gecko-dev/ipc/glue/ProtocolUtils.cpp

919 строки
28 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "base/process_util.h"
#include "base/task.h"
#ifdef OS_POSIX
# include <errno.h>
#endif
#include "mozilla/IntegerPrintfMacros.h"
#include "mozilla/ipc/ProtocolUtils.h"
#include "mozilla/ipc/MessageChannel.h"
#include "mozilla/ipc/Transport.h"
#include "mozilla/recordreplay/ChildIPC.h"
#include "mozilla/recordreplay/ParentIPC.h"
#include "mozilla/StaticMutex.h"
#include "mozilla/SystemGroup.h"
#include "mozilla/Unused.h"
#include "nsPrintfCString.h"
#if defined(MOZ_SANDBOX) && defined(XP_WIN)
# include "mozilla/sandboxTarget.h"
#endif
#if defined(XP_WIN)
# include "aclapi.h"
# include "sddl.h"
# include "mozilla/TypeTraits.h"
#endif
#include "nsAutoPtr.h"
using namespace IPC;
using base::GetCurrentProcId;
using base::ProcessHandle;
using base::ProcessId;
namespace mozilla {
#if defined(XP_WIN)
// Generate RAII classes for LPTSTR and PSECURITY_DESCRIPTOR.
MOZ_TYPE_SPECIFIC_SCOPED_POINTER_TEMPLATE(ScopedLPTStr,
RemovePointer<LPTSTR>::Type,
::LocalFree)
MOZ_TYPE_SPECIFIC_SCOPED_POINTER_TEMPLATE(
ScopedPSecurityDescriptor, RemovePointer<PSECURITY_DESCRIPTOR>::Type,
::LocalFree)
#endif
namespace ipc {
IPCResult IPCResult::Fail(NotNull<IProtocol*> actor, const char* where,
const char* why) {
// Calls top-level protocol to handle the error.
nsPrintfCString errorMsg("%s %s\n", where, why);
actor->GetIPCChannel()->Listener()->ProcessingError(
HasResultCodes::MsgProcessingError, errorMsg.get());
return IPCResult(false);
}
#if defined(XP_WIN)
bool DuplicateHandle(HANDLE aSourceHandle, DWORD aTargetProcessId,
HANDLE* aTargetHandle, DWORD aDesiredAccess,
DWORD aOptions) {
// If our process is the target just duplicate the handle.
if (aTargetProcessId == base::GetCurrentProcId()) {
return !!::DuplicateHandle(::GetCurrentProcess(), aSourceHandle,
::GetCurrentProcess(), aTargetHandle,
aDesiredAccess, false, aOptions);
}
# if defined(MOZ_SANDBOX)
// Try the broker next (will fail if not sandboxed).
if (SandboxTarget::Instance()->BrokerDuplicateHandle(
aSourceHandle, aTargetProcessId, aTargetHandle, aDesiredAccess,
aOptions)) {
return true;
}
# endif
// Finally, see if we already have access to the process.
ScopedProcessHandle targetProcess(
OpenProcess(PROCESS_DUP_HANDLE, FALSE, aTargetProcessId));
if (!targetProcess) {
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCTransportFailureReason,
NS_LITERAL_CSTRING("Failed to open target process."));
return false;
}
return !!::DuplicateHandle(::GetCurrentProcess(), aSourceHandle,
targetProcess, aTargetHandle, aDesiredAccess,
FALSE, aOptions);
}
#endif
void AnnotateSystemError() {
int64_t error = 0;
#if defined(XP_WIN)
error = ::GetLastError();
#elif defined(OS_POSIX)
error = errno;
#endif
if (error) {
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCSystemError,
nsPrintfCString("%" PRId64, error));
}
}
#if defined(XP_MACOSX)
void AnnotateCrashReportWithErrno(CrashReporter::Annotation tag, int error) {
CrashReporter::AnnotateCrashReport(tag, error);
}
#endif // defined(XP_MACOSX)
void LogMessageForProtocol(const char* aTopLevelProtocol,
base::ProcessId aOtherPid,
const char* aContextDescription, uint32_t aMessageId,
MessageDirection aDirection) {
nsPrintfCString logMessage(
"[time: %" PRId64 "][%d%s%d] [%s] %s %s\n", PR_Now(),
base::GetCurrentProcId(),
aDirection == MessageDirection::eReceiving ? "<-" : "->", aOtherPid,
aTopLevelProtocol, aContextDescription,
StringFromIPCMessageType(aMessageId));
#ifdef ANDROID
__android_log_write(ANDROID_LOG_INFO, "GeckoIPC", logMessage.get());
#endif
fputs(logMessage.get(), stderr);
}
void ProtocolErrorBreakpoint(const char* aMsg) {
// Bugs that generate these error messages can be tough to
// reproduce. Log always in the hope that someone finds the error
// message.
printf_stderr("IPDL protocol error: %s\n", aMsg);
}
void FatalError(const char* aMsg, bool aIsParent) {
#ifndef FUZZING
ProtocolErrorBreakpoint(aMsg);
#endif
nsAutoCString formattedMessage("IPDL error: \"");
formattedMessage.AppendASCII(aMsg);
if (aIsParent) {
// We're going to crash the parent process because at this time
// there's no other really nice way of getting a minidump out of
// this process if we're off the main thread.
formattedMessage.AppendLiteral("\". Intentionally crashing.");
NS_ERROR(formattedMessage.get());
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::IPCFatalErrorMsg, nsDependentCString(aMsg));
AnnotateSystemError();
#ifndef FUZZING
MOZ_CRASH("IPC FatalError in the parent process!");
#endif
} else {
formattedMessage.AppendLiteral("\". abort()ing as a result.");
#ifndef FUZZING
MOZ_CRASH_UNSAFE(formattedMessage.get());
#endif
}
}
void LogicError(const char* aMsg) { MOZ_CRASH_UNSAFE(aMsg); }
void ActorIdReadError(const char* aActorDescription) {
#ifndef FUZZING
MOZ_CRASH_UNSAFE_PRINTF("Error deserializing id for %s", aActorDescription);
#endif
}
void BadActorIdError(const char* aActorDescription) {
nsPrintfCString message("bad id for %s", aActorDescription);
ProtocolErrorBreakpoint(message.get());
}
void ActorLookupError(const char* aActorDescription) {
nsPrintfCString message("could not lookup id for %s", aActorDescription);
ProtocolErrorBreakpoint(message.get());
}
void MismatchedActorTypeError(const char* aActorDescription) {
nsPrintfCString message("actor that should be of type %s has different type",
aActorDescription);
ProtocolErrorBreakpoint(message.get());
}
void UnionTypeReadError(const char* aUnionName) {
MOZ_CRASH_UNSAFE_PRINTF("error deserializing type of union %s", aUnionName);
}
void ArrayLengthReadError(const char* aElementName) {
MOZ_CRASH_UNSAFE_PRINTF("error deserializing length of %s[]", aElementName);
}
void SentinelReadError(const char* aClassName) {
MOZ_CRASH_UNSAFE_PRINTF("incorrect sentinel when reading %s", aClassName);
}
void TableToArray(const nsTHashtable<nsPtrHashKey<void>>& aTable,
nsTArray<void*>& aArray) {
uint32_t i = 0;
void** elements = aArray.AppendElements(aTable.Count());
for (auto iter = aTable.ConstIter(); !iter.Done(); iter.Next()) {
elements[i] = iter.Get()->GetKey();
++i;
}
}
ActorLifecycleProxy::ActorLifecycleProxy(IProtocol* aActor) : mActor(aActor) {
MOZ_ASSERT(mActor);
MOZ_ASSERT(mActor->CanSend(),
"Cannot create LifecycleProxy for non-connected actor!");
// Take a reference to our manager's lifecycle proxy to try to hold it &
// ensure it doesn't die before us.
if (mActor->mManager) {
mManager = mActor->mManager->mLifecycleProxy;
}
// Record that we've taken our first reference to our actor.
mActor->ActorAlloc();
}
ActorLifecycleProxy::~ActorLifecycleProxy() {
// When the LifecycleProxy's lifetime has come to an end, it means that the
// actor should have its `Dealloc` method called on it. In a well-behaved
// actor, this will release the IPC-held reference to the actor.
//
// If the actor has already died before the `LifecycleProxy`, the `IProtocol`
// destructor below will clear our reference to it, preventing us from
// performing a use-after-free here.
if (!mActor) {
return;
}
// Clear our actor's state back to inactive, and then invoke ActorDealloc.
MOZ_ASSERT(mActor->mLinkStatus == LinkStatus::Destroyed,
"Deallocating non-destroyed actor!");
mActor->mLifecycleProxy = nullptr;
mActor->mLinkStatus = LinkStatus::Inactive;
mActor->ActorDealloc();
mActor = nullptr;
}
IProtocol::~IProtocol() {
// If the actor still has a lifecycle proxy when it is being torn down, it
// means that IPC was not given control over the lifecycle of the actor
// correctly. Usually this means that the actor was destroyed while IPC is
// calling a message handler for it, and the actor incorrectly frees itself
// during that operation.
//
// As this happens unfortunately frequently, due to many odd protocols in
// Gecko, simply emit a warning and clear the weak backreference from our
// LifecycleProxy back to us.
if (mLifecycleProxy) {
// FIXME: It would be nice to have this print out the name of the
// misbehaving actor, to help people notice it's their fault!
NS_WARNING(
"Actor destructor called before IPC lifecycle complete!\n"
"References to this actor may unexpectedly dangle!");
mLifecycleProxy->mActor = nullptr;
// If we are somehow being destroyed while active, make sure that the
// existing IPC reference has been freed. If the status of the actor is
// `Destroyed`, the reference has already been freed, and we shouldn't free
// it a second time.
MOZ_ASSERT(mLinkStatus != LinkStatus::Inactive);
if (mLinkStatus != LinkStatus::Destroyed) {
NS_IF_RELEASE(mLifecycleProxy);
}
mLifecycleProxy = nullptr;
}
}
// The following methods either directly forward to the toplevel protocol, or
// almost directly do.
int32_t IProtocol::Register(IProtocol* aRouted) {
return mToplevel->Register(aRouted);
}
int32_t IProtocol::RegisterID(IProtocol* aRouted, int32_t aId) {
return mToplevel->RegisterID(aRouted, aId);
}
IProtocol* IProtocol::Lookup(int32_t aId) { return mToplevel->Lookup(aId); }
void IProtocol::Unregister(int32_t aId) {
if (aId == mId) {
mId = kFreedActorId;
}
return mToplevel->Unregister(aId);
}
Shmem::SharedMemory* IProtocol::CreateSharedMemory(
size_t aSize, SharedMemory::SharedMemoryType aType, bool aUnsafe,
int32_t* aId) {
return mToplevel->CreateSharedMemory(aSize, aType, aUnsafe, aId);
}
Shmem::SharedMemory* IProtocol::LookupSharedMemory(int32_t aId) {
return mToplevel->LookupSharedMemory(aId);
}
bool IProtocol::IsTrackingSharedMemory(Shmem::SharedMemory* aSegment) {
return mToplevel->IsTrackingSharedMemory(aSegment);
}
bool IProtocol::DestroySharedMemory(Shmem& aShmem) {
return mToplevel->DestroySharedMemory(aShmem);
}
MessageChannel* IProtocol::GetIPCChannel() {
return mToplevel->GetIPCChannel();
}
const MessageChannel* IProtocol::GetIPCChannel() const {
return mToplevel->GetIPCChannel();
}
void IProtocol::SetEventTargetForActor(IProtocol* aActor,
nsIEventTarget* aEventTarget) {
// Make sure we have a manager for the internal method to access.
aActor->SetManager(this);
mToplevel->SetEventTargetForActorInternal(aActor, aEventTarget);
}
void IProtocol::ReplaceEventTargetForActor(IProtocol* aActor,
nsIEventTarget* aEventTarget) {
MOZ_ASSERT(aActor->Manager());
mToplevel->ReplaceEventTargetForActor(aActor, aEventTarget);
}
void IProtocol::SetEventTargetForRoute(int32_t aRoute,
nsIEventTarget* aEventTarget) {
mToplevel->SetEventTargetForRoute(aRoute, aEventTarget);
}
nsIEventTarget* IProtocol::GetActorEventTarget() {
// FIXME: It's a touch sketchy that we don't return a strong reference here.
RefPtr<nsIEventTarget> target = GetActorEventTarget(this);
return target;
}
already_AddRefed<nsIEventTarget> IProtocol::GetActorEventTarget(
IProtocol* aActor) {
return mToplevel->GetActorEventTarget(aActor);
}
ProcessId IProtocol::OtherPid() const { return mToplevel->OtherPid(); }
void IProtocol::SetId(int32_t aId) {
MOZ_ASSERT(mId == aId || mLinkStatus == LinkStatus::Inactive);
mId = aId;
}
Maybe<IProtocol*> IProtocol::ReadActor(const IPC::Message* aMessage,
PickleIterator* aIter, bool aNullable,
const char* aActorDescription,
int32_t aProtocolTypeId) {
int32_t id;
if (!IPC::ReadParam(aMessage, aIter, &id)) {
ActorIdReadError(aActorDescription);
return Nothing();
}
if (id == 1 || (id == 0 && !aNullable)) {
BadActorIdError(aActorDescription);
return Nothing();
}
if (id == 0) {
return Some(static_cast<IProtocol*>(nullptr));
}
IProtocol* listener = this->Lookup(id);
if (!listener) {
ActorLookupError(aActorDescription);
return Nothing();
}
if (listener->GetProtocolId() != aProtocolTypeId) {
MismatchedActorTypeError(aActorDescription);
return Nothing();
}
return Some(listener);
}
void IProtocol::FatalError(const char* const aErrorMsg) const {
HandleFatalError(aErrorMsg);
}
void IProtocol::HandleFatalError(const char* aErrorMsg) const {
if (IProtocol* manager = Manager()) {
manager->HandleFatalError(aErrorMsg);
return;
}
mozilla::ipc::FatalError(aErrorMsg, mSide == ParentSide);
}
bool IProtocol::AllocShmem(size_t aSize,
Shmem::SharedMemory::SharedMemoryType aType,
Shmem* aOutMem) {
Shmem::id_t id;
Shmem::SharedMemory* rawmem(CreateSharedMemory(aSize, aType, false, &id));
if (!rawmem) {
return false;
}
*aOutMem = Shmem(Shmem::PrivateIPDLCaller(), rawmem, id);
return true;
}
bool IProtocol::AllocUnsafeShmem(size_t aSize,
Shmem::SharedMemory::SharedMemoryType aType,
Shmem* aOutMem) {
Shmem::id_t id;
Shmem::SharedMemory* rawmem(CreateSharedMemory(aSize, aType, true, &id));
if (!rawmem) {
return false;
}
*aOutMem = Shmem(Shmem::PrivateIPDLCaller(), rawmem, id);
return true;
}
bool IProtocol::DeallocShmem(Shmem& aMem) {
bool ok = DestroySharedMemory(aMem);
#ifdef DEBUG
if (!ok) {
if (mSide == ChildSide) {
FatalError("bad Shmem");
} else {
NS_WARNING("bad Shmem");
}
return false;
}
#endif // DEBUG
aMem.forget(Shmem::PrivateIPDLCaller());
return ok;
}
void IProtocol::SetManager(IProtocol* aManager) {
MOZ_RELEASE_ASSERT(!mManager || mManager == aManager);
mManager = aManager;
mToplevel = aManager->mToplevel;
}
void IProtocol::SetManagerAndRegister(IProtocol* aManager) {
// Set the manager prior to registering so registering properly inherits
// the manager's event target.
SetManager(aManager);
aManager->Register(this);
}
void IProtocol::SetManagerAndRegister(IProtocol* aManager, int32_t aId) {
// Set the manager prior to registering so registering properly inherits
// the manager's event target.
SetManager(aManager);
aManager->RegisterID(this, aId);
}
bool IProtocol::ChannelSend(IPC::Message* aMsg) {
UniquePtr<IPC::Message> msg(aMsg);
if (CanSend()) {
// NOTE: This send call failing can only occur during toplevel channel
// teardown. As this is an async call, this isn't reasonable to predict or
// respond to, so just drop the message on the floor silently.
GetIPCChannel()->Send(msg.release());
return true;
}
NS_WARNING("IPC message discarded: actor cannot send");
return false;
}
bool IProtocol::ChannelSend(IPC::Message* aMsg, IPC::Message* aReply) {
UniquePtr<IPC::Message> msg(aMsg);
if (CanSend()) {
return GetIPCChannel()->Send(msg.release(), aReply);
}
NS_WARNING("IPC message discarded: actor cannot send");
return false;
}
bool IProtocol::ChannelCall(IPC::Message* aMsg, IPC::Message* aReply) {
UniquePtr<IPC::Message> msg(aMsg);
if (CanSend()) {
return GetIPCChannel()->Call(msg.release(), aReply);
}
NS_WARNING("IPC message discarded: actor cannot send");
return false;
}
void IProtocol::ActorConnected() {
if (mLinkStatus != LinkStatus::Inactive) {
return;
}
mLinkStatus = LinkStatus::Connected;
MOZ_ASSERT(!mLifecycleProxy, "double-connecting live actor");
mLifecycleProxy = new ActorLifecycleProxy(this);
NS_ADDREF(mLifecycleProxy); // Reference freed in DestroySubtree();
}
void IProtocol::DoomSubtree() {
MOZ_ASSERT(CanSend(), "dooming non-connected actor");
MOZ_ASSERT(mLifecycleProxy, "dooming zombie actor");
nsTArray<RefPtr<ActorLifecycleProxy>> managed;
AllManagedActors(managed);
for (ActorLifecycleProxy* proxy : managed) {
// Guard against actor being disconnected or destroyed during previous Doom
IProtocol* actor = proxy->Get();
if (actor && actor->CanSend()) {
actor->DoomSubtree();
}
}
// ActorDoom is called immediately before changing state, this allows messages
// to be sent during ActorDoom immediately before the channel is closed and
// sending messages is disabled.
ActorDoom();
mLinkStatus = LinkStatus::Doomed;
}
void IProtocol::DestroySubtree(ActorDestroyReason aWhy) {
MOZ_ASSERT(CanRecv(), "destroying non-connected actor");
MOZ_ASSERT(mLifecycleProxy, "destroying zombie actor");
// If we're a managed actor, unregister from our manager
if (Manager()) {
Unregister(Id());
}
// Destroy subtree
ActorDestroyReason subtreeWhy = aWhy;
if (aWhy == Deletion || aWhy == FailedConstructor) {
subtreeWhy = AncestorDeletion;
}
nsTArray<RefPtr<ActorLifecycleProxy>> managed;
AllManagedActors(managed);
for (ActorLifecycleProxy* proxy : managed) {
// Guard against actor being disconnected or destroyed during previous
// Destroy
IProtocol* actor = proxy->Get();
if (actor && actor->CanRecv()) {
actor->DestroySubtree(subtreeWhy);
}
}
// Ensure that we don't send any messages while we're calling `ActorDestroy`
// by setting our state to `Doomed`.
mLinkStatus = LinkStatus::Doomed;
// The actor is being destroyed, reject any pending responses, invoke
// `ActorDestroy` to destroy it, and then clear our status to
// `LinkStatus::Destroyed`.
GetIPCChannel()->RejectPendingResponsesForActor(this);
ActorDestroy(aWhy);
mLinkStatus = LinkStatus::Destroyed;
}
IToplevelProtocol::IToplevelProtocol(const char* aName, ProtocolId aProtoId,
Side aSide)
: IProtocol(aProtoId, aSide),
mOtherPid(mozilla::ipc::kInvalidProcessId),
mLastLocalId(0),
mEventTargetMutex("ProtocolEventTargetMutex"),
mMiddlemanChannelOverride(nullptr),
mChannel(aName, this) {
mToplevel = this;
}
IToplevelProtocol::~IToplevelProtocol() {
if (mTrans) {
RefPtr<DeleteTask<Transport>> task =
new DeleteTask<Transport>(mTrans.release());
XRE_GetIOMessageLoop()->PostTask(task.forget());
}
}
base::ProcessId IToplevelProtocol::OtherPid() const {
base::ProcessId pid = OtherPidMaybeInvalid();
MOZ_RELEASE_ASSERT(pid != kInvalidProcessId);
return pid;
}
void IToplevelProtocol::SetOtherProcessId(base::ProcessId aOtherPid) {
// When recording an execution, all communication we do is forwarded from
// the middleman to the parent process, so use its pid instead of the
// middleman's pid.
if (recordreplay::IsRecordingOrReplaying() &&
aOtherPid == recordreplay::child::MiddlemanProcessId()) {
mOtherPid = recordreplay::child::ParentProcessId();
} else {
mOtherPid = aOtherPid;
}
}
bool IToplevelProtocol::Open(mozilla::ipc::Transport* aTransport,
base::ProcessId aOtherPid, MessageLoop* aThread,
mozilla::ipc::Side aSide) {
SetOtherProcessId(aOtherPid);
return GetIPCChannel()->Open(aTransport, aThread, aSide);
}
bool IToplevelProtocol::Open(MessageChannel* aChannel,
MessageLoop* aMessageLoop,
mozilla::ipc::Side aSide) {
SetOtherProcessId(base::GetCurrentProcId());
return GetIPCChannel()->Open(aChannel, aMessageLoop->SerialEventTarget(),
aSide);
}
bool IToplevelProtocol::Open(MessageChannel* aChannel,
nsIEventTarget* aEventTarget,
mozilla::ipc::Side aSide) {
SetOtherProcessId(base::GetCurrentProcId());
return GetIPCChannel()->Open(aChannel, aEventTarget, aSide);
}
bool IToplevelProtocol::OpenWithAsyncPid(mozilla::ipc::Transport* aTransport,
MessageLoop* aThread,
mozilla::ipc::Side aSide) {
return GetIPCChannel()->Open(aTransport, aThread, aSide);
}
bool IToplevelProtocol::OpenOnSameThread(MessageChannel* aChannel, Side aSide) {
SetOtherProcessId(base::GetCurrentProcId());
return GetIPCChannel()->OpenOnSameThread(aChannel, aSide);
}
void IToplevelProtocol::Close() { GetIPCChannel()->Close(); }
void IToplevelProtocol::SetReplyTimeoutMs(int32_t aTimeoutMs) {
GetIPCChannel()->SetReplyTimeoutMs(aTimeoutMs);
}
bool IToplevelProtocol::IsOnCxxStack() const {
return GetIPCChannel()->IsOnCxxStack();
}
int32_t IToplevelProtocol::NextId() {
// Genreate the next ID to use for a shared memory or protocol. Parent and
// Child sides of the protocol use different pools, and actors created in the
// middleman need to use a distinct pool as well.
int32_t tag = 0;
if (recordreplay::IsMiddleman()) {
tag |= 1 << 0;
}
if (GetSide() == ParentSide) {
tag |= 1 << 1;
}
// Check any overflow
MOZ_RELEASE_ASSERT(mLastLocalId < (1 << 29));
// Compute the ID to use with the low two bits as our tag, and the remaining
// bits as a monotonic.
return (++mLastLocalId << 2) | tag;
}
int32_t IToplevelProtocol::Register(IProtocol* aRouted) {
if (aRouted->Id() != kNullActorId && aRouted->Id() != kFreedActorId) {
// If there's already an ID, just return that.
return aRouted->Id();
}
int32_t id = RegisterID(aRouted, NextId());
// Inherit our event target from our manager.
if (IProtocol* manager = aRouted->Manager()) {
MutexAutoLock lock(mEventTargetMutex);
if (nsCOMPtr<nsIEventTarget> target =
mEventTargetMap.Lookup(manager->Id())) {
mEventTargetMap.AddWithID(target, id);
}
}
return id;
}
int32_t IToplevelProtocol::RegisterID(IProtocol* aRouted, int32_t aId) {
aRouted->SetId(aId);
aRouted->ActorConnected();
mActorMap.AddWithID(aRouted, aId);
return aId;
}
IProtocol* IToplevelProtocol::Lookup(int32_t aId) {
return mActorMap.Lookup(aId);
}
void IToplevelProtocol::Unregister(int32_t aId) {
mActorMap.Remove(aId);
MutexAutoLock lock(mEventTargetMutex);
mEventTargetMap.RemoveIfPresent(aId);
}
Shmem::SharedMemory* IToplevelProtocol::CreateSharedMemory(
size_t aSize, Shmem::SharedMemory::SharedMemoryType aType, bool aUnsafe,
Shmem::id_t* aId) {
RefPtr<Shmem::SharedMemory> segment(
Shmem::Alloc(Shmem::PrivateIPDLCaller(), aSize, aType, aUnsafe));
if (!segment) {
return nullptr;
}
int32_t id = NextId();
Shmem shmem(Shmem::PrivateIPDLCaller(), segment.get(), id);
base::ProcessId pid =
#ifdef ANDROID
// We use OtherPidMaybeInvalid() because on Android this method is
// actually called on an unconnected protocol, but Android's shared memory
// implementation doesn't actually use the PID.
OtherPidMaybeInvalid();
#else
OtherPid();
#endif
Message* descriptor =
shmem.ShareTo(Shmem::PrivateIPDLCaller(), pid, MSG_ROUTING_CONTROL);
if (!descriptor) {
return nullptr;
}
Unused << GetIPCChannel()->Send(descriptor);
*aId = shmem.Id(Shmem::PrivateIPDLCaller());
Shmem::SharedMemory* rawSegment = segment.get();
mShmemMap.AddWithID(segment.forget().take(), *aId);
return rawSegment;
}
Shmem::SharedMemory* IToplevelProtocol::LookupSharedMemory(Shmem::id_t aId) {
return mShmemMap.Lookup(aId);
}
bool IToplevelProtocol::IsTrackingSharedMemory(Shmem::SharedMemory* segment) {
return mShmemMap.HasData(segment);
}
bool IToplevelProtocol::DestroySharedMemory(Shmem& shmem) {
Shmem::id_t aId = shmem.Id(Shmem::PrivateIPDLCaller());
Shmem::SharedMemory* segment = LookupSharedMemory(aId);
if (!segment) {
return false;
}
Message* descriptor =
shmem.UnshareFrom(Shmem::PrivateIPDLCaller(), MSG_ROUTING_CONTROL);
mShmemMap.Remove(aId);
Shmem::Dealloc(Shmem::PrivateIPDLCaller(), segment);
MessageChannel* channel = GetIPCChannel();
if (!channel->CanSend()) {
delete descriptor;
return true;
}
return descriptor && channel->Send(descriptor);
}
void IToplevelProtocol::DeallocShmems() {
for (IDMap<SharedMemory*>::const_iterator cit = mShmemMap.begin();
cit != mShmemMap.end(); ++cit) {
Shmem::Dealloc(Shmem::PrivateIPDLCaller(), cit->second);
}
mShmemMap.Clear();
}
bool IToplevelProtocol::ShmemCreated(const Message& aMsg) {
Shmem::id_t id;
RefPtr<Shmem::SharedMemory> rawmem(
Shmem::OpenExisting(Shmem::PrivateIPDLCaller(), aMsg, &id, true));
if (!rawmem) {
return false;
}
mShmemMap.AddWithID(rawmem.forget().take(), id);
return true;
}
bool IToplevelProtocol::ShmemDestroyed(const Message& aMsg) {
Shmem::id_t id;
PickleIterator iter = PickleIterator(aMsg);
if (!IPC::ReadParam(&aMsg, &iter, &id)) {
return false;
}
aMsg.EndRead(iter);
Shmem::SharedMemory* rawmem = LookupSharedMemory(id);
if (rawmem) {
mShmemMap.Remove(id);
Shmem::Dealloc(Shmem::PrivateIPDLCaller(), rawmem);
}
return true;
}
already_AddRefed<nsIEventTarget> IToplevelProtocol::GetMessageEventTarget(
const Message& aMsg) {
int32_t route = aMsg.routing_id();
Maybe<MutexAutoLock> lock;
lock.emplace(mEventTargetMutex);
nsCOMPtr<nsIEventTarget> target = mEventTargetMap.Lookup(route);
if (aMsg.is_constructor()) {
ActorHandle handle;
PickleIterator iter = PickleIterator(aMsg);
if (!IPC::ReadParam(&aMsg, &iter, &handle)) {
return nullptr;
}
// Normally a new actor inherits its event target from its manager. If the
// manager has no event target, we give the subclass a chance to make a new
// one.
if (!target) {
MutexAutoUnlock unlock(mEventTargetMutex);
target = GetConstructedEventTarget(aMsg);
}
mEventTargetMap.AddWithID(target, handle.mId);
} else if (!target) {
// We don't need the lock after this point.
lock.reset();
target = GetSpecificMessageEventTarget(aMsg);
}
return target.forget();
}
already_AddRefed<nsIEventTarget> IToplevelProtocol::GetActorEventTarget(
IProtocol* aActor) {
MOZ_RELEASE_ASSERT(aActor->Id() != kNullActorId &&
aActor->Id() != kFreedActorId);
MutexAutoLock lock(mEventTargetMutex);
nsCOMPtr<nsIEventTarget> target = mEventTargetMap.Lookup(aActor->Id());
return target.forget();
}
nsIEventTarget* IToplevelProtocol::GetActorEventTarget() {
// The EventTarget of a ToplevelProtocol shall never be set.
return nullptr;
}
void IToplevelProtocol::SetEventTargetForActorInternal(
IProtocol* aActor, nsIEventTarget* aEventTarget) {
// The EventTarget of a ToplevelProtocol shall never be set.
MOZ_RELEASE_ASSERT(aActor != this);
// We should only call this function on actors that haven't been used for IPC
// code yet. Otherwise we'll be posting stuff to the wrong event target before
// we're called.
MOZ_RELEASE_ASSERT(aActor->Id() == kNullActorId ||
aActor->Id() == kFreedActorId);
MOZ_ASSERT(aActor->Manager() && aActor->ToplevelProtocol() == this);
// Register the actor early. When it's registered again, it will keep the same
// ID.
int32_t id = Register(aActor);
aActor->SetId(id);
MutexAutoLock lock(mEventTargetMutex);
// FIXME bug 1445121 - sometimes the id is already mapped.
// (IDMap debug-asserts that the existing state is as expected.)
bool replace = false;
#ifdef DEBUG
replace = mEventTargetMap.Lookup(id) != nullptr;
#endif
if (replace) {
mEventTargetMap.ReplaceWithID(aEventTarget, id);
} else {
mEventTargetMap.AddWithID(aEventTarget, id);
}
}
void IToplevelProtocol::ReplaceEventTargetForActor(
IProtocol* aActor, nsIEventTarget* aEventTarget) {
// The EventTarget of a ToplevelProtocol shall never be set.
MOZ_RELEASE_ASSERT(aActor != this);
int32_t id = aActor->Id();
// The ID of the actor should have existed.
MOZ_RELEASE_ASSERT(id != kNullActorId && id != kFreedActorId);
MutexAutoLock lock(mEventTargetMutex);
mEventTargetMap.ReplaceWithID(aEventTarget, id);
}
void IToplevelProtocol::SetEventTargetForRoute(int32_t aRoute,
nsIEventTarget* aEventTarget) {
MOZ_RELEASE_ASSERT(aRoute != Id());
MOZ_RELEASE_ASSERT(aRoute != kNullActorId && aRoute != kFreedActorId);
MutexAutoLock lock(mEventTargetMutex);
MOZ_ASSERT(!mEventTargetMap.Lookup(aRoute));
mEventTargetMap.AddWithID(aEventTarget, aRoute);
}
} // namespace ipc
} // namespace mozilla