gecko-dev/layout/painting/DisplayItemClip.cpp

571 строка
19 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DisplayItemClip.h"
#include "gfxContext.h"
#include "gfxUtils.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/PathHelpers.h"
#include "mozilla/layers/StackingContextHelper.h"
#include "mozilla/webrender/WebRenderTypes.h"
#include "nsPresContext.h"
#include "nsCSSRendering.h"
#include "nsLayoutUtils.h"
#include "nsRegion.h"
using namespace mozilla::gfx;
namespace mozilla {
void
DisplayItemClip::SetTo(const nsRect& aRect)
{
SetTo(aRect, nullptr);
}
void
DisplayItemClip::SetTo(const nsRect& aRect, const nscoord* aRadii)
{
mHaveClipRect = true;
mClipRect = aRect;
if (aRadii) {
mRoundedClipRects.SetLength(1);
mRoundedClipRects[0].mRect = aRect;
memcpy(mRoundedClipRects[0].mRadii, aRadii, sizeof(nscoord)*8);
} else {
mRoundedClipRects.Clear();
}
}
void
DisplayItemClip::SetTo(const nsRect& aRect,
const nsRect& aRoundedRect,
const nscoord* aRadii)
{
mHaveClipRect = true;
mClipRect = aRect;
mRoundedClipRects.SetLength(1);
mRoundedClipRects[0].mRect = aRoundedRect;
memcpy(mRoundedClipRects[0].mRadii, aRadii, sizeof(nscoord)*8);
}
bool
DisplayItemClip::MayIntersect(const nsRect& aRect) const
{
if (!mHaveClipRect) {
return !aRect.IsEmpty();
}
nsRect r = aRect.Intersect(mClipRect);
if (r.IsEmpty()) {
return false;
}
for (uint32_t i = 0; i < mRoundedClipRects.Length(); ++i) {
const RoundedRect& rr = mRoundedClipRects[i];
if (!nsLayoutUtils::RoundedRectIntersectsRect(rr.mRect, rr.mRadii, r)) {
return false;
}
}
return true;
}
void
DisplayItemClip::IntersectWith(const DisplayItemClip& aOther)
{
if (!aOther.mHaveClipRect) {
return;
}
if (!mHaveClipRect) {
*this = aOther;
return;
}
if (!mClipRect.IntersectRect(mClipRect, aOther.mClipRect)) {
mRoundedClipRects.Clear();
return;
}
mRoundedClipRects.AppendElements(aOther.mRoundedClipRects);
}
void
DisplayItemClip::ApplyTo(gfxContext* aContext,
int32_t A2D)
{
ApplyRectTo(aContext, A2D);
ApplyRoundedRectClipsTo(aContext, A2D, 0, mRoundedClipRects.Length());
}
void
DisplayItemClip::ApplyRectTo(gfxContext* aContext, int32_t A2D) const
{
aContext->NewPath();
gfxRect clip = nsLayoutUtils::RectToGfxRect(mClipRect, A2D);
aContext->Rectangle(clip, true);
aContext->Clip();
}
void
DisplayItemClip::ApplyRoundedRectClipsTo(gfxContext* aContext,
int32_t A2D,
uint32_t aBegin, uint32_t aEnd) const
{
DrawTarget& aDrawTarget = *aContext->GetDrawTarget();
aEnd = std::min<uint32_t>(aEnd, mRoundedClipRects.Length());
for (uint32_t i = aBegin; i < aEnd; ++i) {
RefPtr<Path> roundedRect =
MakeRoundedRectPath(aDrawTarget, A2D, mRoundedClipRects[i]);
aContext->Clip(roundedRect);
}
}
void
DisplayItemClip::FillIntersectionOfRoundedRectClips(gfxContext* aContext,
const Color& aColor,
int32_t aAppUnitsPerDevPixel) const
{
DrawTarget& aDrawTarget = *aContext->GetDrawTarget();
uint32_t end = mRoundedClipRects.Length();
if (!end) {
return;
}
// Push clips for any rects that come BEFORE the rect at |aEnd - 1|, if any:
ApplyRoundedRectClipsTo(aContext, aAppUnitsPerDevPixel, 0, end - 1);
// Now fill the rect at |aEnd - 1|:
RefPtr<Path> roundedRect = MakeRoundedRectPath(aDrawTarget,
aAppUnitsPerDevPixel,
mRoundedClipRects[end - 1]);
ColorPattern color(ToDeviceColor(aColor));
aDrawTarget.Fill(roundedRect, color);
// Finally, pop any clips that we may have pushed:
for (uint32_t i = 0; i < end - 1; ++i) {
aContext->PopClip();
}
}
already_AddRefed<Path>
DisplayItemClip::MakeRoundedRectPath(DrawTarget& aDrawTarget,
int32_t A2D,
const RoundedRect &aRoundRect) const
{
RectCornerRadii pixelRadii;
nsCSSRendering::ComputePixelRadii(aRoundRect.mRadii, A2D, &pixelRadii);
Rect rect = NSRectToSnappedRect(aRoundRect.mRect, A2D, aDrawTarget);
return MakePathForRoundedRect(aDrawTarget, rect, pixelRadii);
}
nsRect
DisplayItemClip::ApproximateIntersectInward(const nsRect& aRect) const
{
nsRect r = aRect;
if (mHaveClipRect) {
r.IntersectRect(r, mClipRect);
}
for (uint32_t i = 0, iEnd = mRoundedClipRects.Length();
i < iEnd; ++i) {
const RoundedRect &rr = mRoundedClipRects[i];
nsRegion rgn = nsLayoutUtils::RoundedRectIntersectRect(rr.mRect, rr.mRadii, r);
r = rgn.GetLargestRectangle();
}
return r;
}
// Test if (aXPoint, aYPoint) is in the ellipse with center (aXCenter, aYCenter)
// and radii aXRadius, aYRadius.
static bool
IsInsideEllipse(nscoord aXRadius, nscoord aXCenter, nscoord aXPoint,
nscoord aYRadius, nscoord aYCenter, nscoord aYPoint)
{
float scaledX = float(aXPoint - aXCenter) / float(aXRadius);
float scaledY = float(aYPoint - aYCenter) / float(aYRadius);
return scaledX * scaledX + scaledY * scaledY < 1.0f;
}
bool
DisplayItemClip::IsRectClippedByRoundedCorner(const nsRect& aRect) const
{
if (mRoundedClipRects.IsEmpty())
return false;
nsRect rect;
rect.IntersectRect(aRect, NonRoundedIntersection());
for (uint32_t i = 0, iEnd = mRoundedClipRects.Length();
i < iEnd; ++i) {
const RoundedRect &rr = mRoundedClipRects[i];
// top left
if (rect.x < rr.mRect.x + rr.mRadii[eCornerTopLeftX] &&
rect.y < rr.mRect.y + rr.mRadii[eCornerTopLeftY]) {
if (!IsInsideEllipse(rr.mRadii[eCornerTopLeftX],
rr.mRect.x + rr.mRadii[eCornerTopLeftX],
rect.x,
rr.mRadii[eCornerTopLeftY],
rr.mRect.y + rr.mRadii[eCornerTopLeftY],
rect.y)) {
return true;
}
}
// top right
if (rect.XMost() > rr.mRect.XMost() - rr.mRadii[eCornerTopRightX] &&
rect.y < rr.mRect.y + rr.mRadii[eCornerTopRightY]) {
if (!IsInsideEllipse(rr.mRadii[eCornerTopRightX],
rr.mRect.XMost() - rr.mRadii[eCornerTopRightX],
rect.XMost(),
rr.mRadii[eCornerTopRightY],
rr.mRect.y + rr.mRadii[eCornerTopRightY],
rect.y)) {
return true;
}
}
// bottom left
if (rect.x < rr.mRect.x + rr.mRadii[eCornerBottomLeftX] &&
rect.YMost() > rr.mRect.YMost() - rr.mRadii[eCornerBottomLeftY]) {
if (!IsInsideEllipse(rr.mRadii[eCornerBottomLeftX],
rr.mRect.x + rr.mRadii[eCornerBottomLeftX],
rect.x,
rr.mRadii[eCornerBottomLeftY],
rr.mRect.YMost() - rr.mRadii[eCornerBottomLeftY],
rect.YMost())) {
return true;
}
}
// bottom right
if (rect.XMost() > rr.mRect.XMost() - rr.mRadii[eCornerBottomRightX] &&
rect.YMost() > rr.mRect.YMost() - rr.mRadii[eCornerBottomRightY]) {
if (!IsInsideEllipse(rr.mRadii[eCornerBottomRightX],
rr.mRect.XMost() - rr.mRadii[eCornerBottomRightX],
rect.XMost(),
rr.mRadii[eCornerBottomRightY],
rr.mRect.YMost() - rr.mRadii[eCornerBottomRightY],
rect.YMost())) {
return true;
}
}
}
return false;
}
nsRect
DisplayItemClip::NonRoundedIntersection() const
{
NS_ASSERTION(mHaveClipRect, "Must have a clip rect!");
nsRect result = mClipRect;
for (uint32_t i = 0, iEnd = mRoundedClipRects.Length();
i < iEnd; ++i) {
result.IntersectRect(result, mRoundedClipRects[i].mRect);
}
return result;
}
bool
DisplayItemClip::IsRectAffectedByClip(const nsRect& aRect) const
{
if (mHaveClipRect && !mClipRect.Contains(aRect)) {
return true;
}
for (uint32_t i = 0, iEnd = mRoundedClipRects.Length();
i < iEnd; ++i) {
const RoundedRect &rr = mRoundedClipRects[i];
nsRegion rgn = nsLayoutUtils::RoundedRectIntersectRect(rr.mRect, rr.mRadii, aRect);
if (!rgn.Contains(aRect)) {
return true;
}
}
return false;
}
bool
DisplayItemClip::IsRectAffectedByClip(const nsIntRect& aRect,
float aXScale,
float aYScale,
int32_t A2D) const
{
if (mHaveClipRect) {
nsIntRect pixelClipRect = mClipRect.ScaleToNearestPixels(aXScale, aYScale, A2D);
if (!pixelClipRect.Contains(aRect)) {
return true;
}
}
// Rounded rect clipping only snaps to user-space pixels, not device space.
nsIntRect unscaled = aRect;
unscaled.Scale(1/aXScale, 1/aYScale);
for (uint32_t i = 0, iEnd = mRoundedClipRects.Length();
i < iEnd; ++i) {
const RoundedRect &rr = mRoundedClipRects[i];
nsIntRect pixelRect = rr.mRect.ToNearestPixels(A2D);
RectCornerRadii pixelRadii;
nsCSSRendering::ComputePixelRadii(rr.mRadii, A2D, &pixelRadii);
nsIntRegion rgn = nsLayoutUtils::RoundedRectIntersectIntRect(pixelRect, pixelRadii, unscaled);
if (!rgn.Contains(unscaled)) {
return true;
}
}
return false;
}
nsRect
DisplayItemClip::ApplyNonRoundedIntersection(const nsRect& aRect) const
{
if (!mHaveClipRect) {
return aRect;
}
nsRect result = aRect.Intersect(mClipRect);
for (uint32_t i = 0, iEnd = mRoundedClipRects.Length();
i < iEnd; ++i) {
result = result.Intersect(mRoundedClipRects[i].mRect);
}
return result;
}
void
DisplayItemClip::RemoveRoundedCorners()
{
if (mRoundedClipRects.IsEmpty())
return;
mClipRect = NonRoundedIntersection();
mRoundedClipRects.Clear();
}
// Computes the difference between aR1 and aR2, limited to aBounds.
static void
AccumulateRectDifference(const nsRect& aR1, const nsRect& aR2, const nsRect& aBounds, nsRegion* aOut)
{
if (aR1.IsEqualInterior(aR2))
return;
nsRegion r;
r.Xor(aR1, aR2);
r.And(r, aBounds);
aOut->Or(*aOut, r);
}
static void
AccumulateRoundedRectDifference(const DisplayItemClip::RoundedRect& aR1,
const DisplayItemClip::RoundedRect& aR2,
const nsRect& aBounds,
const nsRect& aOtherBounds,
nsRegion* aOut)
{
const nsRect& rect1 = aR1.mRect;
const nsRect& rect2 = aR2.mRect;
// If the two rectangles are totally disjoint, just add them both - otherwise we'd
// end up adding one big enclosing rect
if (!rect1.Intersects(rect2) || memcmp(aR1.mRadii, aR2.mRadii, sizeof(aR1.mRadii))) {
aOut->Or(*aOut, rect1.Intersect(aBounds));
aOut->Or(*aOut, rect2.Intersect(aOtherBounds));
return;
}
nscoord lowestBottom = std::max(rect1.YMost(), rect2.YMost());
nscoord highestTop = std::min(rect1.Y(), rect2.Y());
nscoord maxRight = std::max(rect1.XMost(), rect2.XMost());
nscoord minLeft = std::min(rect1.X(), rect2.X());
// At this point, we know that the radii haven't changed, and that the bounds
// are different in some way. To explain how this works, consider the case
// where the rounded rect has just been translated along the X direction.
// | ______________________ _ _ _ _ _ _ |
// | / / \ \ |
// | | | |
// | | aR1 | | aR2 | |
// | | | |
// | \ __________\___________ / _ _ _ _ _ / |
// | |
// The invalidation region will be as if we lopped off the left rounded part
// of aR2, and the right rounded part of aR1, and XOR'd them:
// | ______________________ _ _ _ _ _ _ |
// | -/-----------/- -\-----------\- |
// | |-------------- --|------------ |
// | |-----aR1---|-- --|-----aR2---| |
// | |-------------- --|------------ |
// | -\ __________\-__________-/ _ _ _ _ _ /- |
// | |
// The logic below just implements this idea, but generalized to both the
// X and Y dimensions. The "(...)Adjusted(...)" values represent the lopped
// off sides.
nscoord highestAdjustedBottom =
std::min(rect1.YMost() - aR1.mRadii[eCornerBottomLeftY],
std::min(rect1.YMost() - aR1.mRadii[eCornerBottomRightY],
std::min(rect2.YMost() - aR2.mRadii[eCornerBottomLeftY],
rect2.YMost() - aR2.mRadii[eCornerBottomRightY])));
nscoord lowestAdjustedTop =
std::max(rect1.Y() + aR1.mRadii[eCornerTopLeftY],
std::max(rect1.Y() + aR1.mRadii[eCornerTopRightY],
std::max(rect2.Y() + aR2.mRadii[eCornerTopLeftY],
rect2.Y() + aR2.mRadii[eCornerTopRightY])));
nscoord minAdjustedRight =
std::min(rect1.XMost() - aR1.mRadii[eCornerTopRightX],
std::min(rect1.XMost() - aR1.mRadii[eCornerBottomRightX],
std::min(rect2.XMost() - aR2.mRadii[eCornerTopRightX],
rect2.XMost() - aR2.mRadii[eCornerBottomRightX])));
nscoord maxAdjustedLeft =
std::max(rect1.X() + aR1.mRadii[eCornerTopLeftX],
std::max(rect1.X() + aR1.mRadii[eCornerBottomLeftX],
std::max(rect2.X() + aR2.mRadii[eCornerTopLeftX],
rect2.X() + aR2.mRadii[eCornerBottomLeftX])));
// We only want to add an invalidation rect if the bounds have changed. If we always
// added all of the 4 rects below, we would always be invalidating a border around the
// rects, even in cases where we just translated along the X or Y axis.
nsRegion r;
// First, or with the Y delta rects, wide along the X axis
if (rect1.Y() != rect2.Y()) {
r.Or(r, nsRect(minLeft, highestTop,
maxRight - minLeft, lowestAdjustedTop - highestTop));
}
if (rect1.YMost() != rect2.YMost()) {
r.Or(r, nsRect(minLeft, highestAdjustedBottom,
maxRight - minLeft, lowestBottom - highestAdjustedBottom));
}
// Then, or with the X delta rects, narrow along the Y axis
if (rect1.X() != rect2.X()) {
r.Or(r, nsRect(minLeft, lowestAdjustedTop,
maxAdjustedLeft - minLeft, highestAdjustedBottom - lowestAdjustedTop));
}
if (rect1.XMost() != rect2.XMost()) {
r.Or(r, nsRect(minAdjustedRight, lowestAdjustedTop,
maxRight - minAdjustedRight, highestAdjustedBottom - lowestAdjustedTop));
}
r.And(r, aBounds.Union(aOtherBounds));
aOut->Or(*aOut, r);
}
void
DisplayItemClip::AddOffsetAndComputeDifference(const nsPoint& aOffset,
const nsRect& aBounds,
const DisplayItemClip& aOther,
const nsRect& aOtherBounds,
nsRegion* aDifference)
{
if (mHaveClipRect != aOther.mHaveClipRect ||
mRoundedClipRects.Length() != aOther.mRoundedClipRects.Length()) {
aDifference->Or(*aDifference, aBounds);
aDifference->Or(*aDifference, aOtherBounds);
return;
}
if (mHaveClipRect) {
AccumulateRectDifference(mClipRect + aOffset, aOther.mClipRect,
aBounds.Union(aOtherBounds),
aDifference);
}
for (uint32_t i = 0; i < mRoundedClipRects.Length(); ++i) {
if (mRoundedClipRects[i] + aOffset != aOther.mRoundedClipRects[i]) {
AccumulateRoundedRectDifference(mRoundedClipRects[i] + aOffset,
aOther.mRoundedClipRects[i],
aBounds,
aOtherBounds,
aDifference);
}
}
}
void
DisplayItemClip::AppendRoundedRects(nsTArray<RoundedRect>* aArray) const
{
aArray->AppendElements(mRoundedClipRects.Elements(), mRoundedClipRects.Length());
}
bool
DisplayItemClip::ComputeRegionInClips(const DisplayItemClip* aOldClip,
const nsPoint& aShift,
nsRegion* aCombined) const
{
if (!mHaveClipRect || (aOldClip && !aOldClip->mHaveClipRect)) {
return false;
}
if (aOldClip) {
*aCombined = aOldClip->NonRoundedIntersection();
aCombined->MoveBy(aShift);
aCombined->Or(*aCombined, NonRoundedIntersection());
} else {
*aCombined = NonRoundedIntersection();
}
return true;
}
void
DisplayItemClip::MoveBy(const nsPoint& aPoint)
{
if (!mHaveClipRect)
return;
mClipRect += aPoint;
for (uint32_t i = 0; i < mRoundedClipRects.Length(); ++i) {
mRoundedClipRects[i].mRect += aPoint;
}
}
static DisplayItemClip* gNoClip;
const DisplayItemClip&
DisplayItemClip::NoClip()
{
if (!gNoClip) {
gNoClip = new DisplayItemClip();
}
return *gNoClip;
}
void
DisplayItemClip::Shutdown()
{
delete gNoClip;
gNoClip = nullptr;
}
nsCString
DisplayItemClip::ToString() const
{
nsAutoCString str;
if (mHaveClipRect) {
str.AppendPrintf("%d,%d,%d,%d", mClipRect.x, mClipRect.y,
mClipRect.width, mClipRect.height);
for (uint32_t i = 0; i < mRoundedClipRects.Length(); ++i) {
const RoundedRect& r = mRoundedClipRects[i];
str.AppendPrintf(" [%d,%d,%d,%d corners %d,%d,%d,%d,%d,%d,%d,%d]",
r.mRect.x, r.mRect.y, r.mRect.width, r.mRect.height,
r.mRadii[0], r.mRadii[1], r.mRadii[2], r.mRadii[3],
r.mRadii[4], r.mRadii[5], r.mRadii[6], r.mRadii[7]);
}
}
return str;
}
void
DisplayItemClip::ToComplexClipRegions(int32_t aAppUnitsPerDevPixel,
const layers::StackingContextHelper& aSc,
nsTArray<wr::ComplexClipRegion>& aOutArray) const
{
for (uint32_t i = 0; i < mRoundedClipRects.Length(); i++) {
wr::ComplexClipRegion* region = aOutArray.AppendElement();
region->rect = wr::ToRoundedLayoutRect(LayoutDeviceRect::FromAppUnits(
mRoundedClipRects[i].mRect, aAppUnitsPerDevPixel));
const nscoord* radii = mRoundedClipRects[i].mRadii;
region->radii = wr::ToBorderRadius(
LayoutDeviceSize::FromAppUnits(nsSize(radii[eCornerTopLeftX], radii[eCornerTopLeftY]), aAppUnitsPerDevPixel),
LayoutDeviceSize::FromAppUnits(nsSize(radii[eCornerTopRightX], radii[eCornerTopRightY]), aAppUnitsPerDevPixel),
LayoutDeviceSize::FromAppUnits(nsSize(radii[eCornerBottomLeftX], radii[eCornerBottomLeftY]), aAppUnitsPerDevPixel),
LayoutDeviceSize::FromAppUnits(nsSize(radii[eCornerBottomRightX], radii[eCornerBottomRightY]), aAppUnitsPerDevPixel));
region->mode = wr::ClipMode::Clip;
}
}
} // namespace mozilla