gecko-dev/gfx/webrender/res/ps_yuv_image.glsl

198 строки
7.3 KiB
GLSL

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include shared,prim_shared
// If this is in WR_FEATURE_TEXTURE_RECT mode, the rect and size use non-normalized
// texture coordinates. Otherwise, it uses normalized texture coordinates. Please
// check GL_TEXTURE_RECTANGLE.
flat varying vec2 vTextureOffsetY; // Offset of the y plane into the texture atlas.
flat varying vec2 vTextureOffsetU; // Offset of the u plane into the texture atlas.
flat varying vec2 vTextureOffsetV; // Offset of the v plane into the texture atlas.
flat varying vec2 vTextureSizeY; // Size of the y plane in the texture atlas.
flat varying vec2 vTextureSizeUv; // Size of the u and v planes in the texture atlas.
flat varying vec2 vStretchSize;
flat varying vec2 vHalfTexelY; // Normalized length of the half of a Y texel.
flat varying vec2 vHalfTexelUv; // Normalized length of the half of u and v texels.
flat varying vec3 vLayers;
#ifdef WR_FEATURE_TRANSFORM
flat varying vec4 vLocalRect;
#endif
varying vec2 vLocalPos;
#ifdef WR_VERTEX_SHADER
struct YuvImage {
vec2 size;
};
YuvImage fetch_yuv_image(int address) {
vec4 data = fetch_from_resource_cache_1(address);
return YuvImage(data.xy);
}
void main(void) {
Primitive prim = load_primitive();
#ifdef WR_FEATURE_TRANSFORM
VertexInfo vi = write_transform_vertex_primitive(prim);
vLocalPos = vi.local_pos;
vLocalRect = vec4(prim.local_rect.p0, prim.local_rect.p0 + prim.local_rect.size);
#else
VertexInfo vi = write_vertex(prim.local_rect,
prim.local_clip_rect,
prim.z,
prim.scroll_node,
prim.task,
prim.local_rect);
vLocalPos = vi.local_pos - prim.local_rect.p0;
#endif
write_clip(vi.screen_pos, prim.clip_area);
ImageResource y_rect = fetch_image_resource(prim.user_data0);
vLayers = vec3(y_rect.layer, 0.0, 0.0);
#ifndef WR_FEATURE_INTERLEAVED_Y_CB_CR // only 1 channel
ImageResource u_rect = fetch_image_resource(prim.user_data1);
vLayers.y = u_rect.layer;
#ifndef WR_FEATURE_NV12 // 2 channel
ImageResource v_rect = fetch_image_resource(prim.user_data2);
vLayers.z = v_rect.layer;
#endif
#endif
// If this is in WR_FEATURE_TEXTURE_RECT mode, the rect and size use
// non-normalized texture coordinates.
#ifdef WR_FEATURE_TEXTURE_RECT
vec2 y_texture_size_normalization_factor = vec2(1, 1);
#else
vec2 y_texture_size_normalization_factor = vec2(textureSize(sColor0, 0));
#endif
vec2 y_st0 = y_rect.uv_rect.xy / y_texture_size_normalization_factor;
vec2 y_st1 = y_rect.uv_rect.zw / y_texture_size_normalization_factor;
vTextureSizeY = y_st1 - y_st0;
vTextureOffsetY = y_st0;
#ifndef WR_FEATURE_INTERLEAVED_Y_CB_CR
// This assumes the U and V surfaces have the same size.
#ifdef WR_FEATURE_TEXTURE_RECT
vec2 uv_texture_size_normalization_factor = vec2(1, 1);
#else
vec2 uv_texture_size_normalization_factor = vec2(textureSize(sColor1, 0));
#endif
vec2 u_st0 = u_rect.uv_rect.xy / uv_texture_size_normalization_factor;
vec2 u_st1 = u_rect.uv_rect.zw / uv_texture_size_normalization_factor;
#ifndef WR_FEATURE_NV12
vec2 v_st0 = v_rect.uv_rect.xy / uv_texture_size_normalization_factor;
#endif
vTextureSizeUv = u_st1 - u_st0;
vTextureOffsetU = u_st0;
#ifndef WR_FEATURE_NV12
vTextureOffsetV = v_st0;
#endif
#endif
YuvImage image = fetch_yuv_image(prim.specific_prim_address);
vStretchSize = image.size;
vHalfTexelY = vec2(0.5) / y_texture_size_normalization_factor;
#ifndef WR_FEATURE_INTERLEAVED_Y_CB_CR
vHalfTexelUv = vec2(0.5) / uv_texture_size_normalization_factor;
#endif
}
#endif
#ifdef WR_FRAGMENT_SHADER
#if !defined(WR_FEATURE_YUV_REC601) && !defined(WR_FEATURE_YUV_REC709)
#define WR_FEATURE_YUV_REC601
#endif
// The constants added to the Y, U and V components are applied in the fragment shader.
#if defined(WR_FEATURE_YUV_REC601)
// From Rec601:
// [R] [1.1643835616438356, 0.0, 1.5960267857142858 ] [Y - 16]
// [G] = [1.1643835616438358, -0.3917622900949137, -0.8129676472377708 ] x [U - 128]
// [B] [1.1643835616438356, 2.017232142857143, 8.862867620416422e-17] [V - 128]
//
// For the range [0,1] instead of [0,255].
//
// The matrix is stored in column-major.
const mat3 YuvColorMatrix = mat3(
1.16438, 1.16438, 1.16438,
0.0, -0.39176, 2.01723,
1.59603, -0.81297, 0.0
);
#elif defined(WR_FEATURE_YUV_REC709)
// From Rec709:
// [R] [1.1643835616438356, 4.2781193979771426e-17, 1.7927410714285714] [Y - 16]
// [G] = [1.1643835616438358, -0.21324861427372963, -0.532909328559444 ] x [U - 128]
// [B] [1.1643835616438356, 2.1124017857142854, 0.0 ] [V - 128]
//
// For the range [0,1] instead of [0,255]:
//
// The matrix is stored in column-major.
const mat3 YuvColorMatrix = mat3(
1.16438, 1.16438, 1.16438,
0.0 , -0.21325, 2.11240,
1.79274, -0.53291, 0.0
);
#endif
void main(void) {
#ifdef WR_FEATURE_TRANSFORM
float alpha = init_transform_fs(vLocalPos);
// We clamp the texture coordinate calculation here to the local rectangle boundaries,
// which makes the edge of the texture stretch instead of repeat.
vec2 relative_pos_in_rect = clamp(vLocalPos, vLocalRect.xy, vLocalRect.zw) - vLocalRect.xy;
#else
float alpha = 1.0;;
vec2 relative_pos_in_rect = vLocalPos;
#endif
alpha *= do_clip();
// We clamp the texture coordinates to the half-pixel offset from the borders
// in order to avoid sampling outside of the texture area.
vec2 st_y = vTextureOffsetY + clamp(
relative_pos_in_rect / vStretchSize * vTextureSizeY,
vHalfTexelY, vTextureSizeY - vHalfTexelY);
#ifndef WR_FEATURE_INTERLEAVED_Y_CB_CR
vec2 uv_offset = clamp(
relative_pos_in_rect / vStretchSize * vTextureSizeUv,
vHalfTexelUv, vTextureSizeUv - vHalfTexelUv);
// NV12 only uses 2 textures. The sColor0 is for y and sColor1 is for uv.
// The texture coordinates of u and v are the same. So, we could skip the
// st_v if the format is NV12.
vec2 st_u = vTextureOffsetU + uv_offset;
#endif
vec3 yuv_value;
#ifdef WR_FEATURE_INTERLEAVED_Y_CB_CR
// "The Y, Cb and Cr color channels within the 422 data are mapped into
// the existing green, blue and red color channels."
// https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_rgb_422.txt
yuv_value = TEX_SAMPLE(sColor0, vec3(st_y, vLayers.x)).gbr;
#elif defined(WR_FEATURE_NV12)
yuv_value.x = TEX_SAMPLE(sColor0, vec3(st_y, vLayers.x)).r;
yuv_value.yz = TEX_SAMPLE(sColor1, vec3(st_u, vLayers.y)).rg;
#else
// The yuv_planar format should have this third texture coordinate.
vec2 st_v = vTextureOffsetV + uv_offset;
yuv_value.x = TEX_SAMPLE(sColor0, vec3(st_y, vLayers.x)).r;
yuv_value.y = TEX_SAMPLE(sColor1, vec3(st_u, vLayers.y)).r;
yuv_value.z = TEX_SAMPLE(sColor2, vec3(st_v, vLayers.z)).r;
#endif
// See the YuvColorMatrix definition for an explanation of where the constants come from.
vec3 rgb = YuvColorMatrix * (yuv_value - vec3(0.06275, 0.50196, 0.50196));
oFragColor = vec4(rgb * alpha, alpha);
}
#endif