gecko-dev/dom/canvas/QueueParamTraits.h

886 строки
27 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: sw=2 ts=4 et :
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef _QUEUEPARAMTRAITS_H_
#define _QUEUEPARAMTRAITS_H_ 1
#include "mozilla/gfx/2D.h"
#include "mozilla/Assertions.h"
#include "mozilla/IntegerRange.h"
#include "mozilla/ipc/ProtocolUtils.h"
#include "mozilla/ipc/SharedMemoryBasic.h"
#include "mozilla/ipc/Shmem.h"
#include "mozilla/Logging.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/TypeTraits.h"
#include "nsString.h"
#include "WebGLTypes.h"
namespace mozilla {
namespace webgl {
enum class QueueStatus {
// Operation was successful
kSuccess,
// The operation failed because the queue isn't ready for it.
// Either the queue is too full for an insert or too empty for a remove.
// The operation may succeed if retried.
kNotReady,
// The operation required more room than the queue supports.
// It should not be retried -- it will always fail.
kTooSmall,
// The operation failed for some reason that is unrecoverable.
// All values below this value indicate a fata error.
kFatalError,
// Fatal error: Internal processing ran out of memory. This is likely e.g.
// during de-serialization.
kOOMError,
};
inline bool IsSuccess(QueueStatus status) {
return status == QueueStatus::kSuccess;
}
inline bool operator!(const QueueStatus status) { return !IsSuccess(status); }
template <typename T>
struct RemoveCVR {
typedef typename std::remove_reference<typename std::remove_cv<T>::type>::type
Type;
};
inline size_t UsedBytes(size_t aQueueBufferSize, size_t aRead, size_t aWrite) {
return (aRead <= aWrite) ? aWrite - aRead
: (aQueueBufferSize - aRead) + aWrite;
}
inline size_t FreeBytes(size_t aQueueBufferSize, size_t aRead, size_t aWrite) {
// Remember, queueSize is queueBufferSize-1
return (aQueueBufferSize - 1) - UsedBytes(aQueueBufferSize, aRead, aWrite);
}
template <typename T>
struct IsTriviallySerializable
: public std::integral_constant<bool, std::is_arithmetic<T>::value &&
!std::is_same<T, bool>::value> {};
/**
* QueueParamTraits provide the user with a way to implement PCQ argument
* (de)serialization. It uses a PcqView, which permits the system to
* abandon all changes to the underlying PCQ if any operation fails.
*
* The transactional nature of PCQ operations make the ideal behavior a bit
* complex. Since the PCQ has a fixed amount of memory available to it,
* TryInsert operations operations are expected to sometimes fail and be
* re-issued later. We want these failures to be inexpensive. The same
* goes for TryRemove, which fails when there isn't enough data in
* the queue yet for them to complete.
*
* Their expected interface is:
*
* template<> struct QueueParamTraits<typename RemoveCVR<Arg>::Type> {
* // Write data from aArg into the PCQ.
* static QueueStatus Write(ProducerView& aProducerView, const Arg& aArg)
* {...};
*
* // Read data from the PCQ into aArg, or just skip the data if aArg is null.
* static QueueStatus Read(ConsumerView& aConsumerView, Arg* aArg) {...}
* };
*/
template <typename Arg>
struct QueueParamTraits; // Todo: s/QueueParamTraits/SizedParamTraits/
/**
* The marshaller handles all data insertion into the queue.
*/
class Marshaller {
public:
static QueueStatus WriteObject(uint8_t* aQueue, size_t aQueueBufferSize,
size_t aRead, size_t* aWrite, const void* aArg,
size_t aArgLength) {
const uint8_t* buf = reinterpret_cast<const uint8_t*>(aArg);
if (FreeBytes(aQueueBufferSize, aRead, *aWrite) < aArgLength) {
return QueueStatus::kNotReady;
}
if (*aWrite + aArgLength <= aQueueBufferSize) {
memcpy(aQueue + *aWrite, buf, aArgLength);
} else {
size_t firstLen = aQueueBufferSize - *aWrite;
memcpy(aQueue + *aWrite, buf, firstLen);
memcpy(aQueue, &buf[firstLen], aArgLength - firstLen);
}
*aWrite = (*aWrite + aArgLength) % aQueueBufferSize;
return QueueStatus::kSuccess;
}
static QueueStatus ReadObject(const uint8_t* aQueue, size_t aQueueBufferSize,
size_t* aRead, size_t aWrite, void* aArg,
size_t aArgLength) {
if (UsedBytes(aQueueBufferSize, *aRead, aWrite) < aArgLength) {
return QueueStatus::kNotReady;
}
if (aArg) {
uint8_t* buf = reinterpret_cast<uint8_t*>(aArg);
if (*aRead + aArgLength <= aQueueBufferSize) {
memcpy(buf, aQueue + *aRead, aArgLength);
} else {
size_t firstLen = aQueueBufferSize - *aRead;
memcpy(buf, aQueue + *aRead, firstLen);
memcpy(&buf[firstLen], aQueue, aArgLength - firstLen);
}
}
*aRead = (*aRead + aArgLength) % aQueueBufferSize;
return QueueStatus::kSuccess;
}
};
template <typename T>
inline Range<T> AsRange(T* const begin, T* const end) {
const auto size = MaybeAs<size_t>(end - begin);
MOZ_RELEASE_ASSERT(size);
return {begin, *size};
}
/**
* Used to give QueueParamTraits a way to write to the Producer without
* actually altering it, in case the transaction fails.
* THis object maintains the error state of the transaction and
* discards commands issued after an error is encountered.
*/
template <typename _Producer>
class ProducerView {
public:
using Producer = _Producer;
ProducerView(Producer* aProducer, size_t aRead, size_t* aWrite)
: mProducer(aProducer),
mRead(aRead),
mWrite(aWrite),
mStatus(QueueStatus::kSuccess) {}
template <typename T>
QueueStatus WriteFromRange(const Range<const T>& src) {
if (!mStatus) return mStatus;
mProducer->WriteFromRange(src);
return mStatus;
}
/**
* Copy bytes from aBuffer to the producer if there is enough room.
* aBufferSize must not be 0.
*/
template <typename T>
inline QueueStatus Write(const T* begin, const T* end) {
MOZ_RELEASE_ASSERT(begin <= end);
if (!mStatus) return mStatus;
WriteFromRange(AsRange(begin, end));
return mStatus;
}
template <typename T>
inline QueueStatus WritePod(const T& in) {
static_assert(std::is_trivially_copyable_v<T>);
const auto begin = reinterpret_cast<const uint8_t*>(&in);
return Write(begin, begin + sizeof(T));
}
/**
* Serialize aArg using Arg's QueueParamTraits.
*/
template <typename Arg>
QueueStatus WriteParam(const Arg& aArg) {
return mozilla::webgl::QueueParamTraits<
typename RemoveCVR<Arg>::Type>::Write(*this, aArg);
}
QueueStatus GetStatus() { return mStatus; }
private:
Producer* mProducer;
size_t mRead;
size_t* mWrite;
QueueStatus mStatus;
};
/**
* Used to give QueueParamTraits a way to read from the Consumer without
* actually altering it, in case the transaction fails.
*/
template <typename _Consumer>
class ConsumerView {
public:
using Consumer = _Consumer;
ConsumerView(Consumer* aConsumer, size_t* aRead, size_t aWrite)
: mConsumer(aConsumer),
mRead(aRead),
mWrite(aWrite),
mStatus(QueueStatus::kSuccess) {}
/**
* Read bytes from the consumer if there is enough data. aBuffer may
* be null (in which case the data is skipped)
*/
template <typename T>
inline QueueStatus Read(T* const destBegin, T* const destEnd) {
MOZ_ASSERT(destBegin);
MOZ_RELEASE_ASSERT(destBegin <= destEnd);
if (!mStatus) return mStatus;
const auto dest = AsRange(destBegin, destEnd);
const auto view = ReadRange<T>(dest.length());
if (!view) return mStatus;
const auto byteSize = ByteSize(dest);
if (byteSize) {
memcpy(dest.begin().get(), view->begin().get(), byteSize);
}
return mStatus;
}
/// Return a view wrapping the shmem.
template <typename T>
inline Maybe<Range<const T>> ReadRange(const size_t elemCount) {
if (!mStatus) return {};
const auto view = mConsumer->template ReadRange<T>(elemCount);
if (!view) {
mStatus = QueueStatus::kTooSmall;
}
return view;
}
template <typename T>
inline QueueStatus ReadPod(T* out) {
static_assert(std::is_trivially_copyable_v<T>);
const auto begin = reinterpret_cast<uint8_t*>(out);
return Read(begin, begin + sizeof(T));
}
/**
* Deserialize aArg using Arg's QueueParamTraits.
* If the return value is not Success then aArg is not changed.
*/
template <typename Arg>
QueueStatus ReadParam(Arg* aArg) {
MOZ_ASSERT(aArg);
return mozilla::webgl::QueueParamTraits<std::remove_cv_t<Arg>>::Read(*this,
aArg);
}
QueueStatus GetStatus() { return mStatus; }
private:
Consumer* mConsumer;
size_t* mRead;
size_t mWrite;
QueueStatus mStatus;
};
// ---------------------------------------------------------------
/**
* True for types that can be (de)serialized by memcpy.
*/
template <typename Arg>
struct QueueParamTraits {
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView, const Arg& aArg) {
static_assert(mozilla::webgl::template IsTriviallySerializable<Arg>::value,
"No QueueParamTraits specialization was found for this type "
"and it does not satisfy IsTriviallySerializable.");
// Write self as binary
const auto begin = &aArg;
return aProducerView.Write(begin, begin + 1);
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, Arg* aArg) {
static_assert(mozilla::webgl::template IsTriviallySerializable<Arg>::value,
"No QueueParamTraits specialization was found for this type "
"and it does not satisfy IsTriviallySerializable.");
// Read self as binary
return aConsumerView.Read(aArg, aArg + 1);
}
};
// ---------------------------------------------------------------
template <>
struct QueueParamTraits<bool> {
using ParamType = bool;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
uint8_t temp = aArg ? 1 : 0;
return aProducerView.WriteParam(temp);
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
uint8_t temp;
if (IsSuccess(aConsumerView.ReadParam(&temp))) {
MOZ_ASSERT(temp == 1 || temp == 0);
*aArg = temp ? true : false;
}
return aConsumerView.GetStatus();
}
};
// ---------------------------------------------------------------
// Adapted from IPC::EnumSerializer, this class safely handles enum values,
// validating that they are in range using the same EnumValidators as IPDL
// (namely ContiguousEnumValidator and ContiguousEnumValidatorInclusive).
template <typename E, typename EnumValidator>
struct EnumSerializer {
typedef E ParamType;
typedef typename std::underlying_type<E>::type DataType;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aValue) {
MOZ_RELEASE_ASSERT(EnumValidator::IsLegalValue(aValue));
return aProducerView.WriteParam(DataType(aValue));
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aResult) {
DataType value;
if (!aConsumerView.ReadParam(&value)) {
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCReadErrorReason, "Bad iter"_ns);
return aConsumerView.GetStatus();
}
if (!EnumValidator::IsLegalValue(ParamType(value))) {
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCReadErrorReason, "Illegal value"_ns);
return QueueStatus::kFatalError;
}
*aResult = ParamType(value);
return QueueStatus::kSuccess;
}
};
using IPC::ContiguousEnumValidator;
using IPC::ContiguousEnumValidatorInclusive;
template <typename E, E MinLegal, E HighBound>
struct ContiguousEnumSerializer
: EnumSerializer<E, ContiguousEnumValidator<E, MinLegal, HighBound>> {};
template <typename E, E MinLegal, E MaxLegal>
struct ContiguousEnumSerializerInclusive
: EnumSerializer<E,
ContiguousEnumValidatorInclusive<E, MinLegal, MaxLegal>> {
};
// ---------------------------------------------------------------
template <>
struct QueueParamTraits<QueueStatus>
: public ContiguousEnumSerializerInclusive<
QueueStatus, QueueStatus::kSuccess, QueueStatus::kOOMError> {};
// ---------------------------------------------------------------
template <>
struct QueueParamTraits<webgl::TexUnpackBlobDesc> {
using ParamType = webgl::TexUnpackBlobDesc;
template <typename U>
static QueueStatus Write(ProducerView<U>& view, const ParamType& in) {
MOZ_ASSERT(!in.image);
const bool isSurf = bool(in.surf);
if (!view.WriteParam(in.imageTarget) || !view.WriteParam(in.size) ||
!view.WriteParam(in.srcAlphaType) || !view.WriteParam(in.unpacking) ||
!view.WriteParam(in.cpuData) || !view.WriteParam(in.pboOffset) ||
!view.WriteParam(isSurf)) {
return view.GetStatus();
}
if (isSurf) {
gfx::DataSourceSurface::ScopedMap map(in.surf,
gfx::DataSourceSurface::READ);
if (!map.IsMapped()) {
return QueueStatus::kOOMError;
}
const auto& surfSize = in.surf->GetSize();
const auto stride = *MaybeAs<size_t>(map.GetStride());
if (!view.WriteParam(surfSize) ||
!view.WriteParam(in.surf->GetFormat()) || !view.WriteParam(stride)) {
return view.GetStatus();
}
const size_t dataSize = stride * surfSize.height;
const auto& begin = map.GetData();
if (!view.Write(begin, begin + dataSize)) {
return view.GetStatus();
}
}
return QueueStatus::kSuccess;
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& view, ParamType* const out) {
bool isSurf;
if (!view.ReadParam(&out->imageTarget) || !view.ReadParam(&out->size) ||
!view.ReadParam(&out->srcAlphaType) ||
!view.ReadParam(&out->unpacking) || !view.ReadParam(&out->cpuData) ||
!view.ReadParam(&out->pboOffset) || !view.ReadParam(&isSurf)) {
return view.GetStatus();
}
if (isSurf) {
gfx::IntSize surfSize;
gfx::SurfaceFormat format;
size_t stride;
if (!view.ReadParam(&surfSize) || !view.ReadParam(&format) ||
!view.ReadParam(&stride)) {
return view.GetStatus();
}
out->surf = gfx::Factory::CreateDataSourceSurfaceWithStride(
surfSize, format, stride, true);
if (!out->surf) {
return QueueStatus::kOOMError;
}
gfx::DataSourceSurface::ScopedMap map(out->surf,
gfx::DataSourceSurface::WRITE);
if (!map.IsMapped()) {
return QueueStatus::kOOMError;
}
const size_t dataSize = stride * surfSize.height;
const auto& begin = map.GetData();
if (!view.Read(begin, begin + dataSize)) {
return view.GetStatus();
}
}
return QueueStatus::kSuccess;
}
};
// ---------------------------------------------------------------
template <>
struct QueueParamTraits<nsACString> {
using ParamType = nsACString;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
if ((!aProducerView.WriteParam(aArg.IsVoid())) || aArg.IsVoid()) {
return aProducerView.GetStatus();
}
uint32_t len = aArg.Length();
if ((!aProducerView.WriteParam(len)) || (len == 0)) {
return aProducerView.GetStatus();
}
return aProducerView.Write(aArg.BeginReading(), len);
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
bool isVoid = false;
if (!IsSuccess(aConsumerView.ReadParam(&isVoid))) {
return aConsumerView.GetStatus();
}
aArg->SetIsVoid(isVoid);
if (isVoid) {
return QueueStatus::kSuccess;
}
uint32_t len = 0;
if (!IsSuccess(aConsumerView.ReadParam(&len))) {
return aConsumerView.GetStatus();
}
if (len == 0) {
*aArg = "";
return QueueStatus::kSuccess;
}
char* buf = new char[len + 1];
if (!buf) {
return QueueStatus::kOOMError;
}
if (!IsSuccess(aConsumerView.Read(buf, len))) {
return aConsumerView.GetStatus();
}
buf[len] = '\0';
aArg->Adopt(buf, len);
return QueueStatus::kSuccess;
}
};
template <>
struct QueueParamTraits<nsAString> {
using ParamType = nsAString;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
if ((!aProducerView.WriteParam(aArg.IsVoid())) || (aArg.IsVoid())) {
return aProducerView.GetStatus();
}
// DLP: No idea if this includes null terminator
uint32_t len = aArg.Length();
if ((!aProducerView.WriteParam(len)) || (len == 0)) {
return aProducerView.GetStatus();
}
constexpr const uint32_t sizeofchar = sizeof(typename ParamType::char_type);
return aProducerView.Write(aArg.BeginReading(), len * sizeofchar);
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
bool isVoid = false;
if (!aConsumerView.ReadParam(&isVoid)) {
return aConsumerView.GetStatus();
}
aArg->SetIsVoid(isVoid);
if (isVoid) {
return QueueStatus::kSuccess;
}
// DLP: No idea if this includes null terminator
uint32_t len = 0;
if (!aConsumerView.ReadParam(&len)) {
return aConsumerView.GetStatus();
}
if (len == 0) {
*aArg = nsString();
return QueueStatus::kSuccess;
}
uint32_t sizeofchar = sizeof(typename ParamType::char_type);
typename ParamType::char_type* buf = nullptr;
buf = static_cast<typename ParamType::char_type*>(
malloc((len + 1) * sizeofchar));
if (!buf) {
return QueueStatus::kOOMError;
}
if (!aConsumerView.Read(buf, len * sizeofchar)) {
return aConsumerView.GetStatus();
}
buf[len] = L'\0';
aArg->Adopt(buf, len);
return QueueStatus::kSuccess;
}
};
template <>
struct QueueParamTraits<nsCString> : public QueueParamTraits<nsACString> {
using ParamType = nsCString;
};
template <>
struct QueueParamTraits<nsString> : public QueueParamTraits<nsAString> {
using ParamType = nsString;
};
// ---------------------------------------------------------------
template <typename NSTArrayType,
bool =
IsTriviallySerializable<typename NSTArrayType::elem_type>::value>
struct NSArrayQueueParamTraits;
// For ElementTypes that are !IsTriviallySerializable
template <typename _ElementType>
struct NSArrayQueueParamTraits<nsTArray<_ElementType>, false> {
using ElementType = _ElementType;
using ParamType = nsTArray<ElementType>;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
aProducerView.WriteParam(aArg.Length());
for (auto& elt : aArg) {
aProducerView.WriteParam(elt);
}
return aProducerView.GetStatus();
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
size_t arrayLen;
if (!aConsumerView.ReadParam(&arrayLen)) {
return aConsumerView.GetStatus();
}
if (!aArg->AppendElements(arrayLen, fallible)) {
return QueueStatus::kOOMError;
}
for (auto i : IntegerRange(arrayLen)) {
ElementType& elt = aArg->ElementAt(i);
aConsumerView.ReadParam(elt);
}
return aConsumerView.GetStatus();
}
};
// For ElementTypes that are IsTriviallySerializable
template <typename _ElementType>
struct NSArrayQueueParamTraits<nsTArray<_ElementType>, true> {
using ElementType = _ElementType;
using ParamType = nsTArray<ElementType>;
// TODO: Are there alignment issues?
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
size_t arrayLen = aArg.Length();
aProducerView.WriteParam(arrayLen);
return aProducerView.Write(&aArg[0], aArg.Length() * sizeof(ElementType));
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
size_t arrayLen;
if (!aConsumerView.ReadParam(&arrayLen)) {
return aConsumerView.GetStatus();
}
if (!aArg->AppendElements(arrayLen, fallible)) {
return QueueStatus::kOOMError;
}
return aConsumerView.Read(aArg->Elements(), arrayLen * sizeof(ElementType));
}
};
template <typename ElementType>
struct QueueParamTraits<nsTArray<ElementType>>
: public NSArrayQueueParamTraits<nsTArray<ElementType>> {
using ParamType = nsTArray<ElementType>;
};
// ---------------------------------------------------------------
template <typename ArrayType,
bool =
IsTriviallySerializable<typename ArrayType::ElementType>::value>
struct ArrayQueueParamTraits;
// For ElementTypes that are !IsTriviallySerializable
template <typename _ElementType, size_t Length>
struct ArrayQueueParamTraits<Array<_ElementType, Length>, false> {
using ElementType = _ElementType;
using ParamType = Array<ElementType, Length>;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
for (const auto& elt : aArg) {
aProducerView.WriteParam(elt);
}
return aProducerView.GetStatus();
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
for (auto& elt : *aArg) {
aConsumerView.ReadParam(elt);
}
return aConsumerView.GetStatus();
}
};
// For ElementTypes that are IsTriviallySerializable
template <typename _ElementType, size_t Length>
struct ArrayQueueParamTraits<Array<_ElementType, Length>, true> {
using ElementType = _ElementType;
using ParamType = Array<ElementType, Length>;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
return aProducerView.Write(aArg.begin(), sizeof(ElementType[Length]));
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
return aConsumerView.Read(aArg->begin(), sizeof(ElementType[Length]));
}
};
template <typename ElementType, size_t Length>
struct QueueParamTraits<Array<ElementType, Length>>
: public ArrayQueueParamTraits<Array<ElementType, Length>> {
using ParamType = Array<ElementType, Length>;
};
// ---------------------------------------------------------------
template <typename ElementType>
struct QueueParamTraits<Maybe<ElementType>> {
using ParamType = Maybe<ElementType>;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
aProducerView.WriteParam(static_cast<bool>(aArg));
return aArg ? aProducerView.WriteParam(aArg.ref())
: aProducerView.GetStatus();
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
bool isSome;
if (!aConsumerView.ReadParam(&isSome)) {
return aConsumerView.GetStatus();
}
if (!isSome) {
aArg->reset();
return QueueStatus::kSuccess;
}
aArg->emplace();
return aConsumerView.ReadParam(aArg->ptr());
}
};
// ---------------------------------------------------------------
// Maybe<Variant> needs special behavior since Variant is not default
// constructable. The Variant's first type must be default constructible.
template <typename T, typename... Ts>
struct QueueParamTraits<Maybe<Variant<T, Ts...>>> {
using ParamType = Maybe<Variant<T, Ts...>>;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
aProducerView.WriteParam(aArg.mIsSome);
return (aArg.mIsSome) ? aProducerView.WriteParam(aArg.ref())
: aProducerView.GetStatus();
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
bool isSome;
if (!aConsumerView.ReadParam(&isSome)) {
return aConsumerView.GetStatus();
}
if (!isSome) {
aArg->reset();
return QueueStatus::kSuccess;
}
aArg->emplace(VariantType<T>());
return aConsumerView.ReadParam(aArg->ptr());
}
};
// ---------------------------------------------------------------
template <typename TypeA, typename TypeB>
struct QueueParamTraits<std::pair<TypeA, TypeB>> {
using ParamType = std::pair<TypeA, TypeB>;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
aProducerView.WriteParam(aArg.first());
return aProducerView.WriteParam(aArg.second());
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
aConsumerView.ReadParam(aArg->first());
return aConsumerView.ReadParam(aArg->second());
}
};
// ---------------------------------------------------------------
template <typename T>
struct QueueParamTraits<UniquePtr<T>> {
using ParamType = UniquePtr<T>;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView,
const ParamType& aArg) {
// TODO: Clean up move with PCQ
aProducerView.WriteParam(!static_cast<bool>(aArg));
if (aArg && aProducerView.WriteParam(*aArg.get())) {
const_cast<ParamType&>(aArg).reset();
}
return aProducerView.GetStatus();
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aArg) {
bool isNull;
if (!aConsumerView.ReadParam(&isNull)) {
return aConsumerView.GetStatus();
}
if (isNull) {
aArg->reset(nullptr);
return QueueStatus::kSuccess;
}
T* obj = nullptr;
obj = new T();
if (!obj) {
return QueueStatus::kOOMError;
}
aArg->reset(obj);
return aConsumerView.ReadParam(obj);
}
};
// ---------------------------------------------------------------
template <>
struct QueueParamTraits<mozilla::ipc::Shmem> {
using ParamType = mozilla::ipc::Shmem;
template <typename U>
static QueueStatus Write(ProducerView<U>& aProducerView, ParamType&& aParam) {
if (!aProducerView.WriteParam(
aParam.Id(mozilla::ipc::Shmem::PrivateIPDLCaller()))) {
return aProducerView.GetStatus();
}
aParam.RevokeRights(mozilla::ipc::Shmem::PrivateIPDLCaller());
aParam.forget(mozilla::ipc::Shmem::PrivateIPDLCaller());
}
template <typename U>
static QueueStatus Read(ConsumerView<U>& aConsumerView, ParamType* aResult) {
ParamType::id_t id;
if (!aConsumerView.ReadParam(&id)) {
return aConsumerView.GetStatus();
}
mozilla::ipc::Shmem::SharedMemory* rawmem =
aConsumerView.LookupSharedMemory(id);
if (!rawmem) {
return QueueStatus::kFatalError;
}
*aResult = mozilla::ipc::Shmem(mozilla::ipc::Shmem::PrivateIPDLCaller(),
rawmem, id);
return QueueStatus::kSuccess;
}
};
} // namespace webgl
} // namespace mozilla
#endif // _QUEUEPARAMTRAITS_H_