addition to atomic store and load operations, compound assignment and
* increment/decrement operators are implemented which perform the
* corresponding read-modify-write operation atomically. Finally, an atomic
* swap method is provided.
*/
template<typename T, MemoryOrdering Order>
class Atomic<T, Order, typename EnableIf<IsIntegral<T>::value &&
!IsSame<T, bool>::value>::Type>
: public detail::AtomicBaseIncDec<T, Order>
{
typedef typename detail::AtomicBaseIncDec<T, Order> Base;
public:
MOZ_CONSTEXPR Atomic() : Base() {}
explicit MOZ_CONSTEXPR Atomic(T aInit) : Base(aInit) {}
using Base::operator=;
T operator+=(T aDelta)
{
return Base::Intrinsics::add(Base::mValue, aDelta) + aDelta;
}
T operator-=(T aDelta)
{
return Base::Intrinsics::sub(Base::mValue, aDelta) - aDelta;
}
T operator|=(T aVal)
{
return Base::Intrinsics::or_(Base::mValue, aVal) | aVal;
}
T operator^=(T aVal)
{
return Base::Intrinsics::xor_(Base::mValue, aVal) ^ aVal;
}
T operator&=(T aVal)
{
return Base::Intrinsics::and_(Base::mValue, aVal) & aVal;
}
private:
Atomic(Atomic<T, Order>& aOther) MOZ_DELETE;
};
/**
* Atomic<T> implementation for pointer types.
*
* An atomic compare-and-swap primitive for pointer variables is provided, as
* are atomic increment and decement operators. Also provided are the compound
* assignment operators for addition and subtraction. Atomic swap (via
* exchange()) is included as well.
*/
template<typename T, MemoryOrdering Order>
class Atomic<T*, Order> : public detail::AtomicBaseIncDec<T*, Order>
{
typedef typename detail::AtomicBaseIncDec<T*, Order> Base;
public:
MOZ_CONSTEXPR Atomic() : Base() {}
explicit MOZ_CONSTEXPR Atomic(T* aInit) : Base(aInit) {}
using Base::operator=;
T* operator+=(ptrdiff_t aDelta)
{
return Base::Intrinsics::add(Base::mValue, aDelta) + aDelta;
}
T* operator-=(ptrdiff_t aDelta)
{
return Base::Intrinsics::sub(Base::mValue, aDelta) - aDelta;
}
private:
Atomic(Atomic<T*, Order>& aOther) MOZ_DELETE;
};
/**
* Atomic<T> implementation for enum types.
*
* The atomic store and load operations and the atomic swap method is provided.
*/
template<typename T, MemoryOrdering Order>
class Atomic<T, Order, typename EnableIf<IsEnum<T>::value>::Type>
: public detail::AtomicBase<T, Order>
{
typedef typename detail::AtomicBase<T, Order> Base;
public:
MOZ_CONSTEXPR Atomic() : Base() {}
explicit MOZ_CONSTEXPR Atomic(T aInit) : Base(aInit) {}
operator T() const { return Base::Intrinsics::load(Base::mValue); }
using Base::operator=;
private:
Atomic(Atomic<T, Order>& aOther) MOZ_DELETE;
};
/**
* Atomic<T> implementation for boolean types.
*
* The atomic store and load operations and the atomic swap method is provided.
*
* Note:
*
* - sizeof(Atomic<bool>) != sizeof(bool) for some implementations of
* bool and/or some implementations of std::atomic. This is allowed in
* [atomic.types.generic]p9.
*
* - It's not obvious whether the 8-bit atomic functions on Windows are always
* inlined or not. If they are not inlined, the corresponding functions in the
* runtime library are not available on Windows XP. This is why we implement
* Atomic<bool> with an underlying type of uint32_t.
*/
template<MemoryOrdering Order>
class Atomic<bool, Order>
: protected detail::AtomicBase<uint32_t, Order>
{
typedef typename detail::AtomicBase<uint32_t, Order> Base;
public:
MOZ_CONSTEXPR Atomic() : Base() {}
explicit MOZ_CONSTEXPR Atomic(bool aInit) : Base(aInit) {}
// We provide boolean wrappers for the underlying AtomicBase methods.
operator bool() const
{
return Base::Intrinsics::load(Base::mValue);
}
bool operator=(bool aVal)
{
return Base::operator=(aVal);
}
bool exchange(bool aVal)
{
return Base::exchange(aVal);
}
bool compareExchange(bool aOldValue, bool aNewValue)
{
return Base::compareExchange(aOldValue, aNewValue);
}
private:
Atomic(Atomic<bool, Order>& aOther) MOZ_DELETE;
};
} // namespace mozilla
#endif /* mozilla_Atomics_h */