зеркало из https://github.com/mozilla/gecko-dev.git
961 строка
26 KiB
C
961 строка
26 KiB
C
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
|
|
#include "nspr.h"
|
|
#include "tmreader.h"
|
|
|
|
|
|
#define ERROR_REPORT(num, val, msg) fprintf(stderr, "error(%d):\t\"%s\"\t%s\n", (num), (val), (msg));
|
|
#define CLEANUP(ptr) do { if(NULL != ptr) { free(ptr); ptr = NULL; } } while(0)
|
|
|
|
|
|
#define ticks2msec(reader, ticks) ticks2xsec((reader), (ticks), 1000)
|
|
#define ticks2usec(reader, ticks) ticks2xsec((reader), (ticks), 1000000)
|
|
#define TICK_RESOLUTION 1000
|
|
#define TICK_PRINTABLE(timeval) ((PRFloat64)(timeval) / (PRFloat64)ST_TIMEVAL_RESOLUTION)
|
|
|
|
|
|
typedef struct __struct_Options
|
|
/*
|
|
** Options to control how we perform.
|
|
**
|
|
** mProgramName Used in help text.
|
|
** mInputName Name of the file.
|
|
** mOutput Output file, append.
|
|
** Default is stdout.
|
|
** mOutputName Name of the file.
|
|
** mHelp Whether or not help should be shown.
|
|
** mOverhead How much overhead an allocation will have.
|
|
** mAlignment What boundry will the end of an allocation line up on.
|
|
** mPageSize Controls the page size. A page containing only fragments
|
|
** is not fragmented. A page containing any life memory
|
|
** costs mPageSize in bytes.
|
|
*/
|
|
{
|
|
const char* mProgramName;
|
|
char* mInputName;
|
|
FILE* mOutput;
|
|
char* mOutputName;
|
|
int mHelp;
|
|
unsigned mOverhead;
|
|
unsigned mAlignment;
|
|
unsigned mPageSize;
|
|
}
|
|
Options;
|
|
|
|
|
|
typedef struct __struct_Switch
|
|
/*
|
|
** Command line options.
|
|
*/
|
|
{
|
|
const char* mLongName;
|
|
const char* mShortName;
|
|
int mHasValue;
|
|
const char* mValue;
|
|
const char* mDescription;
|
|
}
|
|
Switch;
|
|
|
|
#define DESC_NEWLINE "\n\t\t"
|
|
|
|
static Switch gInputSwitch = {"--input", "-i", 1, NULL, "Specify input file." DESC_NEWLINE "stdin is default."};
|
|
static Switch gOutputSwitch = {"--output", "-o", 1, NULL, "Specify output file." DESC_NEWLINE "Appends if file exists." DESC_NEWLINE "stdout is default."};
|
|
static Switch gHelpSwitch = {"--help", "-h", 0, NULL, "Information on usage."};
|
|
static Switch gAlignmentSwitch = {"--alignment", "-al", 1, NULL, "All allocation sizes are made to be a multiple of this number." DESC_NEWLINE "Closer to actual heap conditions; set to 1 for true sizes." DESC_NEWLINE "Default value is 16."};
|
|
static Switch gOverheadSwitch = {"--overhead", "-ov", 1, NULL, "After alignment, all allocations are made to increase by this number." DESC_NEWLINE "Closer to actual heap conditions; set to 0 for true sizes." DESC_NEWLINE "Default value is 8."};
|
|
static Switch gPageSizeSwitch = {"--page-size", "-ps", 1, NULL, "Sets the page size which aids the identification of fragmentation." DESC_NEWLINE "Closer to actual heap conditions; set to 4294967295 for true sizes." DESC_NEWLINE "Default value is 4096."};
|
|
|
|
static Switch* gSwitches[] = {
|
|
&gInputSwitch,
|
|
&gOutputSwitch,
|
|
&gAlignmentSwitch,
|
|
&gOverheadSwitch,
|
|
&gPageSizeSwitch,
|
|
&gHelpSwitch
|
|
};
|
|
|
|
|
|
typedef struct __struct_AnyArray
|
|
/*
|
|
** Variable sized item array.
|
|
**
|
|
** mItems The void pointer items.
|
|
** mItemSize Size of each different item.
|
|
** mCount The number of items in the array.
|
|
** mCapacity How many more items we can hold before reallocing.
|
|
** mGrowBy How many items we allocate when we grow.
|
|
*/
|
|
{
|
|
void* mItems;
|
|
unsigned mItemSize;
|
|
unsigned mCount;
|
|
unsigned mCapacity;
|
|
unsigned mGrowBy;
|
|
}
|
|
AnyArray;
|
|
|
|
|
|
typedef int (*arrayMatchFunc)(void* inContext, AnyArray* inArray, void* inItem, unsigned inItemIndex)
|
|
/*
|
|
** Callback function for the arrayIndexFn function.
|
|
** Used to determine an item match by customizable criteria.
|
|
**
|
|
** inContext The criteria and state of the search.
|
|
** User specified/created.
|
|
** inArray The array the item is in.
|
|
** inItem The item to evaluate for match.
|
|
** inItemIndex The index of this particular item in the array.
|
|
**
|
|
** return int 0 to specify a match.
|
|
** !0 to continue the search performed by arrayIndexFn.
|
|
*/
|
|
;
|
|
|
|
|
|
typedef enum __enum_HeapEventType
|
|
/*
|
|
** Simple heap events are really one of two things.
|
|
*/
|
|
{
|
|
FREE,
|
|
ALLOC
|
|
}
|
|
HeapEventType;
|
|
|
|
|
|
typedef enum __enum_HeapObjectType
|
|
/*
|
|
** The various types of heap objects we track.
|
|
*/
|
|
{
|
|
ALLOCATION,
|
|
FRAGMENT
|
|
}
|
|
HeapObjectType;
|
|
|
|
|
|
typedef struct __struct_HeapObject HeapObject;
|
|
typedef struct __struct_HeapHistory
|
|
/*
|
|
** A marker as to what has happened.
|
|
**
|
|
** mTimestamp When history occurred.
|
|
** mTMRSerial The historical state as known to the tmreader.
|
|
** mObjectIndex Index to the object that was before or after this event.
|
|
** The index as in the index according to all heap objects
|
|
** kept in the TMState structure.
|
|
** We use an index instead of a pointer as the array of
|
|
** objects can change location in the heap.
|
|
*/
|
|
{
|
|
unsigned mTimestamp;
|
|
unsigned mTMRSerial;
|
|
unsigned mObjectIndex;
|
|
}
|
|
HeapHistory;
|
|
|
|
|
|
struct __struct_HeapObject
|
|
/*
|
|
** An object in the heap.
|
|
**
|
|
** A special case should be noted here. If either the birth or death
|
|
** history leads to an object of the same type, then this object
|
|
** is the same as that object, but was modified somehow.
|
|
** Also note that multiple objects may have the same birth object,
|
|
** as well as the same death object.
|
|
**
|
|
** mUniqueID Each object is unique.
|
|
** mType Either allocation or fragment.
|
|
** mHeapOffset Where in the heap the object is.
|
|
** mSize How much of the heap the object takes.
|
|
** mBirth History about the birth event.
|
|
** mDeath History about the death event.
|
|
*/
|
|
{
|
|
unsigned mUniqueID;
|
|
|
|
HeapObjectType mType;
|
|
unsigned mHeapOffset;
|
|
unsigned mSize;
|
|
|
|
HeapHistory mBirth;
|
|
HeapHistory mDeath;
|
|
};
|
|
|
|
|
|
typedef struct __struct_TMState
|
|
/*
|
|
** State of our current operation.
|
|
** Stats we are trying to calculate.
|
|
**
|
|
** mOptions Obilgatory options pointer.
|
|
** mTMR The tmreader, used in tmreader API calls.
|
|
** mLoopExitTMR Set to non zero in order to quickly exit from tmreader
|
|
** input loop. This will also result in an error.
|
|
** uMinTicks Start of run, milliseconds.
|
|
** uMaxTicks End of run, milliseconds.
|
|
*/
|
|
{
|
|
Options* mOptions;
|
|
tmreader* mTMR;
|
|
|
|
int mLoopExitTMR;
|
|
|
|
unsigned uMinTicks;
|
|
unsigned uMaxTicks;
|
|
}
|
|
TMState;
|
|
|
|
|
|
int initOptions(Options* outOptions, int inArgc, char** inArgv)
|
|
/*
|
|
** returns int 0 if successful.
|
|
*/
|
|
{
|
|
int retval = 0;
|
|
int loop = 0;
|
|
int switchLoop = 0;
|
|
int match = 0;
|
|
const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
|
|
Switch* current = NULL;
|
|
|
|
/*
|
|
** Set any defaults.
|
|
*/
|
|
memset(outOptions, 0, sizeof(Options));
|
|
outOptions->mProgramName = inArgv[0];
|
|
outOptions->mInputName = strdup("-");
|
|
outOptions->mOutput = stdout;
|
|
outOptions->mOutputName = strdup("stdout");
|
|
outOptions->mAlignment = 16;
|
|
outOptions->mOverhead = 8;
|
|
|
|
if(NULL == outOptions->mOutputName || NULL == outOptions->mInputName)
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, "stdin/stdout", "Unable to strdup.");
|
|
}
|
|
|
|
/*
|
|
** Go through and attempt to do the right thing.
|
|
*/
|
|
for(loop = 1; loop < inArgc && 0 == retval; loop++)
|
|
{
|
|
match = 0;
|
|
current = NULL;
|
|
|
|
for(switchLoop = 0; switchLoop < switchCount && 0 == retval; switchLoop++)
|
|
{
|
|
if(0 == strcmp(gSwitches[switchLoop]->mLongName, inArgv[loop]))
|
|
{
|
|
match = __LINE__;
|
|
}
|
|
else if(0 == strcmp(gSwitches[switchLoop]->mShortName, inArgv[loop]))
|
|
{
|
|
match = __LINE__;
|
|
}
|
|
|
|
if(match)
|
|
{
|
|
if(gSwitches[switchLoop]->mHasValue)
|
|
{
|
|
/*
|
|
** Attempt to absorb next option to fullfill value.
|
|
*/
|
|
if(loop + 1 < inArgc)
|
|
{
|
|
loop++;
|
|
|
|
current = gSwitches[switchLoop];
|
|
current->mValue = inArgv[loop];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
current = gSwitches[switchLoop];
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(0 == match)
|
|
{
|
|
outOptions->mHelp = __LINE__;
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, inArgv[loop], "Unknown command line switch.");
|
|
}
|
|
else if(NULL == current)
|
|
{
|
|
outOptions->mHelp = __LINE__;
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, inArgv[loop], "Command line switch requires a value.");
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
** Do something based on address/swtich.
|
|
*/
|
|
if(current == &gInputSwitch)
|
|
{
|
|
CLEANUP(outOptions->mInputName);
|
|
outOptions->mInputName = strdup(current->mValue);
|
|
if(NULL == outOptions->mInputName)
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
|
|
}
|
|
}
|
|
else if(current == &gOutputSwitch)
|
|
{
|
|
CLEANUP(outOptions->mOutputName);
|
|
if(NULL != outOptions->mOutput && stdout != outOptions->mOutput)
|
|
{
|
|
fclose(outOptions->mOutput);
|
|
outOptions->mOutput = NULL;
|
|
}
|
|
|
|
outOptions->mOutput = fopen(current->mValue, "a");
|
|
if(NULL == outOptions->mOutput)
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, current->mValue, "Unable to open output file.");
|
|
}
|
|
else
|
|
{
|
|
outOptions->mOutputName = strdup(current->mValue);
|
|
if(NULL == outOptions->mOutputName)
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
|
|
}
|
|
}
|
|
}
|
|
else if(current == &gHelpSwitch)
|
|
{
|
|
outOptions->mHelp = __LINE__;
|
|
}
|
|
else if(current == &gAlignmentSwitch)
|
|
{
|
|
unsigned arg = 0;
|
|
char* endScan = NULL;
|
|
|
|
errno = 0;
|
|
arg = strtoul(current->mValue, &endScan, 0);
|
|
if(0 == errno && endScan != current->mValue)
|
|
{
|
|
outOptions->mAlignment = arg;
|
|
}
|
|
else
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
|
|
}
|
|
}
|
|
else if(current == &gOverheadSwitch)
|
|
{
|
|
unsigned arg = 0;
|
|
char* endScan = NULL;
|
|
|
|
errno = 0;
|
|
arg = strtoul(current->mValue, &endScan, 0);
|
|
if(0 == errno && endScan != current->mValue)
|
|
{
|
|
outOptions->mOverhead = arg;
|
|
}
|
|
else
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
|
|
}
|
|
}
|
|
else if(current == &gPageSizeSwitch)
|
|
{
|
|
unsigned arg = 0;
|
|
char* endScan = NULL;
|
|
|
|
errno = 0;
|
|
arg = strtoul(current->mValue, &endScan, 0);
|
|
if(0 == errno && endScan != current->mValue)
|
|
{
|
|
outOptions->mPageSize = arg;
|
|
}
|
|
else
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, current->mLongName, "No handler for command line switch.");
|
|
}
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
PRUint32 ticks2xsec(tmreader* aReader, PRUint32 aTicks, PRUint32 aResolution)
|
|
/*
|
|
** Convert platform specific ticks to second units
|
|
*/
|
|
{
|
|
PRUint32 retval = 0;
|
|
PRUint64 bigone;
|
|
PRUint64 tmp64;
|
|
|
|
LL_UI2L(bigone, aResolution);
|
|
LL_UI2L(tmp64, aTicks);
|
|
LL_MUL(bigone, bigone, tmp64);
|
|
LL_UI2L(tmp64, aReader->ticksPerSec);
|
|
LL_DIV(bigone, bigone, tmp64);
|
|
LL_L2UI(retval, bigone);
|
|
return retval;
|
|
}
|
|
|
|
|
|
void cleanOptions(Options* inOptions)
|
|
/*
|
|
** Clean up any open handles.
|
|
*/
|
|
{
|
|
unsigned loop = 0;
|
|
|
|
CLEANUP(inOptions->mInputName);
|
|
CLEANUP(inOptions->mOutputName);
|
|
if(NULL != inOptions->mOutput && stdout != inOptions->mOutput)
|
|
{
|
|
fclose(inOptions->mOutput);
|
|
}
|
|
|
|
memset(inOptions, 0, sizeof(Options));
|
|
}
|
|
|
|
|
|
void showHelp(Options* inOptions)
|
|
/*
|
|
** Show some simple help text on usage.
|
|
*/
|
|
{
|
|
int loop = 0;
|
|
const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
|
|
const char* valueText = NULL;
|
|
|
|
printf("usage:\t%s [arguments]\n", inOptions->mProgramName);
|
|
printf("\n");
|
|
printf("arguments:\n");
|
|
|
|
for(loop = 0; loop < switchCount; loop++)
|
|
{
|
|
if(gSwitches[loop]->mHasValue)
|
|
{
|
|
valueText = " <value>";
|
|
}
|
|
else
|
|
{
|
|
valueText = "";
|
|
}
|
|
|
|
printf("\t%s%s\n", gSwitches[loop]->mLongName, valueText);
|
|
printf("\t %s%s", gSwitches[loop]->mShortName, valueText);
|
|
printf(DESC_NEWLINE "%s\n\n", gSwitches[loop]->mDescription);
|
|
}
|
|
|
|
printf("This tool reports heap fragmentation stats from a trace-malloc log.\n");
|
|
}
|
|
|
|
|
|
AnyArray* arrayCreate(unsigned inItemSize, unsigned inGrowBy)
|
|
/*
|
|
** Create an array container object.
|
|
*/
|
|
{
|
|
AnyArray* retval = NULL;
|
|
|
|
if(0 != inGrowBy && 0 != inItemSize)
|
|
{
|
|
retval = (AnyArray*)calloc(1, sizeof(AnyArray));
|
|
retval->mItemSize = inItemSize;
|
|
retval->mGrowBy = inGrowBy;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
void arrayDestroy(AnyArray* inArray)
|
|
/*
|
|
** Release the memory the array contains.
|
|
** This will release the items as well.
|
|
*/
|
|
{
|
|
if(NULL != inArray)
|
|
{
|
|
if(NULL != inArray->mItems)
|
|
{
|
|
free(inArray->mItems);
|
|
}
|
|
free(inArray);
|
|
}
|
|
}
|
|
|
|
|
|
unsigned arrayAlloc(AnyArray* inArray, unsigned inItems)
|
|
/*
|
|
** Resize the item array capcity to a specific number of items.
|
|
** This could possibly truncate the array, so handle that as well.
|
|
**
|
|
** returns unsigned <= inArray->mCapacity on success.
|
|
*/
|
|
{
|
|
unsigned retval = (unsigned)-1;
|
|
|
|
if(NULL != inArray)
|
|
{
|
|
void* moved = NULL;
|
|
|
|
moved = realloc(inArray->mItems, inItems * inArray->mItemSize);
|
|
if(NULL != moved)
|
|
{
|
|
inArray->mItems = moved;
|
|
inArray->mCapacity = inItems;
|
|
if(inArray->mCount > inItems)
|
|
{
|
|
inArray->mCount = inItems;
|
|
}
|
|
|
|
retval = inItems;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
void* arrayItem(AnyArray* inArray, unsigned inIndex)
|
|
/*
|
|
** Return the array item at said index.
|
|
** Zero based index.
|
|
**
|
|
** returns void* NULL on failure.
|
|
*/
|
|
{
|
|
void* retval = NULL;
|
|
|
|
if(NULL != inArray && inIndex < inArray->mCount)
|
|
{
|
|
retval = (void*)((char*)inArray->mItems + (inArray->mItemSize * inIndex));
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
unsigned arrayIndex(AnyArray* inArray, void* inItem, unsigned inStartIndex)
|
|
/*
|
|
** Go through the array from the index specified looking for an item
|
|
** match based on byte for byte comparison.
|
|
** We allow specifying the start index in order to handle arrays with
|
|
** duplicate items.
|
|
**
|
|
** returns unsigned >= inArray->mCount on failure.
|
|
*/
|
|
{
|
|
unsigned retval = (unsigned)-1;
|
|
|
|
if(NULL != inArray && NULL != inItem && inStartIndex < inArray->mCount)
|
|
{
|
|
void* curItem = NULL;
|
|
|
|
for(retval = inStartIndex; retval < inArray->mCount; retval++)
|
|
{
|
|
curItem = arrayItem(inArray, retval);
|
|
if(0 == memcmp(inItem, curItem, inArray->mItemSize))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
unsigned arrayIndexFn(AnyArray* inArray, arrayMatchFunc inFunc, void* inFuncContext, unsigned inStartIndex)
|
|
/*
|
|
** Go through the array from the index specified looking for an item
|
|
** match based upon the return value of inFunc (0, Zero, is a match).
|
|
** We allow specifying the start index in order to facilitate looping over
|
|
** the array which could have multiple matches.
|
|
**
|
|
** returns unsigned >= inArray->mCount on failure.
|
|
*/
|
|
{
|
|
unsigned retval = (unsigned)-1;
|
|
|
|
if(NULL != inArray && NULL != inFunc && inStartIndex < inArray->mCount)
|
|
{
|
|
void* curItem = NULL;
|
|
|
|
for(retval = inStartIndex; retval < inArray->mCount; retval++)
|
|
{
|
|
curItem = arrayItem(inArray, retval);
|
|
if(0 == inFunc(inFuncContext, inArray, curItem, retval))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
unsigned arrayAddItem(AnyArray* inArray, void* inItem)
|
|
/*
|
|
** Add a new item to the array.
|
|
** This is done by copying the item.
|
|
**
|
|
** returns unsigned < inArray->mCount on success.
|
|
*/
|
|
{
|
|
unsigned retval = (unsigned)-1;
|
|
|
|
if(NULL != inArray && NULL != inItem)
|
|
{
|
|
int noCopy = 0;
|
|
|
|
/*
|
|
** See if the array should grow.
|
|
*/
|
|
if(inArray->mCount == inArray->mCapacity)
|
|
{
|
|
unsigned allocRes = 0;
|
|
|
|
allocRes = arrayAlloc(inArray, inArray->mCapacity + inArray->mGrowBy);
|
|
if(allocRes > inArray->mCapacity)
|
|
{
|
|
noCopy = __LINE__;
|
|
}
|
|
}
|
|
|
|
if(0 == noCopy)
|
|
{
|
|
retval = inArray->mCount;
|
|
|
|
inArray->mCount++;
|
|
memcpy(arrayItem(inArray, retval), inItem, inArray->mItemSize);
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
HeapObject* initHeapObject(HeapObject* inObject)
|
|
/*
|
|
** Function to init the heap object just right.
|
|
** Sets the unique ID to something unique.
|
|
*/
|
|
{
|
|
HeapObject* retval = inObject;
|
|
|
|
if(NULL != inObject)
|
|
{
|
|
static unsigned uniqueGenerator = 0;
|
|
|
|
memset(inObject, -1, sizeof(HeapObject));
|
|
|
|
inObject->mUniqueID = uniqueGenerator;
|
|
uniqueGenerator++;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
int simpleHeapEvent(TMState* inStats, HeapEventType inType, unsigned mTimestamp, unsigned inSerial, unsigned inHeapID, unsigned inSize)
|
|
/*
|
|
** A new heap event will cause the creation of a new heap object.
|
|
** The new heap object will displace, or replace, a heap object of a different type.
|
|
*/
|
|
{
|
|
int retval = 0;
|
|
HeapObject newObject;
|
|
|
|
/*
|
|
** Set the most basic object details.
|
|
*/
|
|
initHeapObject(&newObject);
|
|
newObject.mHeapOffset = inHeapID;
|
|
newObject.mSize = inSize;
|
|
if(FREE == inType)
|
|
{
|
|
newObject.mType = FRAGMENT;
|
|
}
|
|
else if(ALLOC == inType)
|
|
{
|
|
newObject.mType = ALLOCATION;
|
|
}
|
|
|
|
/*
|
|
** Add it to the heap object array.
|
|
*/
|
|
|
|
/*
|
|
** TODO GAB
|
|
**
|
|
** First thing to do is to add the new object to the heap in order to
|
|
** obtain a valid index.
|
|
**
|
|
** Next, find all matches to this range of heap memory that this event
|
|
** refers to, that are alive during this timestamp (no death yet).
|
|
** Fill in the death event of those objects.
|
|
** If the objects contain some portions outside of the range, then
|
|
** new objects for those ranges need to be created that carry on
|
|
** the same object type, have the index of the old object for birth,
|
|
** and the serial of the old object, new timestamp of course.
|
|
** The old object's death points to the new object, which tells why the
|
|
** fragmentation took place.
|
|
** The new object birth points to the old object only if a fragment.
|
|
** An allocation only has a birth object when it is a realloc (complex)
|
|
** heap event.
|
|
**
|
|
** I believe this give us enough information to look up particular
|
|
** details of the heap at any given time.
|
|
*/
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
int complexHeapEvent(TMState* inStats, unsigned mTimestamp, unsigned inOldSerial, unsigned inOldHeapID, unsigned inOSize, unsigned inNewSerial, unsigned inNewHeapID, unsigned inNewSize)
|
|
/*
|
|
** Generally, this event intends to chain one old heap object to a newer heap object.
|
|
** Otherwise, the functionality should recognizable ala simpleHeapEvent.
|
|
*/
|
|
{
|
|
int retval = 0;
|
|
|
|
/*
|
|
** TODO GAB
|
|
*/
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
unsigned actualByteSize(Options* inOptions, unsigned retval)
|
|
/*
|
|
** Apply alignment and overhead to size to figure out actual byte size.
|
|
** This by default mimics spacetrace with default options (msvc crt heap).
|
|
*/
|
|
{
|
|
if(0 != retval)
|
|
{
|
|
unsigned eval = 0;
|
|
unsigned over = 0;
|
|
|
|
eval = retval - 1;
|
|
if(0 != inOptions->mAlignment)
|
|
{
|
|
over = eval % inOptions->mAlignment;
|
|
}
|
|
retval = eval + inOptions->mOverhead + inOptions->mAlignment - over;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
void tmEventHandler(tmreader* inReader, tmevent* inEvent)
|
|
/*
|
|
** Callback from the tmreader_eventloop.
|
|
** Build up our fragmentation information herein.
|
|
*/
|
|
{
|
|
char type = inEvent->type;
|
|
TMState* stats = (TMState*)inReader->data;
|
|
|
|
/*
|
|
** Only intersted in handling events of a particular type.
|
|
*/
|
|
switch(type)
|
|
{
|
|
default:
|
|
return;
|
|
|
|
case TM_EVENT_MALLOC:
|
|
case TM_EVENT_CALLOC:
|
|
case TM_EVENT_REALLOC:
|
|
case TM_EVENT_FREE:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** Should we even try to look?
|
|
** Set mLoopExitTMR to non-zero to abort the read loop faster.
|
|
*/
|
|
if(0 == stats->mLoopExitTMR)
|
|
{
|
|
Options* options = (Options*)stats->mOptions;
|
|
unsigned timestamp = ticks2msec(stats->mTMR, inEvent->u.alloc.interval);
|
|
unsigned actualSize = actualByteSize(options, inEvent->u.alloc.size);
|
|
unsigned heapID = inEvent->u.alloc.ptr;
|
|
unsigned serial = inEvent->serial;
|
|
|
|
/*
|
|
** Check the timestamp range of our overall state.
|
|
*/
|
|
if(stats->uMinTicks > timestamp)
|
|
{
|
|
stats->uMinTicks = timestamp;
|
|
}
|
|
if(stats->uMaxTicks < timestamp)
|
|
{
|
|
stats->uMaxTicks = timestamp;
|
|
}
|
|
|
|
/*
|
|
** Realloc in general deserves some special attention if dealing
|
|
** with an old allocation (not new memory).
|
|
*/
|
|
if(TM_EVENT_REALLOC == type && 0 != inEvent->u.alloc.oldserial)
|
|
{
|
|
unsigned oldActualSize = actualByteSize(options, inEvent->u.alloc.oldsize);
|
|
unsigned oldHeapID = inEvent->u.alloc.oldptr;
|
|
unsigned oldSerial = inEvent->u.alloc.oldserial;
|
|
|
|
if(0 == actualSize)
|
|
{
|
|
/*
|
|
** Reallocs of size zero are to become free events.
|
|
*/
|
|
stats->mLoopExitTMR = simpleHeapEvent(stats, FREE, timestamp, serial, oldHeapID, oldActualSize);
|
|
}
|
|
else if(heapID != oldHeapID || actualSize != oldActualSize)
|
|
{
|
|
/*
|
|
** Reallocs which moved generate two events.
|
|
** Reallocs which changed size generate two events.
|
|
**
|
|
** One event to free the old memory area.
|
|
** Another event to allocate the new memory area.
|
|
** They are to be linked to one another, so the history
|
|
** and true origin can be tracked.
|
|
*/
|
|
stats->mLoopExitTMR = complexHeapEvent(stats, timestamp, oldSerial, oldHeapID, oldActualSize, serial, heapID, actualSize);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
** The realloc is not considered an operation and is skipped.
|
|
** It is not an operation, because it did not move or change
|
|
** size; this can happen if a realloc falls within the
|
|
** alignment of an allocation.
|
|
** Say if you realloc a 1 byte allocation to 2 bytes, it will
|
|
** not really change heap impact unless you have 1 set as
|
|
** the alignment of your allocations.
|
|
*/
|
|
}
|
|
}
|
|
else if(TM_EVENT_FREE == type)
|
|
{
|
|
/*
|
|
** Generate a free event to create a fragment.
|
|
*/
|
|
stats->mLoopExitTMR = simpleHeapEvent(stats, FREE, timestamp, serial, heapID, actualSize);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
** Generate an allocation event to clear fragments.
|
|
*/
|
|
stats->mLoopExitTMR = simpleHeapEvent(stats, ALLOC, timestamp, serial, heapID, actualSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int tmfrags(Options* inOptions)
|
|
/*
|
|
** Load the input file and report stats.
|
|
*/
|
|
{
|
|
int retval = 0;
|
|
TMState stats;
|
|
|
|
memset(&stats, 0, sizeof(stats));
|
|
stats.mOptions = inOptions;
|
|
stats.uMinTicks = 0xFFFFFFFFU;
|
|
|
|
/*
|
|
** Need a tmreader.
|
|
*/
|
|
stats.mTMR = tmreader_new(inOptions->mProgramName, &stats);
|
|
if(NULL != stats.mTMR)
|
|
{
|
|
int tmResult = 0;
|
|
|
|
tmResult = tmreader_eventloop(stats.mTMR, inOptions->mInputName, tmEventHandler);
|
|
if(0 == tmResult)
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, inOptions->mInputName, "Problem reading trace-malloc data.");
|
|
}
|
|
if(0 != stats.mLoopExitTMR)
|
|
{
|
|
retval = stats.mLoopExitTMR;
|
|
ERROR_REPORT(retval, inOptions->mInputName, "Aborted trace-malloc input loop.");
|
|
}
|
|
|
|
tmreader_destroy(stats.mTMR);
|
|
stats.mTMR = NULL;
|
|
}
|
|
else
|
|
{
|
|
retval = __LINE__;
|
|
ERROR_REPORT(retval, inOptions->mProgramName, "Unable to obtain tmreader.");
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
int main(int inArgc, char** inArgv)
|
|
{
|
|
int retval = 0;
|
|
Options options;
|
|
|
|
retval = initOptions(&options, inArgc, inArgv);
|
|
if(options.mHelp)
|
|
{
|
|
showHelp(&options);
|
|
}
|
|
else if(0 == retval)
|
|
{
|
|
retval = tmfrags(&options);
|
|
}
|
|
|
|
cleanOptions(&options);
|
|
return retval;
|
|
}
|
|
|